
DbVisualizer 7.1
Users Guide

Copyright DbVis Software AB

http://www.dbvis.com

1(261

Table of Contents

Getting Started and General Overview..8
Introduction ...8
Installing.. 8
Installation structure.. 8

Special Properties...8
Install license key for DbVisualizer Personal.. 9
Uninstalling the license key...9
Useful Resources..10
Starting DbVisualizer...10

Command line arguments.. 10
Pure command line interface..10

The Main Window and Common Components... 11
Standard Components in the User Interface.. 11

Grid, Graph and Chart..12
Context Sensitive Components..12
Tooltips... 12
Grids... 13

Sorting..13
Right-click menu.. 13
Aggregation Data for Selection..15
Column Visibility...16
Auto Resize..16
Quick Filter...17

Print... 18
Printer Setup...18
Grid, Chart and Plain Text...18
Graph.. 18

Print Preview... 19
Checking for Updates..20
Problem resolution.. 20

Debugging DbVisualizer... 21
How to satisfy the DbVisualizer support team..21

Load JDBC Driver and Get Connected..23
Introduction ...23
What is a JDBC Driver?.. 23
Get the JDBC driver file(s).. 23
Connection Wizard..24
Driver Manager... 28

JDBC Driver Finder...28
Loading and Configuring Drivers Manually.. 30

Setup a JDBC driver...31
JDBC drivers that requires several JAR or ZIP files.. 32
The JDBC-ODBC bridge.. 33

Loading JNDI Initial Contexts... 33
Errors (why are some paths red?).. 34
Several versions of the same driver... 34

Setup a database connection... 34
Setup using JDBC driver.. 34
Setup using JNDI lookup.. 36
Connection Properties.. 36

Database Profile...38
Driver Properties.. 39

Driver Properties for JDBC Driver ...39
Driver Properties for JNDI Lookup...39

Always ask for userid and/or password..40
Using variables in the Connection details.. 41

Connect to the Database.. 42
Connections Overview.. 44

Database Objects Explorer...45
Introduction..45
Create a Database Connection...46

Database Connection object.. 46
Alias..46
Default database and schema... 46
Remove and copy database connection objects ... 47
Database Connection detailed information.. 47
Search.. 47

Organizing Database Connections in Folders..48
Connections overview...49

Database Objects Tree... 50
Standard Actions...50
Object Actions...51

2(261

Common Object Actions...52
Create Table...52
Create Index.. 52
Import Table Data...52
Export Table... 52
Script Object to SQL Editor..53
Script Object to New SQL Editor... 53

Objects Tree Filtering..54
Show Table Row Count.. 54
Object Tree Icons..55

Database Profiles..55
Database Specific Support... 55
Generic profile.. 56

Catalog/Database object..56
Schema object..57
Table object.. 58
Procedure object.. 59

Object Views... 60
Grid... 60
Form..61
Source...62
Table Row Count.. 63
Table Data...64

Right-click menu...64
Where Filter..65
Quick Filter... 66
Monitor row count...68
Editing...68

DDL Viewer...68
References..69
Navigator...70
Procedure Editor...70

SQL Commander..72
Introduction..72

Physical Database Connections and Transactions.. 73
Editor... 73

Database Connection, Catalog and Schema... 74
Limiting Result Set size (Max Rows/Chars)... 75
Load from and save to file.. 75

Load Recent... 76
Quick File Open..77

Editor Preferences.. 77
Multiple editors... 78

Permissions.. 78
Charsets and Fonts.. 78
Key Bindings...78
Client-Side Comments..79
Auto Completion... 80
SQL Formatter.. 83
History...84
Bookmarks.. 84

Execution...84
SQL->Execute.. 85
SQL->Execute Current... 85
SQL->Execute Buffer..85
SQL->Execute Explain Plan (Oracle, SQL Server and DB2) ... 85
Auto Commit, Commit and Rollback...88
SQL Scripts...89
Execute Large SQL Scripts.. 90
Anonymous SQL Blocks .. 91
Stored Procedures..91
Client Side Commands... 91

@run <file> [<variables>] - run SQL script from file...92
@cd <directory> - change directory...92
@export - export result sets to file... 92

Example 1: @export with minimum setup... 94
Example 2: @export with automatic table name to file name mapping .. 94
Example 3: @export all result sets into a single file .. 94
Example 4: @export using predefined settings ...95

@delimiter - Temporarily change the statement delimiter..95
@call - Execute a function or stored procedure...95
@beep - Emit a beep sound.. 96
@echo - Echo text..96
@window iconify - Iconify the main window...96
@window restore - Raise the main window...96
@desc table - Describe the columns in table.. 96

3(261

@ddl - Generate DDL command..96
@spool log - Save log to file.. 97
@stop on error - Stop execution if any error occurs.. 97
@stop on warning - Stop execution if any warning occurs ..97
@set autocommit - Set the auto commit state...97
@commit - Commit the current transaction... 97
@rollback - Rollback the current transaction... 97
@set serveroutput - Enable/disable the DBMS output management for Oracle ...97
@set maxrows <number> - Temporarily set the row limit for the script...97
@set maxchars <number> - Temporarily set the text field width limit for the script .. 97

Variables... 98
Variable Syntax.. 98
Pre-defined Variables... 98
Variable Substitution in SQL statements..99

Parameter Markers... 102
Output View...102

Log.. 103
Log controls..104
Auto clear log... 104

Result Set... 104
Result set menu... 105
Editing...106
Multiple result sets produced by a single SQL statement ..106
Text... 108
Chart...108

DBMS Output (Oracle)..108

Query Builder... 110
Introduction..110

Current Limitations.. 111
Creating a Query... 111

Adding Tables..112
Using Drag and Drop..112
Using the Quick Table Add Dialog.. 113

Joining Tables... 113
Manually Joining Tables... 113
Joining Tables Automatically...114
Join Properties..114

Remove Tables and Joins...115
Query Details.. 115

Columns..116
Conditions...117
Grouping... 118
Sorting.. 118

SQL Preview... 118
Testing the Query.. 118
Loading a Query from the SQL Editor...119
Properties controlling Query Builder... 119

Express joins as JOIN clause or WHERE condition...119
Table and Column Name qualifiers...120
Delimited Identifiers.. 120
Drag style and Diagram Size..120

Bookmarks and History.. 121
Introduction..121
Bookmarks.. 121

Creating, Editing and Organizing Bookmarks.. 122
Executing Bookmarks...122
Adding a Bookmark as a Favorite.. 123
Sharing Bookmarks.. 123

History... 123
Reusing a History Entry..124
Saving a History Entry as a Bookmark...124

Quick Load.. 124

Monitor and Charts..126
Introduction..126
Monitored SQL Statements ...127

Creating, Editing and Organizing Monitored Statements ... 128
Monitor table row count.. 128
Monitor table row count difference... 129

Monitor Window.. 130
Charts..131

Chart Controls...132
Data.. 132
Layout...132

Chart View.. 134
Zooming..134

4(261

Rotating.. 134
Export..135

Create and Alter Table...136
Introduction..136
Create Table.. 136

Columns tab..137
Primary Key tab.. 139
Foreign Keys tab...140
Unique Constraints tab (database-specific)... 141
Check Constraints tab (database-specific)...141
Indexes tab (MySQL only).. 142
SQL Preview... 143
Execute... 143

Alter Table... 143

Edit Table Data... 145
Introduction..145

Features that support editing..145
Update and Delete must match one table row... 145
Edit Multiple Rows.. 145
Data Type checking.. 146
New Line and Carriage Return... 146

Grid Editor... 147
Insert row.. 147
Update row..148
Delete row(s).. 148
Duplicate row(s)..148
Copy/Paste... 148

Paste data from Excel and OpenOffice..148
Insert pre-defined values (Set Selected Cells) ...149
Undo Edit(s)..150
Key Column(s) Chooser... 150
Preview Changes..151
Saving Changes... 151

Transaction Control.. 151
Permissions..152
Errors..152

Form Editor/Viewer... 152
Cell Editor/Viewer..153

Binary/BLOB .. 154
Image Viewers..155
PDF Viewer.. 155
XML Viewer.. 157
Serialized Java Objects Viewer..157
Hex Viewer... 158

Large text data/CLOB...159
Import from File... 160
Export to File... 160

Table Data Navigation... 161
Introduction..161
Data Navigation...162
Adding Context Information to the Graph... 164
Arranging the Graph..165
Exporting and Printing the Graph..166

Procedure Editor..167
Introduction..167
Create Procedure..167
Edit and Compile...169
Execute in SQL Commander.. 171
Script CALL to Editor...173

Tool Properties...174
Customizing DbVisualizer... 174

The user preferences (XML) files... 174
Export Settings..174
Import Settings.. 175
General Settings... 176

Appearance.. 177
Fonts ..179

Key Bindings...179
Database Connection... 181
Driver Manager... 182
Permissions.. 182

SQL Commander Permissions...182
Table Data Editing Permissions... 183

Time Zone...183

5(261

File Encoding.. 183
Data Formats.. 184

Date, Time and Timestamp formats... 184
Number formats..185

Table Data...185
Transaction... 185
Scripts... 185
Monitor.. 185
Form Viewer..185
Grid... 186

Copy... 186
Colors... 186
Binary/BLOB and CLOB Data.. 186

SQL Editor ... 187
Statement Delimiters ...187
SQL Formatting.. 188
Auto Completion...188
Comments.. 188
Variables...188

SQL History...189
Proxy Settings...189

Database Settings...189
Authentication... 190
Delimited Identifiers.. 191
Qualifiers...191
Physical Connection... 191

Transaction...191
SQL Statements..192
Connection Hooks.. 193
Objects Tree Labels..193
SQL Editor.. 194
Query Builder..195
Database Specific settings... 195

Data Types (Oracle)... 195
Data Types (DB2 and JavaDB/Derby)... 195
Explain Plan (Oracle, SQL Server and DB2)... 195
Explain Plan (Oracle)... 196
Explain Plan (DB2)...196
Objects Tree (Oracle)...196

Export and Import..197
Introduction..197
Export Schema..197

Output Format...198
Output Destination.. 200
Object Types...200
Options..200
Settings... 201
Logging... 201

Export Table.. 201
Export Grid data.. 202

Settings page..202
Output Format.. 203
Encoding...204
Data Format... 204
Quote Text Data... 204
Options... 205

CSV..205
HTML... 205
SQL.. 205
XML..206
XLS.. 206

Settings...206
Data page... 206

Generate Test Data.. 207
Test data generator example... 208

Preview... 210
Output Destination.. 210

Export Text data ..211
Export Graph data... 211
Export Chart data.. 212
Import Table Data..212

Source File..213
Settings... 214
Data Formats.. 216
Import Destination...218
Import Process..220

6(261

Exporting and Importing Binary/BLOB and CLOB Data... 221
Exporting Binary/BLOB and CLOB Data.. 221
Importing Binary/BLOB and CLOB Data.. 222

Using Variables and Exporting to Multiple Files..222

Database Profile Framework.. 223
Introduction..223
What features in DbVisualizer relies on the database profile? ... 223

How does DbVisualizer know what database profile to use?...224
XML structure.. 225

XML skeleton.. 226
<DatabaseProfile>.. 227
<InitCommands> - Initialization commands..228
<Commands> - The SQLs used to interact with the database...229

<Command>... 229
Result set..229
<Input> - Setting command input ..230
<Output> - Redefine command output...231

<ObjectsTreeDef> - Definition of the Database Objects Tree.. 232
<GroupNode> - Static objects used for grouping...233
<DataNode> - Dynamic objects created via SQL.. 233

<Command>...234
<Filter>...234

<SetVar>...235
<ObjectsViewDef> - Definition of the Object Views..236

<ObjectView>..237
<DataView>.. 237

Viewers...238
grid... 238
text... 240
form.. 241
node-form...242
table-refs.. 243
tables-refs.. 244
table-data... 245
table-rowcount... 246

<Command>...247
<Message>...247

Extending ObjectView...247
<ObjectsActionDef> - Definition of user actions... 248

Variables... 249
<ActionGroup>..251
<Action>..251

<Input>... 252
text (single line)..253
text-editor (multi line)... 254
number...254
password ...254
list (large number of choices)...254
radio (limited number of choices).. 255
check (true/false, on/off, selected/unselected) ... 255
separator (visual divider between input controls) ... 255
grid (configurable multi row inputs)..256

<SetVar>...258
<Confirm>...258
<Result>... 258
<Command>...259

Conditional processing..259
When are conditional expressions processed?..259

Conditional processing when database connection is established..259
Conditional processing during command execution.. 260

Current limitations... 261

7(261

Getting Started and General Overview

Introduction

DbVisualizer is a feature rich, intuitive multi-database tool for developers and database administrators, providing a single powerful interface across a
wide variety of operating systems. With its easy-to-use and clean interface, DbVisualizer has proven to be one of the most cost effective database
tools available, yet to mention that it runs on all major operating systems and supports all major RDBMS that are available. Users only need to learn
and master one application. DbVisualizer integrates transparently with the operating system being used.

This document gives a overview, installation tips and general information about the product.

The screenshots throughout the users guide are produced on Windows XP using the Windows Look and Feel, but DbVisualizer lets you choose
among other Look and Feels as well.

All documents in the Users Guide are primarily focusing on the DbVisualizer Personal edition. Some of the described features are not available in the
Free edition.

Installing

Installing DbVisualizer is no different then installing other modern products. The standard installation procedure is performed using a graphical
application, and you just need to click through the questions that are displayed. Follow the instructions at the DbVisualizer web site if you need
information on how to start the installation procedure specifically for your platform.

Installation structure

The installer and launcher for DbVisualizer is based on the install4jTM product (http://www.install4j.com). The structure of the installation directory
(referred as DBVIS-HOME throughout the users guide) contains the following. (The exact content may differ between platforms):

.install4j/
doc/
jdbc/
lib/
resources/
wrapper/
dbvis.vmoptions
dbvis.exe
README.txt
uninstall.exe

The dbvis.exe file is used to start DbVisualizer. The remaining files and directories are only of interest if you need to do nonstandard customization.
For information on how to increase the memory for the Java process that runs DbVisualizer, and also on how to modify the Java version being used,
please read the online FAQ for the latest information.

Special Properties

DbVisualizer utilizes a few special properties that you can use to modify characteristics of the application. These properties are available in the
DBVIS-HOME/resources/dbvis-custom.prefs file.

You rarely need to modify these properties, as the default values are sufficient for most usage.

The following are the properties handled by DbVisualizer:

Property Description

8(261

http://www.dbvis.com/products/dbvis/doc/faq
http://www.install4j.com/
http://www.dbvis.com/products/dbvis/download

dbvis.disabledataedit=false Specifies if table data editing should be completely disabled, i.e. the form and inline editors.
Note: This has an effect only when used with a licensed edition.

dbvis.driver.ignore.dir=lib:resources:.install4j Specify directories from DBVIS-HOME that should not be listed in the Driver Manager "System
Classpath" list. Directories are separated with ":".
Accepted values: one or several directory names starting from DBVIS-HOME.

dbvis.grid.encode=false Specifies if encoding of data in result set grids will be performed or not. If set to true then make
sure the dbvis.grid.fromEncode and/or dbvis.grid.toEncode are also set.

dbvis.grid.fromEncode=ISO8859_1 Encoding used when translating text data that is fetched from the database

dbvis.grid.toEncode=GBK Encoding used when translating data that will appear in the result set grid

dbvis.removepartialresultsets=false Defines whether the result set(s) should be removed when interrupting an ongoing execution in
the SQL Commander.

dbvis.savedatacolumns=false Column layout changes such as reordering and/or visibility are saved for all grids in the Objects
Views *except* for the "Data" grid. This property can be used to also include the layout in the
"Data" grid. Note: This will result in DbVisualizer saving the layout for each table that is
displayed in the Data grid = huge XML file...

dbvis.showactionresult=false This defines whether the result for all actions should be displayed or only failures (default).

dbvis.sqlwarning.maxrows=5000 Defines the number of SQL Warning rows that should be processed before truncating.

dbvis.usegetobject=false Specifies if the generic ResultSet.getObject() method in JDBC will be used in favor of the data
type specific get methods or not. Default is false.

dbvis.usestandardgridfit=false Enable this property and DbVisualizer will use an accurate but slow method to automatically
resize grid columns. "Accurate" since it does a real calculation of the columns width. If leaving
this property disabled then column widths are determined much faster but depending on what
grid font is used some columns may be truncated with "...". This property has an effect only if
Tool Properties->Grid->Auto Resize Column Widths is enabled

dbvis.-ConnectionTestTimeout=20 The timeout in seconds for the "Ping Connection" feature.

dbvis.<database>.-RemoveNewLineChars=false Backward compatibility setting used to specify that the SQL command will be trimmed of all
whitespaces, tabs and newlines just before it is executed by the DB server.

locale=en,us Use this to specify an alternate Locale.

These properties may change in future versions of DbVisualizer. Some are also experimental and may be removed or instead introduced in the
DbVisualizer GUI.

Install license key for DbVisualizer Personal

If you have a license key file for DbVisualizer Personal, then start DbVisualizer and open the Help->License Key window. Enter the name of the
license file in the License Key File field, or launch the file chooser by pressing the "..." button to the right of the license file field. Once the file is
loaded, press the Install License button.

Uninstalling the license key

If you ever need to uninstall the license key, you can do so by removing (or renaming) the following file:

9(261

Operating System File Name

Windows C:\Documents and Settings\<user>\.dbvis\dbvis.license

UNIX/Linux /home/<user>/.dbvis/dbvis.license

Mac OS X /Users/<user>/.dbvis/dbvis.license

Useful Resources

Resources related to DbVisualizer that are useful:

1. The home of DbVisualizer
2. The FAQ which is regularly updated with frequently asked questions and known problems
3. The User Guide
4. The Databases and JDBC Drivers online page. This page gives information about supported databases and JDBC drivers
5. The DbVisualizer forums
6. The online problem report form. This is the recommended channel for product support and general questions

Starting DbVisualizer

How to start DbVisualizer depends on the operating system you are using.

• Windows
Locate the DbVisualizer submenu in the Start menu. Select the DbVisualizer entry in that menu

• Linux/Unix
Open a shell and change directory to the DbVisualizer installation directory. Execute the dbvis program

• Mac OS X
Double click on the DbVisualizer application or the DbVisualizer.app application bundle.

Command line arguments

You can also start DbVisualizer from a shell on all operating systems. On Windows and Linux/Unix, change the directory to the DbVisualizer
installation directory and run the dbvisgui command. On Mac OS X, you can use the open command like this:

open -a DbVisualizer-<Version>.app --args <Arguments>

The command supports a number of command line arguments. These are listed in the Help->About menu choice, under the Command Line tab, in
DbVisualizer.

Usage: dbvisgui [<filename>] [-encoding<encoding>]
 [-prefsdir <directory>] [-help] [-version]
General Options:
 <filename> SQL script file to load into editor
 -encoding <encoding> Encoding for the SQL script file
 -prefsdir <directory> Use an alternate user preferences directory
 -help Display this help
 -version Show version info

Pure command line interface

In addition to the DbVisualizer GUI tool, there is also a pure command line tool. We recommend that you use this tool for tasks that you schedule via
the operating system's scheduling tool, or when you need to include database tasks in a command script for a larger job. It is also the right tool for
execution of large scripts, such as a script generated by the DbVisualizer Export Schema feature. Please read more about this interface in the
Command Line Interface chanpter.

10(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/cmdLine/cmdLine.html
http://www.dbvis.com/support/support.jsp
http://www.dbvis.com/forum
http://www.dbvis.com/products/dbvis/doc/supports.jsp
http://www.dbvis.com/products/dbvis/doc/main/doc/index.html
http://www.dbvis.com/products/dbvis/doc/faq
http://www.dbvis.com/

The Main Window and Common Components

As you can see in the in the screenshot below, the DbVisualizer interface has a navigation area with two tabs (Databases and Scripts) to the left and
two tabs (Object View and SQL Commander) to the right.

Databases
This tab holds the Database Object Tree. It keeps (at the top level) all the Database Connection objects (or folder objects, used to organize
Database Connections). Use this tree to navigate and explore the database. Clicking on an object will change the view in the Object View
tab to show details about the selected object.

Scripts
This tab holds Bookmarks and Monitors, providing easy access to SQL scripts that you use frequently for different purposes.

Object View
This tab shows detailed information about the object represented by the selected node in the Database Object Tree. The content of the
Object View tab depends on the type of the selected object.

SQL Commander
The SQL Commander lets you execute any SQL statements and scripts.

Figure: The DbVisualizer main window

Standard Components in the User Interface

The following sections introduce generic features and components that you find in many parts of DbVisualizer.

11(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

Grid, Graph and Chart

Grid, graph and chart are three terms that are often used in the application and in the documentation. The following screenshots show what they
represent.

Grid

Graph

Chart

Figure: The grid, graph and chart terms

The documentation uses the term grid for the user interface component that represents tabular data, rather than table, to avoid confusion with a
database table.

Context Sensitive Components

All components in the user interface (e.g., buttons and menu items) are context sensitive. They are enabled only if they can be used in the current
scope.

Tooltips

Tooltips are used to provide more details about a component. They are also used to express status information. An example is the grid column

12(261

header tooltip that shows information about the column. To see a tooltip, let the mouse hover over an area of the user interface, e.g., a button or grid
header. If there is a tooltip for the area, it will pop up in about a second.

Figure: Tooltip example

Grids

Grids are used heavily in DbVisualizer and require a brief introduction.

Figure: Grid overview

The screenshot shows the grid and controls that are available for the grid in the Data tab, but the differences are minor compared to grids used in
other places.

Grid data appearance and colors are configurable in the Tool Properties->General->Grid category

Sorting

You can sort the grid based on the values in one or more columns. When you click on a column header, the grid is sorted in ascending order on the
values in that column, indicated by an up-arrow in the column header. If you click the same column header again, the grid is sorted in descending
order, indicated by a down-arrow in the column header. If you click a third time, the data is shown in the order it was received from the database and
the sort indicator disappears.

To sort on more than one column, Ctrl-click (keep the Ctrl key pressed when clicking) on additional columns. The grid is then sorted on the values in
the first column you clicked on (indicated with a 1 next to the arrow), and then all rows with the same value in the first column are sorted on the
values in the second sort column (indicated with a 2 next to the arrow), and so on.

Right-click menu

The generic right-click grid menu contains the following operations:

13(261

Figure: Grid right click menu

Menu Choice Description

Select All Select all cells (i.e., all rows and columns) in the grid

Select Row(s) Select all cells in the selected row(s)

Copy Selection Copy all selected cells onto the system clipboard

Copy Selection (With Column Header) Copy all selected cells including column header onto the system clipboard

Export Copy the export dialog

Export Selection Export the selection using the standard export feature

Print Open the print dialog for printing the compete grid

Print Selection Open the print dialog for printing just the selected rows/columns

Print Preview Open the print preview dialog

Save Selected Cell Save the value of the selected cell to a file, selected with a file chooser dialog

Reload Reload the grid with data from the database

Find Data Open the find data search field

Find Column Open the find column search field

Browse Row in Window
Display all data for the selected row in a separate window.
Note: for a read/write grid, this entry is named Edit Row in Window.

14(261

Browse Cell in Window
Display the cell value in a separate window. This is especially useful for BLOB/CLOB data.
Note: for a read/write grid, this entry is named Edit Cell in Window.

Describe Data Show detailed information about the columns in the grid

Aggregation Data for Selection Displays aggregation data for the current selection. Read more in Aggregation Data for Selection below.

The menu may contain additional entries based on the current scope, e.g., entries for editing cell values for a read/write grid.

Aggregation Data for Selection

The Aggregation Data for Selection feature presents aggregation data organized per data type on the current selection in a grid. It provides
information about cells holding numbers, text, date/time information and more. The following is an example of what it shows:

Figure: The Aggregation Data for Selection dialog

With Auto Update checked, the data is updated automatically when you change the selection in the grid. For very large selections, you may prefer to
disable this feature and instead click Update when you want to refresh the data. Click a link (blue underlined text) in the aggregation table to locate
and highligh the actual value in the source data grid. Handle Number Values in Text Types as Numbers setting simply treats all valid numbers in
text data types as numbers and include them in the Number Count summary.

15(261

Column Visibility

The Column Visibility dialog controls which columns you want to appear in a grid. You open the column visibility dialog by clicking the button above
the vertical scrollbar in the grid.

Figure: The Column Visibility dialog

The Column Visibility dialog shows all columns that are available in the grid.

The checkmark in front of a column name indicates that the column is visible in the grid, while an unchecked box indicates that it is excluded from the
grid. Click the checkmark to change the visibility of a column. You can change the visibility for all columns at once using the two visibility buttons in
the dialog.

The order of the columns can also be adjusted in this dialog. Just select a row and use the Up and Down buttons to move it up (left in grid) or down
(right in grid).

If you want to revert your changes, you can click on the Default Layout button to reset the grid, i.e., making all column visible and put them in their
default locations.

Note 1: Modifications of column visibility, size and order are saved between invocations of DbVisualizer for all grids in the various Object View tabs
except for the Data tab.

Note 2: If you modify the column visibility in the Data tab, the changes persists throughout the session. For instance, if you remove the Name
column in the Data tab for the table EMPLOYEE, the Name column remains excluded when you reload the table or come back to the Data tab for
that table later in the same session. You must manually make it visible again to bring it back. The changes are, however, reset when you restart the
application.

Auto Resize

The column header right-click menu contains a number of options for automatic resizing of column widths.

Figure: Auto Resize menu

16(261

Menu Choice Description

All Columns (consider Header) Resize all columns to fit the widest cell value, or the column header if it is wider than any cell value

All Columns (ignore Header) Resize all columns to fit the widest cell value

Current Column (consider Header) Resize the current column to fit the widest cell value, or the column header if it is wider than any cell value

Current Column (ignore Header) Resize the current column to fit the widest cell value

Default Column Widths Set all column widths to their default width

Quick Filter

All areas that hold a grid in DbVisualizer also provide a Quick Filter field.

Figure: Grid with Quick Filter

When you type in the Quick Filter field, DbVisualizer matches the value with cell values in the grid and filters out all rows that do not have a match in
at least one cell. The Quick Filter pull-down menu (click on the down arrow next to the magnifying glass) lets you choose if the filter should match
cells in all columns or just one selected column, case or case insensitive matching, and where in the cell the value must match.

For the Use wild cards option the following characters have special meaning:

"?" - The question mark indicates there is zero or one of the preceding element. For example, colou?r matches both "color" and "colour".
"*" - The asterisk indicates there are zero or more of the preceding element. For example, ab*c matches "ac", "abc", "abbc", "abbbc", and so on.
"+" - The plus sign indicates that there is one or more of the preceding element. For example, ab+c matches "abc", "abbc", "abbbc", and so on, but
not "ac".

17(261

Print

DbVisualizer supports printing of grids, graphs, charts and plain text, such as the content of an SQL Editor. The print dialog looks somewhat different
depending on what is printed. In all cases, you launch the print dialog by clicking on the Print button in the toolbar for the object you want to print, or
by choosing Print from the right-click menu. The right-click menu also contains a Print Preview choice, if you want to see what the printout will look
like before you actually print.

Printer Setup

If you want to set the page orientation (e.g., portrait or landscape) and paper size, you must launch the Printer Setup dialog, using the File->Printer
Setup main menu option, before you print. Printing varies widely between platforms, so even though the Print dialog (as opposed to the Printer
Setup dialog) on some platforms also lets you choose a page orientation and other options, they may be ignored if specified in that dialog. The only
supported way to specify the page orientation and other options is via the Printer Setup dialog.

Grid, Chart and Plain Text

For a grid, chart and plain text, DbVisualizer launches the platform's native Print dialog, so it looks different on different platforms. The two options
available on all platforms are a choice of printer and the page range. On some platforms, the dialog may offer additional options, but they may be
ignored by DbVisualizer. Use the Printer Setup dialog to set other options besides which printer to use and the page range, as described above.

Figure: Standard print dialog

The figure above shows how the Print dialog looks on the Windows platform (the appearance and printing capabilities are platform specific so the
printing dialog look different in Windows, Linux/UNIX and Mac OS X).

When you print a grid in DbVisualizer, the grid is printed as it is shown on the screen, i.e., with the table headers, sort and primary key indicator, etc.
It is printed as a screenshot that may span several pages, depending on the number of rows and columns that are printed. For a grid, the right-click
menu contains a Print Selection choice that you can use if you just want to print selected rows and columns.

An alternative to printing a grid as a screenshot is to export the grid to HTML and then use a web browser to print it.

Printing a chart scales the chart to the size of the paper. Plain text is printed as-is and may span multiple pages, both in height and width.

Graph

Printing a graph adds a custom dialog before the native Print dialog is displayed.

18(261

Figure: Print options when printing graphs

You can specify the number of rows (pages) and columns (pages) that the complete image will be split into. You can also select whether the view as
it appears on the screen or the complete graph should be printed. When you click Ok, the native Print dialog is displayed, where you can select the
printer.

Print Preview

Use the File->Print Preview feature to preview what the printout will look like before you actually print it.

Grid Graph

Figure: Grid and graph print previews

19(261

Checking for Updates

We frequently release new versions of DbVisualizer to introduce new features and improvements, and to fix problems. To make you aware of new
versions, DbVisualizer periodically checks if a newer version than the one you are using is available when you start DbVisualizer. If there is a newer
version available, you are presented with a dialog with links to pages on our site where you can read more about it and download the new version.

Figure: Available Updates dialog

The Early Access field tells you if it is an Early Access version (i.e., a preview of an upcoming major version we are currently working on) and the
Free Upgrade field is checked if you can upgrade to this version with your current license. The list may also have a Comments field with more
information about the version. Click on the links in the Download and Release Notes fields to open a browser with the corresponding page from our
web site.

DbVisualizer checks for new versions at start-up on a weekly basis by default. You can change the interval or check manually at any time by
launching the Check for Update dialog from the Help menu.

Figure: Check For Updates dialog

You can set the interval to one of Every Start-Up, Weekly, Monthly or Never, or click the Check Now button to see if there are any new versions
available right now. If new versions are available, the same dialog as shown above appears, otherwise a message tells you that you are running the
latest version.

The dialog also informs you about which version you are currently running and when the last check for updates took place.

Click OK to save the new interval or Cancel to leave it as it was.

If you are accessing the Internet through a proxy, you must enter information about the proxy in the Tool Properties dialog before you check for
updates.

Problem resolution

Even though we make our very best to ensure the quality of DbVisualizer, you may run into problems of different kinds. The runtime environment for
DbVisualizer is rather complicated when it comes to tracking the source of a problem, since it's not only DbVisualizer that may cause the problem but
also the JDBC driver, or even the database engine.

20(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId495258

There are a few things that you can try before reporting a problem, depending on the nature of the problem:

1. Make sure you are using the latest version of Java available for your platform (Java 6 or later)
2. Make sure you are using a version of the JDBC driver that we've tested DbVisualizer with, or a later, production quality version
3. Read the DbVisualizer FAQ
4. Check the online Forums
5. Read the DbVisualizer Users Guide
6. ... the last resort is to post a question via the problem report form or send an email to support@dbvis.com. (Note that we generally love

detailed reports as well as screenshots when possible)

Debugging DbVisualizer

The Tools->Debug Window is useful to see what is going on in DbVisualizer and the JDBC driver(s). The checks at the top control what parts of
DbVisualizer should be debugged. The Debug JDBC Drivers option will enable debug of the current JDBC driver. Note that the amount of output is
determined by the JDBC driver.

Figure: The DbVisualizer Debug Window

The Save and Copy buttons will prepare the log with information about the DbVisualizer version you are using and the connected database
connections.

The log is automatically truncated to preserve memory when the log destination is set to Debug Window. The Console and File destinations have
no such limitation.

How to satisfy the DbVisualizer support team

Quite often we get incomplete problem reports and need to follow up for additional information. If you encounter a problem, please follow these steps
to include the details we need to help you:

1. Select the Connection tab
2. In the Connection Message area, select the right-click menu
3. In the menu, select Copy
4. This copies the system details to the clipboard. Then paste the details into an email or in the problem report form.
5. In addition, we really appreciate it if you provide us with screenshots. An image says more than ... you know.

21(261

mailto:support@dbvis.com
http://www.dbvis.com/support/support.jsp
http://www.dbvis.com/products/dbvis/doc/main/doc/index.html
http://www.dbvis.com/forum
http://www.dbvis.com/products/dbvis/doc/faq
http://www.dbvis.com/products/dbvis/doc/supports.jsp
http://www.java.com/

Figure: The connection message right click menu

22(261

Load JDBC Driver and Get Connected

Introduction

This document describes the way JDBC drivers are managed in DbVisualizer and all aspects about getting connected to your database(s).

If you are impatient, please go ahead and read the Connection Wizard section. It is the recommended way to create database connections in
DbVisualizer.

What is a JDBC Driver?

DbVisualizer is, as you know, a generic tool for administration and exploration of databases. DbVisualizer is in fact quite simple, since it does not
deal directly with how to communicate with each database type. The hard job is done by a JDBC driver, which is a set of Java classes that are either
organized in a directory structure or collected into a JAR or ZIP file. The magic of these JDBC drivers is that they all match the JDBC specification
and the standardized Java interfaces. This is what DbVisualizer relies on. A JDBC driver implements all details for how to communicate with a
specific database and database version, and there are a range of drivers from the database vendors themselves and 3:rd party authors. To establish
a connection with a database, DbVisualizer loads the driver and then get connected to the database through the driver.

It is also possible to obtain a database connection using the Java Naming and Directory Interface (JNDI). This technique is widely used in enterprise
infrastructures, such as application server systems. It does not replace JDBC drivers but rather adds an alternative way to get a handle to an already
established database connection. To enable database "lookup's" using JNDI, an Initial Context implementation must be loaded into the Driver
Manager. This context is then used to lookup a database connection. The following sections describe the steps for getting connected using a JDBC
Driver, and also how to use JNDI to obtain a database connection.

A complete JDBC driver typically consists of a number of Java classes, located in a JAR, ZIP or a folder, that need to be loaded into the DbVisualizer
driver manager. DbVisualizer automatically recognizes the classes that are used to initiate the connection with the database and presents them in
the Driver Class list. You must select the correct class in this list to make sure DbVisualizer successfully can initiate the connection. Consult the
driver documentation for information of which class to select, or if the number of classes found are low, figure it out by trying each of them. More
about this in the following sections.

Get the JDBC driver file(s)

DbVisualizer comes bundled with all commonly used JDBC drivers that have a license that allows for distribution with a third party product. Currently,
drivers for DB2, JavaDB/Derby, Mimer, MySQL, and PostgreSQL, as well the jTDS driver for SQL Server and Sybase, are included with
DbVisualizer. If you only need to connect to databases of these types, you can skip the rest of this section and jump straight to the Connection
Wizard section, because by default, DbVisualizer configures all these drivers automatically the first time you start DbVisualizer.

If you need to connect to a database that is not supported by a bundled JDBC driver, you must get a JDBC driver that works with your database type
and version. The following online web page contains an up-to-date listing of the database/driver combinations we have tested:

http://www.dbvis.com/products/dbvis/doc/supports.jsp

Information about almost all drivers that are available is maintained by Sun Microsystems on this page:

http://industry.java.sun.com/products/jdbc/drivers

Download the driver to an appropriate directory. Make sure to read the installation instructions provided with the driver. Some drivers are delivered in
ZIP or JAR format but need to be unpacked to make the driver files visible to the Driver Manager. The Databases and JDBC Drivers web page
describes where you can download each driver and also what additional steps may be needed to install and load the driver in DbVisualizer.

(Drivers are categorized into 4 types. We're not going to explain the differences here, just give you the hint that the "type 4," aka "thin," drivers are
the easiest to maintain, since they are pure Java drivers and do not depend on any external DLL's or dynamic libraries. Even though DbVisualizer
works with any type of driver, we recommend that you get a type 4 driver if there is one for your database).

When you have downloaded the JDBC driver into a local folder (and unpacked it, if needed), you can go ahead and create a connect with the
Connection Wizard, as described in the next section. You will then asked to load the driver files when the wizard needs them. Alternatively, you can
move (or copy) the JDBC driver files to the DBVIS_HOME/jdbc folder, where they will be picked up and loaded automatically by the JDBC Driver
Finder the next time you start DbVisualizer. You can read more about this option in the JDBC Driver Finder section.

23(261

http://www.dbvis.com/products/dbvis/doc/supports.jsp
http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers
http://www.dbvis.com/products/dbvis/doc/supports.jsp
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/getConnected.html#mozTocId465153
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/getConnected.html#mozTocId465153

Connection Wizard

The Connection Wizard greatly simplifies the steps needed to load the JDBC driver and create a new database connection. You just enter
information about the driver file(s) and the connection data on a few wizard pages, and the wizard handles all the details. Once the new database
connection has been created, it appear in the database objects tree.

The wizard cannot be used to define database connections via JNDI data sources.

The first wizard screen look like this.

Figure: Connection Wizard - Page 1

In the connection alias field, enter the name of the new database connection. This is the name that will be used for the connection in DbVisualizer,
e.g., in the object tree.

Press Next to go to the next page.

On this page, select the driver you are going to use from the list. A red icon in front of the driver name indicates that the driver is not yet ready to use,
while a green icon indicates that it has been properly configured (simply press Next to continue).

If the driver you select is not yet configured, a Load Driver File(s) button is displayed. When you click the Load Driver File(s) button, a file chooser
is opened. You should select the JAR or ZIP file(s) that contain the driver implementation.

24(261

Figure: Connection Wizard - Page 2

In the file chooser, locate the files containing the JDBC driver files. (Select multiple files by pressing the SHIFT key while clicking).

Figure: Connection Wizard - Page 3

Once the driver has been properly loaded, a green icon appears in front of the driver name. Press Next to continue to the last page.

25(261

Figure: Connection Wizard - Page 4

On the last wizard pane, enter details for the new database connection. The information that must be provided varies depending on the database
type. Please consult the database documentation if you are unsure about how to find the requested information.

26(261

Figure: Connection Wizard - Page 5

Press Ping Server to verify that a network connection can be established to the specified host and port. If the test passes, press Finish to create the
new database connection and connect to the database.

Some databases support different types of URLs. For instance, Oracle supports URLs that contain the host, port and service name or SID, but also a
TNS URL type where you just include a TNS alias and get all the details from a tnsnames.ora file. For cases like this, the last wizard page has a URL
Type list at the top where you select the type of URL to use.

27(261

Figure: Connection Wizard - Page 5 for a database with multiple URL types

The other fields then depend on the selected URL type. For the Oracle TNS format, for example, you can pick the TNS alias from a list. If you like to
use TNS URLs with an Oracle database, the tnsnames.ora file must be located either in the ORACLE_HOME/network/admin directory or in a
directory identified by the TNS_ADMIN environment variable. For more about TNS, see the "Local Naming Parameters (tnsnames.ora)" chapter in
Oracle Database Net Services Reference.

We recommend that you skip the rest of this document, unless you:

• want to learn how the driver manager in DbVisualizer works
• need to have several versions of the same JDBC driver loaded simultaneously
• need to establish a connection via the JNDI interfaces (Java Naming and Directory Interface)
• need to add a Driver that do not exist in the wizard list of drivers

Driver Manager

The Driver Manager in DbVisualizer is used to define the drivers that will be used to communicate with the databases. You can manually locate the
JDBC driver files and configure the driver, or you can use the JDBC Driver Finder to do most of the work for you, either on demand or automatically.

JDBC Driver Finder

The JDBC Driver Finder is a very powerful part of the Driver Manager that automates most of the driver management work. Given the folders where
JDBC drivers are located, it loads and configures new drivers (if any) every time you start DbVisualizer. You can configure the JDBC Driver Finder in
Tools Properties, in the General->Driver Manager category.

28(261

Figure: JDBC Driver Finder properties

Use the following properties to specify the finder behavior:

Property Description

Run JDBC Driver Finder at Startup If enabled, the finder will run automatically every time you start DbVisualizer. If it finds any new driver files, it will
automatically load and configure them.

Replace Driver Files If enabled, the driver files are replaced for the matching driver even if the driver already have proper driver files.

Display When New Files If enabled, the finder window pops-up if it finds any new files when you start DbVisualizer. Otherwise, the finder
runs invisibly in the background.

Display on Error If enabled, the finder window pops-up if it encounters any errors loading and configuring new drivers. Otherwise,
it is silent about errors and you have to launch the Driver Manager to see which drivers are not loaded
successfully. Enabling this property is only meaningful if you have disabled Display When New Files.

29(261

You can also specify the folders the JDBC Driver Finder will search. By default, it will search folders named jdbc in the DbVisualizer installation
directory (${dbvis.home}) and the DbVisualizer preferences folder (${dbvis.prefsdir}). These folder paths are shown under the list of Driver Finder
Paths.

Finally, you can specify regular expression patterns for filenames that the finder should ignore. This can be useful if you need to store other files
besides driver files in the designated folders.

If you let the JDBC Driver Finder load all drivers for you, all you need to do to install a new driver is to put the driver files in one of the folders
specified for the finder in Tool Properties and then restart DbVisualizer.

The Driver Finder is always activated when upgrading from an older DbVisualizer version.

Loading and Configuring Drivers Manually

You can also load and configure JDBC drivers manually using the Driver Manager. If you use JNDI to provide access to the database, you must use
this option, since the JDBC Driver Finder does not handle JNDI. Start the Driver Manager dialog using the Tools->Driver Manager menu choice.

The left part of the driver manager dialog contains a list of driver names with a symbol indicating whether the driver has been configured or not. The
right part displays the driver configuration for the selected driver in terms of the following:

• Name
A driver name in the scope of DbVisualizer is a logical name for either a JDBC driver or an Initial Context in JNDI. This is the name shown
in the Connection tab setup when selecting which driver to use for a database connection

• URL Format
The URL format specifies the pattern for the JDBC URL or a JNDI Lookup name. Its purpose is to assist the user in the Connection tab
when entering the URL or lookup name

• Driver Class
Defines the main class for the JDBC driver, used for connecting to the database.

• Web Site
Link to the DbVisualizer web site, where you can get up-to-date information about how to download the driver.

• Driver File Paths
Defines all paths to search for JDBC drivers or Initial Contexts when connecting to the database. The Driver File Paths area is composed
of two tabs: the paths in the User Specified tab are used for dynamically loaded JDBC drivers or Initial Context classes, and the System
Classpath tab lists all paths that are part of the Java system classpath.

The System Classpath tab is only of interest for the JDBC-ODBC driver.

30(261

Figure: Driver Manager dialog

Initially, the driver list contains a collection of default drivers. They are not fully configured, as the paths to search for the classes need to be
identified. You can edit the list, i.e., create, copy, remove and rename drivers. A driver is ready to use once a driver class has been identified, which is
indicated with a green check icon in the list. Drivers that are not ready for use are indicated with a red cross icon.

Only ready (configured) drivers appear in the Connection tab driver list.

The figure shows seven drivers that are ready: DB2 UDB, Informix, JDBC/ODBC Bridge, Mimer, MySQL, Oracle Thin and PostgreSQL.

Setup a JDBC driver

The recommended way to setup a driver is to pick a matching driver name from the list and then simply load the JAR, ZIP or directory that keeps
the driver class(es). For instances, if you are going to load the JDBC driver for Oracle, select the Oracle driver in the list . You can also create a new
driver or copy an existing one.

Check the following online web page with the most current information about the tested databases and drivers:

http://www.dbvis.com/products/dbvis/doc/supports.jsp

• It lists which databases and drivers we have tested
• Download links to JDBC drivers
• Information of which files to load in the driver manager for each JDBC driver
• Information of which Driver Class to choose

31(261

http://www.dbvis.com/products/dbvis/doc/supports.jsp

When you have selected the driver to configure, you need to load the driver files. Click the Load button to the right of the User Specified paths tree
to show the file chooser and load the driver JAR, ZIP or individual files.

Figure: File Chooser dialog

A JDBC Driver implementation typically consists of several Java classes. If they are packaged in a JAR or a ZIP file, you don't have to worry about
the details; just select and load the JAR or ZIP file. For instance, in the example above, use the ojdbc6.jar file.

If the driver classes are not packaged, it is important to select and load the root folder for the JDBC Driver. Java classes are typically organized using
a package name structure. Example:

oracle.jdbc.driver.OracleDriver

Each package part in the name above (separated by ".") is represented by a folder in the file system. The root folder for the driver is the folder named
by the first part, i.e., the oracle directory in this example. The class files are stored in the oracle/jdbc/driver sub folder. When the driver classes are
located in a folder structure like this, you must select and load the root folder, so that the Driver Manager gets the complete package structure.

When a connection is established in the Connection tab, DbVisualizer searches the selected drivers path tree's in the following order:

1. User Specified
2. System Classpath

The paths are searched from the top of the tree, i.e., if there are several identical classes in, for example, the dynamic tree, the topmost class will be
used. Loading several paths containing different versions of the same driver in one driver definition is not recommended, even though it works (if you
do this, you must move the driver you are going to use to the top of the tree). The preferred method for handling multiple versions of a driver is to
create several driver definitions.

When you load files in the User Specified paths list, DbVisualizer analyzes each file to find the classes that represent main driver classes. Each such
class is listed under the path where it was found in the User Specified paths lists, and it is also added to the Driver Class list in the Driver Settings
area above. If there is more than one class in the list, make sure you select the correct Driver Class from the list. Consult the driver documentation
(or the Databases and JDBC Drivers page) for information about which class to select.

JDBC drivers that requires several JAR or ZIP files

Some drivers depend on several ZIP or JAR files, or directories. An example is if you want XML support for an Oracle database. In addition to the
standard JAR file for the driver, you then also need to load two additional JAR files. These are not JDBC driver files but adds functionality the driver
needs to fully support XML.

Simply select all JARs at once and press Open in the file chooser dialog. The Driver Manager will then automatically analyze each of the loaded files
and present any JDBC driver classes or JNDI initial context classes it finds.

32(261

http://www.dbvis.com/products/dbvis/doc/supports.jsp

Figure: File Chooser dialog

The JDBC-ODBC bridge

The JDBC-ODBC driver is bundled with most Java installations, but not all (e.g., it is not included with Java for Max OS X). The JdbcOdbcDriver
class is included in a JAR file that is commonly named rt.jar, stored somewhere in the Java directory structure. DbVisualizer automatically identifies
this JAR file in the System Classpath tree. To locate the JdbcOdbcDriver, simply press the Find Drivers button to the right of the System Classpath
tree. When it is found, make sure the sun.jdbc.odbc.JdbcOdbcDriver is selected as the Driver Class in the Driver Settings area.

Loading JNDI Initial Contexts

Initial Context classes are needed to get a handle to a database connection that is registered with a JNDI lookup service. In DbVisualizer, these
context classes are similar to JDBC driver classes in that an Initial Context implementation for a specific environment is required.

Remember that the appropriate JDBC driver classes must be loaded into the Driver Manager even if the database connection is obtained using
JNDI.

To load Initial Context classes into the Driver Manager, simply follow the steps outlined for loading JDBC drivers. The difference is that you will
instead load paths containing Initial Context classes instead of JDBC drivers. When you load a path, DbVisualizer locates all Initial Context classes in
the path and lists them in the User Specified paths list.

33(261

Figure: Driver Manager List with Initial Context classes

Visually, the difference between the identified JDBC drivers and Initial Context classes is the icon in the tree.

The figure shows the JAR files required to first obtain the JNDI handle, and then also the JDBC driver for the database. Check with the application
server vendor or similar for more information about what files you need to load to get connected via JNDI.

Errors (why are some paths red?)

A path in red color indicates that the path is invalid. This may happen if the path has been removed or moved after it was loaded into the driver
manager. Simply remove the erroneous path and locate the correct one.

Several versions of the same driver

The Driver Manager supports loading and using several versions of the same driver concurrently. We recommend that you create a unique driver
definition per version of the driver and name the driver definitions properly, e.g., Oracle 9.2.0.1, Oracle 10.2.1.0.1, etc.

Setup a database connection

This section explains how to setup a Database Connection in the Connection tab.

Setup using JDBC driver

A Database Connection in DbVisualizer is the root of all communication with a specific database. It requires at a minimum that a driver is selected

34(261

and that a Database URL is specified. A new Database Connection is created using the Database->Add Database Connection menu choice in the
main window:

Figure: New Database Connection using JDBC driver

The Connection tab is the only tab that is enabled if you are not connected to the database. Database connection objects appear throughout the
application and are by default listed by their URL. A URL can be, and often is, quite complex and long. You can use the Database Alias to set a
more readable name for the database connection.

The Database Type list shows all database types that have a set of separate properties, which you can adjust in the Tool Properties dialog. Select
the database type you are creating a connection for, or select Generic if you cannot find a matching type.

The Driver list shows all defined drivers that have been defined properly in the Driver Manager. Just open the list and select the appropriate driver.
Clicking the button to the right of the field opens the Driver Manager dialog with the settings for the selected driver.

Enter the JDBC URL for the connection in the Database URL field. The drop-down menu to the right of the field provides two options for entering or
editing the URL. Edit URL opens a multirow editor, in case your URL is extremely long. Launch URL Builder opens a dialog where you fill out a
form with information about the connection, used to generate the URL for you when you close the dialog.

There is also a URL Format field under the URL field that shows the URL format that the driver supports. You can click on the format string to copy
the format template into the URL field. Terms between < and > characters are placeholders that need to be replaced with appropriate values, e.g.:

jdbc:oracle:thin:@proddb:1521:bookstore
jdbc:sybase:Tds:localhost:2638
jdbc:db2://localhost/crm
jdbc:microsoft:sqlserver://localhost;DatabaseName=customers

35(261

Userid and Password are optional but most databases require that they are specified.

Some drivers accept additional proprietary parameters described in the Connection Properties section.

Setup using JNDI lookup

The information needed to obtain a database connection using JNDI lookup is similar to what is needed for connecting using a JDBC driver.

Figure: New Database Connection using JNDI lookup

The figure above shows parameters to connect with a lookup service via the MySQL RefFS driver. The /tmp/jnditest4975.tmp/test lookup name
specifies a logical name for the database connection. This example is in its simplest form, since userid and password are not specified, nor where
the database connection is finally fetched from. Any errors during the process of getting a handle to the database connection appears in the
Connection Message area.

Connection Properties

In addition to the standard connection parameters (URL, Driver, Userid, Password, etc.), there are also a collection of connection properties. Which
properties are available depends on the database type. Some database types have more properties than others. Which edition of DbVisualizer you
use also affects which connection properties are available.

All supported database types (Oracle, Informix, Mimer, DB2, MySQL, etc.) are listed in the Database tab in the Tool Properties window. For each
database type, there are a number of properties that are applied to any database connection of that type. This means, for instance, that a database

36(261

connection defined as being a PostgreSQL database type will use the PostgreSQL properties defined in Tool Properties. The Connection Properties
can then be used to override some settings specifically for one database connection. The advantage with this inheritance model is that property
changes that apply to all connections can be made in one place, instead of having to apply a common setting for every database connection of a
specific database type.

The following summarize the organization of the properties:

• Tool Properties (Database)
These apply to all database connections of the specific database type.

• Connection Properties
These apply for a specific database connection only.

-"Okay, so there are two places to change the value of a property. Which shall I use?"

This depends on whether the change should be applied to all database connections for a specific database type or just a single one. If the majority of
your database connections should use the new property, it is recommended to set it in Tool Properties. Any overridden properties in the Connection
Properties tab are indicated with an icon in the Properties tab label.

Figure: Connection Properties

The Connection Properties tab is organized in the same way as the Tool Properties window. The difference is that the list only includes the
categories that are applicable for the selected database connection. Briefly, the categories are:

• Database Profile
• Driver Properties
• MySQL (The current Database Type)

• Authentication
• Delimited Identifiers
• Qualifiers
• Physical Connection

• Transaction
• SQL Statements

37(261

• Connection Hooks
• Objects Tree
• SQL Editor
• Query Builder

The Database Profile and Driver Properties categories are only available in the Connection Properties tab and not in Tool Properties. The next
section explains the Database Profile and Driver Properties categories, while the other categories are described in the Tool Properties document.

Additional categories may appear in the connection properties depending on the type of database. An example is the category for Explain Plan for
Oracle, DB2 and SQL Server.

Database Profile

Please read in the Database Objects Explorer document for detailed information about database profiles.

The Database Profile category is used to select whether a profile should be automatically detected and loaded by DbVisualizer, or if a specific one
should be used for the database connection. The default strategy is to Auto Detect a database profile.

Figure: Database Profile category for a database connection

The way DbVisualizer auto detects a profile is based on the setting of Database Type in the connection details.

If you manually choose a database profile, this choice will be saved between invocations of DbVisualizer.

38(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseExplorer/databaseExplorer.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId753863

Driver Properties

The Driver Properties category is used to fine tune a driver or Initial Context before the database connection is established.

Driver Properties for JDBC Driver

Some JDBC drivers support driver specific properties that are not covered in the JDBC specification.

Figure: Driver Properties for JDBC Driver

The list of parameters, their default values and parameter descriptions are determined by the JDBC driver used for the connection. Not all drivers
supports additional driver properties. To change a value, just modify it in the list. The first column in the list indicates whether the property has been
modified or not, and so, whether DbVisualizer will pass that parameter and value onto the driver at connect time.
New parameters can be added using the buttons at the bottom of the dialog. Be aware that additional parameters do not necessarily mean that the
driver will do anything with them.

Driver Properties for JNDI Lookup

The Driver Properties category for a JNDI Lookup connection always contains the same parameters.

39(261

Figure: Driver Properties for JNDI lookup

The list of options for JNDI lookup is determined by the constants in the javax.naming.Context class. To change a value, just modify the value of the
parameter. The first column in the list indicates whether the property has been modified or not, and so, whether DbVisualizer will pass that parameter
and value onto the driver at connect time. New parameters can be added using the buttons at the bottom of the dialog. Be aware that additional
parameters do not necessarily mean that the InitialContext class will do anything with them.

Always ask for userid and/or password

Userid and password information is generally information that should be handled with great care. By default, DbVisualizer saves both userid and
password (encrypted) for each database connection. Userid is always saved while password saving can be disabled in the connection properties, in
the Authentication category.

The Require Userid and Require Password connection properties in the Authentication category can be enabled to tell DbVisualizer to
automatically prompt for userid and/or password when a connection is to be established. Enabling either one or both of these while leaving the
Userid and Password fields blank for a database connection ensures that DbVisualizer will not keep this vital information between sessions. The
following dialog is displayed if requiring both userid and password.

40(261

Figure: Dialog asking for Userid and Password as a result of having Require Userid and Password settings enabled

Using variables in the Connection details

Variables can be used in any of the fields in the Connection tab. This can be useful alternative to having a lot of similar database connection objects.
Several variables can be in a single field, and default values can be set for each variable. The following figure shows an example with variables, i.e.,
variable named delimited by dollar characters, $$...$$.

Figure: Connection tab with variables

41(261

The following variables appear in the figure:

• $$Alias$$
• $$Database Host||dbhost2||||choices=[dbhost1,dbhost2,dbhost3] $$
• $$Port||1521$$
• $$SID||ORCL$$

All of these variables define a default value after the "||" delimiter, except for the $$Alias$$ variable, which have no default value. The default values
appear in the connect dialog when you ask for a connection to be established. The $$Database Host$$ variable includes the choices option, with a
comma separated list of choices that should appear in a drop-down list. The drop-down list is editable, so the user is not locked into the choices from
the list.

The following figure shows the connect dialog based on the connection definition shown above.

Using variables in conjunction with the Require Userid and/or Require Password settings is also supported.

Figure: Connection tab with variables

Enter the appropriate information in the fields and then press the Connect button to establish the connection. When the connection is established,
DbVisualizer automatically substitutes the variables in the Connection tab with the values entered in the connect dialog. At disconnect from the
database, they revert back to the original variable definitions.

Connect to the Database

Press Connect when all information has been specified. DbVisualizer passes all information you entered on to the selected driver, and when the
connection is established, the following appears.

42(261

Figure: A freshly initiated database connection using JDBC driver

The Connection Message box now lists the name and version of the database as well as the name and version of the JDBC driver. The database
connection node in the tree indicates that it is connected. The connection properties cannot be edited while a database connection is established.

The figure above also shows that the database connection node in the tree has been expanded to show its child objects.

If the connection is unsuccessful, it is indicated by an error icon in the tree. The error message as reported by the database or the driver appears in
the Connection Message area. Use this information to track down the actual problem. Since these conditions are specific for the combination of
driver and database, you should check the driver and database documentation to find out more. Below are a few common problem situations:

Error Message Explanation

No suitable driver.
There is no driver that can handle a connection for the specified
URL. The most common reason is that the driver is not loaded in
the Driver Manager. Also make sure the URL is correct spelled.

The JDBC support in Java determines what driver to load based on the
database URL. If the URL is malformed then there might be no driver that
is able to handle the database connection based on that URL. This error
is produced when this situation occurs or when the driver is not loaded in
the driver manager. The recommendation is to check the JDBC driver

43(261

documentation for the correct syntax.

java.sql.SQLException: Io exception: Invalid number format for port
number
Io exception: Invalid number format for port number

The URL templates that are available in the Database URL list contains
the "<" and ">" place holders. These are there to indicate that the value
between them must be replaced with an appropriate value. The "<" and
">" characters must then be removed.

This example error message is produced by the Oracle driver when using
the following URL: jdbc:oracle:thin:@<qinda>:<1521>:<fuji>

Simply remove the "<" and ">" characters and try again.

Connections Overview

The Connections overview is displayed by selecting the Connections object in the Database Objects Tree. This overview displays all database
connections in a list and is handy to get a quick overview of all connections. In addition to the Alias, Profile, URL, driver, etc. there are a few symbols
describing the state of each connection. Double clicking on a connection changes the display to show that specific connection.

Figure: The Connections Overview

Information for each symbol is provided in the description area below the list. The fifth check symbol is the only editable symbol and is used to set
the state of the Connect when Connect All property, i.e., whether the database connection should be connected when selecting the Database-
>Connect All menu choice.

Click the Type column for an entry to modify its Database Type.

44(261

Database Objects Explorer

Introduction

The Database Objects Tree is used to explore databases and browse details about objects. Which object types may be explored and which object
actions exist are database dependent.

Figure: Database Objects tab

The Databases tab to the left is the place to setup new database connections and establish connections. Once connected, expand the database
connection object and explore the objects available. The Object View area to the right displays detailed information about the currently selected
object in the tree.

The Filter setup pane below the tree is used to control which objects are displayed in the tree. It comes in handy when you have many schemas or
tables in your database and want to limit the number of visible objects.

For some object types, there are actions (small dialogs for performing a task) for common operations, such as creating, altering, and dropping
database object. Which actions are available depends on the database you are connected to and the database profile used for the connection. More
about this in sections below.
All object names in the tree can be dragged to any editable text fields, including to the SQL Commander editor.

45(261

Create a Database Connection

There are a few objects that always appear in the tree independent of the edition of DbVisualizer and the database profile in use. The most important
object is the Database Connection, which is used to setup and establish a database connection. The other two objects are Folder and
Connections Overview. The following sections describe these objects in more detail.

Database Connection object

The Database Connection object is the root object for a connection. Before exploring or accessing a database, you need to establish the
connection. Create a new database connection using the Database->Add Database Connection main menu choice and the following will appear.

Figure: Add database connection

We recommend that you always use the connection wizard when you create a new database connection, as it hides the complexity of loading drivers
and the syntax of database URLs (detailed information on how to establish a connection is provided in the Load JDBC Driver and Get Connected
document).
Once a database connection has been setup properly, you just need to double-click on the database connection to establish a connection.
You can use the Database->Connect All main menu choice to connect all enabled database connections with a single click. You make a database
connection "Connect All" -aware in the Database Properties or in the Connections overview.

Alias

The name of the database connection object as it appears in the tree is by default "Database Connection". The Connection Alias can be used to
provide a name that is more descriptive. Enter the new name in the Alias field in the Connection sub tab.

Default database and schema

The (Default) indicator after the name of a database or schema in the tree indicates that it is the default database or schema. The default is
determined when you connect to the database.

Figure: The (default) indicator for database and schema objects

Right-click while the database connection node is selected and then chose Show Only Default Database/Schema to limit the display to only show

46(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

your default database/schema.

Remove and copy database connection objects

To remove a database connection, select the Database->Remove Database Connection operation in the main menu. You can copy a database
connection with Database->Duplicate Database Connection.

Database Connection detailed information

The following section describes the tabs in the Objects View for a database connection briefly.

Tab Description

Connection This tab is always enabled and is used to setup the details for a database connection. You can also connect, disconnect and
reconnect using the buttons in this tab.

Database Info When connected, the Database Info tab shows various information supplied by the driver. Much of this information is low level, even
though some of it may be useful.

Data Types The Data Types tab lists all data types supported by the database.

Search The Search Tab is used to search among the objects in the tree. Search operates on the content in the tree. See the next section for
more information about search.

Search

The Search tab is used to search among the objects in the tree by object name. Note that if you have tree filters or any other property that limits the
content of the tree enabled, the search is performed only for those objects that match the filters. The types of objects that are searchable depends on
the database you are connected to. For instance, columns are included in the tree for some databases but not for others.

47(261

Figure: The Search tab

Search by specifying the name of the object, or name pattern, and press the Search button. You can use asterisk (*) as a wildcard in a pattern, or
you can use a regular expression pattern if you enable it by checking the Regular Expression checkbox. You can also specify where in the tree to
start the search, and whether to do a case sensitive search.

You can interrupt a search operation with the Stop button in the grid toolbar. Use the Show Object Path toolbar toggle button to include or exclude a
column for the complete path for each found object in the grid. This path is the same as if navigating to each object manually in the objects tree.
Other grid toolbar buttons let you export and print the search result grid.

The search may take some time to perform the first time.

Shift+Click on a row to switch to the Object View to see detailed information about a specific object.
Shift+Double-click on a row to see detailed information about a specific object in a separate window.

Organizing Database Connections in Folders

If you work with many database connections, you can use folder objects to organize and group them in the tree. Folder objects can have child folder
objects in an unlimited hierarchy. Use the Database->Create Folder and Database->Remove Folder menu choices to create and remove folder
objects. You can use the Database->Move Up/Down main menu choices to move the folders (and database connections) in the tree, or you can just
drag and drop to the nodes to a new location.

48(261

Figure: The database objects tree and the folder object type

Connections overview

The Connections object is the root object in the tree and acts as a holder for all database connections and folders. When selected, it displays an
overview of all database connections in the Object Details view. Here you can see the basic settings and states for your database connections. For
more information, see the Load JDBC Driver and Get Connected chapter.

49(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

Figure: Connections object

Database Objects Tree

Standard Actions

The Database Objects toolbar buttons are used to do tree related operations. These are individually enabled or disabled based on the currently
selected object.

Figure: Objects tree toolbar

Description of the buttons from the left:

Tool bar button Description

Reload Reloads the currently selected object by asking for new information about the object from the database. This is useful
if new objects have been created or removed.

50(261

Stop Stops the current tree operation, for instance connecting to a database or expanding a node.

Show/Hide Tree Filter Is a toggle button that determines whether the Filter management pane will be displayed below the tree.

Create Database Connection Adds a new Database Connection object in the tree. The location of the new object is determined based on the
current selection. If no node is selected, the new is object added at the end of the list.

Create Folder Creates a new folder object.

Show in Window Request to display the details view for the selected object in a separate window.

The right-click menu for an object and the Database main menu lists object specific actions. The following actions are always available for all
objects:

Figure: Standard right click menu actions for all objects

Object Actions

An object in the objects tree may have object specific actions attached to it. These actions are accessible via any of:

• Right-click menu in the objects tree
• Via the Database->Selected Object main menu
• Via the Actions menu button in the object view

Here is an example of the actions menu launched via the Actions menu button:

51(261

Figure: Object actions menu

Common Object Actions

There are a few actions that appear for some object types in all database profiles. These are most often valid for plain table object types and offer
related functionality. Read the following sections for more information.

Create Table

The Create Table action launches the Create Table feature. You use it to create a table, optionally with a primary key, foreign keys and other
constraints. Read more about this feature in Create and Alter Table.

Create Index

The Create Index action launches the Create Index assistant dialog, where you can select columns to include in a new index for a table.

Import Table Data

Import Table Data launches a dialog where you can specify a CSV file to be imported into a table. Various configurations for how the source file is
organized and data mapping are offered. Read more in Export and Import.

Export Table

Export Table launches a dialog for exporting the DDL and/or data for the table. Read more in Export and Import.

52(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportImport/exportImport.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportImport/exportImport.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/tableDesigner/tableDesigner.html

Script Object to SQL Editor

Use this action to create pre-defined SQL statements based on the source table and its columns. The created statement is copied to the current SQL
editor in the SQL Commander. Here are a couple of examples:

Script Object to SQL Editor -> Select

SELECT
 COUNTRY_ID,
 COUNTRY_NAME,
 REGION_ID
FROM
 HR.COUNTRIES

Script Object to SQL Editor -> Insert

INSERT
INTO
 HR.COUNTRIES
(
 COUNTRY_ID,
 COUNTRY_NAME,
 REGION_ID
)
 VALUES
 (
 '',
 '',
 0
)

For databases with DbVisualizer database specific profiles, the Script Object to SQL Editor action menu also contains an entry for generating the
DDL for Table and View objects.

Script Object to New SQL Editor

This is the same as Script Object to SQL Editor, except that the SQL is copied to a new SQL editor instead of to the current editor.

53(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/databaseExplorer.html#mozTocId399048

Objects Tree Filtering

The Filtering setup is activated via the Database->Show/Hide Tree Filter menu choice and the filter pane appear below the objects tree. Filtering is
useful to limit the number of objects that will appear in the tree.

Tree filters are managed per database connection object. What can be filtered is defined per database profile. The generic database profile supports
filtering of database (catalog), schema, table and procedure names.

The unfiltered schema objects for an Oracle
connection.

The same objects but now filtered based on
all schema names starting with "O" or "S".

Filter defined as all names that do not start
with "O" and "S".

Figure: Examples of tree filter settings

An active filter for a database connection is represented by the funnel icon just before the database connection name. The active state for a filter is
defined using the Activate Filters checkbox in the Object Filter pane. A filter can only be activated if there are any filters defined. Up to 15 filters can
be defined per object type.
A common requirement is to list only the default schema or catalog (database) in the database objects tree. This can be accomplished using the
filtering functionality, but the recommended way is to do this with the Show only default Database or Schema property in the Properties tab for the
Database Connection object. You can read more about this in the Tool Properties section.
A filter may be defined using regular expression syntax.

Show Table Row Count

The Database->Show/Hide Table Row Count menu choice decides whether the number of rows for table objects will be listed after the name of the
table in the tree.

Enabling this property results in a performance degradation.

54(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId753863

Object Tree Icons

Every known object type is associated with an icon that is displayed in the objects tree, object view tab and the actions window. A few operations
may add an overlay icon in the objects tree to indicate certain conditions. These are the overlay icons that may appear on top of the object icon:

New symbol. This indicates that the actual object is newly created since the objects tree was last loaded

Warning symbol indicating that the condition(s) for the actual object is in a state that may require attention

Error symbol indicating that the object is in an erroneous or incomplete state

Database Profiles

A Database Profile is the foundation for database specific support in DbVisualizer. A database profile is, somewhat simplified, a definition of the kind
of information that is presented in the database objects tree and in the various object views for a specific database engine. In addition, the profile
defines the actions for the object types defined in the profile. DbVisualizer loads the matching database profile when you connect to a database. If no
matching profile is found, or if you are running DbVisualizer Free, DbVisualizer uses a Generic profile with just the general database information and
actions included.

Database Specific Support

DbVisualizer Personal currently offer database specific support (database profiles) for the following databases (click links for details):

• DB2 LUW
• DB2 z/OS
• HP Neoview
• Informix
• JavaDB/Derby
• Mimer
• MySQL
• Oracle
• PostgreSQL
• SQL Server
• Sybase ASE

The specialized database profiles define different object types, so the database objects tree may look different depending on which database you are
connected to. The structure and organization of a database profile is also something that may impact the layout of the tree, even though the provided
ones are similar in their structure. There are two root nodes in the majority of the profiles:

• User objects
• DBA objects

User objects are, for example, tables, views, triggers, and functions, while DBA objects most often are objects that require administration privileges in
the database in order to access them. DbVisualizer puts all DBA objects under the DBA Views tree node. If you connect to a database using an
account with insufficient privileges to access a DBA object, you may see error messages if you try to select nodes under the DBA Views node. The
following is an example of the DBA sub tree for Oracle.

Figure: The DBA Views tree object

55(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sybase-ase.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sqlserver.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/postgresql.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/mysql.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/mimer.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/derby.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/informix.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/neoview.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/db2-zos.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/db2.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

Database profiles are defined in XML and it is quite easy to extend and modify them. Read more in the Database Profile Framework document.

Generic profile

DbVisualizer supports a wide range of databases. The nature of the databases and what they support differ from vendor to vendor, so the
appearance and structure of the tree below the Database Connection objects for different databases differ as well. The generic database profile (the
only profile available in DbVisualizer Free) displays objects based on what JDBC offers in terms of database information (aka metadata information).
DbVisualizer asks the JDBC driver for all schemas, databases, tables and procedures, and then builds the tree based on what the driver returns.

The advantage of using JDBC to get database metadata is that it is a standard way to access the information, independent of the database engine
type; the JDBC driver layer hides the proprietary details about where and how the information is really stored. The drawback with using JDBC is that
JDBC doesn't offer access to all metadata a database may hold. While the information presented by the generic profile, with its reliance on JDBC, is
sufficient for many tasks, a database specific profile offers far more details as well as more features. If you use DbVisualizer Free with one of the
databases supported by database specific profiles, you may want to upgrade to the DbVisualizer Personal edition.

The generic database profile when used for an Oracle connection look as follows:

Figure: The generic database profile when applied to an Oracle database connection

The appearance of the generic database profile may include schema objects and/or catalog objects depending on whether the database supports
these objects. The Procedures object always appear in the tree, regardless of if the database connection supports procedures or not.

The following sections describe the objects provided by the generic profile.

Catalog/Database object

Catalog is the term used in JDBC and some database engines for a logical grouping of database objects. Other database engines, e.g., Sybase,
PostgreSQL, SQL Server and MySQL use the term Database for, more or less, the same purpose. Both terms are used in interchangeably in
DbVisualizer.

The Object View for a Catalog object in the generic profile is a pane with two tabs, Tables and References. The Tables tab lists all the tables that are
located in the catalog while References shows the exact same list of tables but instead as a referential integrity graph.

56(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

Figure: The view for Catalog objects

The child objects shown for a catalog object depend on the capabilities of the JDBC driver. Typically, a child object represents a type of table that the
driver use to categorize the tables in a catalog, e.g., regular tables or system tables. For instance, the example in the figure above shows a MySQL
database connection with catalog objects as its child object. The catalog child objects are TABLE and LOCAL TEMPORARY, because these are the
table types that the MySQL JDBC driver supports (these table types are the same as those listed in the Table Types tab when selecting a database
connection object). For other databases, you may see child objects representing other table types.
Select one or several rows (cells) in the tables grid and then choose Script: SELECT ALL to create a select script for the selected tables, copied to
the current SQL Commander where it can be executed.

Schema object

The generic profile Schema object tree and view are organized in the same way as for the Catalog objects. There is in fact no difference except that
the schema objects are in another level in the tree and is represented by a different icon.

The following screenshot shows the information for the selected schema with the References tab selected.

57(261

Figure: The view for Schema objects

Table object

The Table object is probably the most frequently accessed object in the tree, since its Object View shows not only a lot of information about the table
but also the data the table holds. This is also the place where you can edit the table data (only available with the DbVisualizer Personal edition).

58(261

Figure: The view for Table objects

The Object View for a table object contains the following tabs:

Tab Description

Info Brief information about the table object

Columns This tab lists type information about all columns in the table

Data Read more in Data tab

Row Count Lists the table row count

Primary Key Shows the primary key

Indexes Lists all indexes for the table

Grants Displays any privileges for the table

Row Id Displays the optimal set of columns that uniquely identifies a row

References Read more in References tab

Navigator Read more in Navigator tab

Procedure object

The Procedure object shows the name of the procedure or function in the tree, and the Object View lists the parameters that are used when calling it.

59(261

Figure: The procedure object

The Object View shows a list of column names for the selected procedure.

Object Views

The Object View tab shows detailed information about the selected tree object. The Object View may contain several sub tabs, depending on the
current database profile and the type of the object selected in the tree. There may also be several representations of the same information, providing
different views of the information. The following sections describe the different views, or visual presentation forms, provided by DbVisualizer.

Grid

The Grid view is the most common one as it displays the data in a standard grid style.

60(261

Figure: The Grid view

Form

The Form view extends the Grid view by adding a form below the grid. Click on a row in the grid and the information is displayed in the form.

61(261

Figure: The Form view

If there is only one row of data, only the form is displayed.

Source

The Source view is typically used to show the source for functions, procedures, triggers, etc. It is based on a read only editor with SQL syntax
coloring. The sub toolbar buttons from the left:

• Reload the data from the database
• Stop loading the data from the database
• Export the data to file
• Print the data
• Copy the data to SQL Commander
• Format the SQL

62(261

Figure: The Source view

Table Row Count

The row count view is really simple: it only shows the number of rows in the selected object.

Figure: The Row Count view

63(261

Table Data

You use the Data tab to browse the data in the table and to do various data related operations. This view is based on the generic grid, but it adds a
few more visual components to limit the max number of rows, the width of text columns and the collection of data tab specific operations in the right-
click menu. In addition, you can also use a filter (a SQL WHERE clause) to limit the data to the rows that match the filter. The data tab is the place to
do edits in DbVisualizer Personal.

Figure: The Data tab for Table objects

Right-click menu

The Data tab grid right-click menu contains some operations in addition to those in the standard grid right-click menu. The additional operations are
primarily for creating SQL statements based on the current selection. Choosing any of these creates the appropriate SQL and then switch the view to
the SQL Commander tab. You must use these operations to edit table data in the DbVisualizer Free edition. With the DbVisualizer Personal edition,
you can instead use inline and form based editing. (Information about the standard right click menu operations are available in the Getting Started
and General Overview document).

You can generate SQL with either static values as they appear in the grid, or with DbVisualizer variables. A variable is essentially a placeholder for a
value in an SQL statement. When the statement is executed, DbVisualizer locates all variables and presents them in a dialog where you can enter or
modify values for the variables. DbVisualizer replaces the variable placeholders with the new values before executing the statement. Variables can
be used in any SQL statement and DbVisualizer relies on them heavily. (Read more about variables in the SQL Commander document).

Whether to use variables in the SQL statements generated by the right-click menu SQL operations depends on the Table Data-
>Include Variables in SQL setting in Tool Properties, under the General tab. By default, variables are being used in the statement. If you disable
the property, literal values are instead used in the generated statement.

Here is an example with the Include Variables in SQL setting enabled and then disabled. The SQL is generated when the Script: SELECT ALL
WHERE operation is selected based on the selection in the previous figure.

Include Variables in SQL is enabled:

select *
from HR.COUNTRIES
where COUNTRY_NAME = ${COUNTRY_NAME (where)||Brazil||String||where nullable ds=40 dt=VARCHAR }$

64(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Include Variables in SQL is disabled:

select *
from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil'

The following lists the generated SQL for each of the operations based on the selection of COUNTRY_NAME = Brazil, with variables disabled.

Operation SQL Example

Script: SELECT ALL select *
from HR.COUNTRIES

Script: SELECT ALL WHERE select *
from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil'

Script: SELECT ALL WITH FILTER select *
from HR.COUNTRIES
where REGION_ID = 1 // If this is the filter, see below

Script: INSERT INTO TABLE insert into HR.COUNTRIES
(COUNTRY_ID, COUNTRY_NAME, REGION_ID)
values ('', '',)

Script: INSERT COPY INTO TABLE insert into HR.COUNTRIES
(COUNTRY_ID, COUNTRY_NAME, REGION_ID)
values ('BR', 'Brazil', 2)

Script: UPDATE WHERE update HR.COUNTRIES
set COUNTRY_ID = 'BR',
 COUNTRY_NAME = 'Brazil',
 REGION_ID = 2
where COUNTRY_NAME = 'Brazil'

Script: DELETE WHERE delete from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil'

If the Include Variables in SQL is enabled then most of the scripting commands are limited to scripting a single selected row only. (If a multi
selection is active in then most of them are disabled). To allow for scripting multiple rows you need to disable Include Variables in SQL.

Where Filter

The filter capability in the Data tab lets you limit the number of rows in the grid, using the same syntax as for an SQL WHERE clause. The Filter
menu button in the grid toolbar contains all operations related to using a filter.

Figure: Filter menu

The top entries in the menu are previously used filters for the table, if any. The checkbox is selected for the filter that is currently in use. The filters
are saved between DbVisualizer sessions, and you can toggle between them by selecting them from the menu. You use the Use No Filter choice to
disable all filters for the table, and the Clear Filter List to permanently remove all filters for the table.

To create a new filter, select Configure Filter to launch the Filter Configuration dialog.

65(261

Figure: The Data tab Filter Configuration dialog

The Filter Configuration dialog contains one Filter area and a Sort area.

The Filter area is composed of two parts. The upper one is used to define a condition for a single column. You can use the two lists to select the
column name and an operator, and enter the value of the column in the text field. You can use Ctrl-Enter while editing the value to force a reload of
the grid based on that single filter. The lower part displays the complete filter and the buttons are used to control whether the newly entered filter will
be AND'ed or OR'ed with the complete filter. The buttons change appearance based on whether there is any filter or not. While in the complete filter
you can use Ctrl-Enter to force a reload based on the complete filter.

The Sort area is similar to the Filter area. You can select column names and sort order from the two lists, and click the Add button to add the sort
criteria for the single column to the complete criteria.

Click the Use Filter button to apply the filter and save it, and close the dialog by clicking the Close button.

If you often need to tweak the filter conditions and want a more compact user interface, you can use the inline filter view. Use the Show/Hide Inline
Filter choice in the Filter menu to toggle the visibility of the inline filter.

Figure: Data tab with the Inline filter enabled

The inline filter is displayed above the grid. You can edit the condition in the text field and use Ctrl-Enter or click the Use Filter button to apply the
modified condition. Instead of manually typing column names in the field use the Ctrl-Space key binding to show a list of available columns.

Quick Filter

The quick filter acts on the data that is already in the grid, as opposed of a WHERE filter which is used to limit the number of rows fetched from the
database. With a Quick filter, you can easily list only those rows in the grid that match the entered search string.

The following figure shows data that matches the search string " d". Matching cells are highlighted.

66(261

Figure: Using the Quick Filter

Entering successive characters will narrow the result even further, as in the following figure.

67(261

Figure: Refining the filtering

The Quick Filter pull-down menu (click on the down arrow next to the magnifying glass) lets you choose if the filter should match cells in all columns
or just one selected column, case or case insensitive matching, and where in the cell the value must match.

Monitor row count

Read more about the Monitor Row Count and Monitor Row Count Difference in Monitor and Charts.

Editing

Read about data editing in Edit Table Data

DDL Viewer

The DDL Viewer tabs appear only for objects in databases that have specialized database profiles.

68(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html#mozTocId117949

Figure: The DDL viewer for a table

References

The References tab for a Table object shows how the table references other tables (Imported Keys) and how other tables reference the selected
table (Exported Keys), based on primary and foreign key declarations. Use the sub tabs at the bottom of the display to show either view. The
following shows the references from the table.

Figure: The references graph showing imported keys for a table

69(261

Navigator

The Navigator tab (only available in the DbVizualizer Personal edition) provides an interactive way to navigate in data by following primary key and
foreign key references.

Figure: The Navigator tab showing two navigation cases

The tab contains a graphic view showing navigation cases (paths through the data) at the top and a data grid showing the data for the navigation
case selected in the graph. You navigate in the data by selecting the row in the grid that holds the key value you want to follow, e.g., a specific
department in the example shown in the figure, and then select a primary or foreign key relationship from the Related Table list above the grid. This
creates a new navigation case in the graph and updates the grid with the corresponding data.

How to use the navigator is described in more detail in the Data Navigation section.

Procedure Editor

You can use the procedure editor to browse, edit, compile and execute procedures, functions, packages, package bodies, triggers and other
database objects that represent custom code that can be invoked in a database.

You can edit the source code in the editor and then click Save to save/compile the code. If errors are found, selecting an error message in the error
list highlights the row containing the incorrect statement in the editor (in the cases when a row number is available, which is not true for all
databases). To test the code, click Execute and a script for calling the procedure with the parameter values you provide is generated and executed
in the SQL Commander.

More information can be found in the Procedure Editor document.

70(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/navigator/navigator.html

Figure: The procedure editor for functions, procedures, packages etc.

71(261

SQL Commander

Introduction

The SQL Commander is used to edit, format and execute SQL statements or SQL scripts. Multiple editors may be open at the same time, each
controlling its own SQL log and result sets. Result sets can be displayed in grid, text or chart formats.

The SQL Commander supports the following features:

• Syntax coloring
• Auto completion
• Multiple SQL editors
• Multiple result sets
• SQL editors displayed as tabs or windows
• Result sets displayed as tabs or windows
• Support for stored procedures producing multiple result sets
• SQL formatter with extensive customization options
• Execution control (stop on error/warning)
• View result sets as grid, text or chart
• Editable result sets with the inline or form editors
• Support for BLOB, CLOB and binary data
• View BMP, TIFF, PNG, GIF and JPEG images
• View XML data in tree or text format
• Export result sets as CSV, HTML, Excel, XML, SQL or text
• Batch execution enabling export of unlimited sized result sets
• Execution of script files of unlimited size
• SQL history saved between sessions
• Bookmark management (save favorite SQLs)
• Sort, quick filter and basic calculations of result sets
• Parameterized queries
• Drop objects dragged from the Objects Tree
• Auto Commit on/off support with confirmation checks if uncommitted updates
• Full key binding support with predefined key maps for for Windows, Mac OS X, Linux-UNIX, SQL Query Analyzer and TOAD users

Database specific support:

• Oracle , DB2 and SQL Server: Explain Plan queries presented either in tree or graph format
• Oracle : support for TIMESTAMPLTZ, TIMESTAMPTZ and XML data types
• Oracle : support for DBMS Output

72(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sqlserver.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/db2.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html

Figure: SQL Commander overview

The figure shows the editing area with its controls above and the output view in the lower part of the screen. The following sections describe all
features and controls in the SQL Commander in detail.

Physical Database Connections and Transactions

The SQL Commander supports database transaction control via Auto Commit or manually using commit or rollback. The Use Single Physical
Database Connection setting in connection properties specifies whether DbVisualizer will use one or multiple physical database connection. This
setting is disabled by default and DbVisualizer will then always use at least one physical connection and one for every SQL editor that is created.
Running a statement or sequence of statements in one SQL editor will not lock the rest of the user interface while it is executing. If instead a single
physical database connection is used, all of the UI is locked until the execution in the SQL Editor has completed. The reason for this behavior is that
it could otherwise lead to data corruption when using the same physical database connection for all DbVisualizer operations.

Another important feature is that the editor status bar shows the number of uncommitted requests if auto commit is off. Pay extra attention to this as
it indicates that you should complete the current transaction with either commit or rollback.

Editor

The SQL Commander always has at least one editor. It is called the primary editor and cannot be removed. To create additional editors, use the File-
>Create SQL Editor menu choice or the appropriate key binding. To close an editor, use the right-click menu on the editor tab or the close

73(261

operations in the File menu.

Figure: Editor tab menu

The SQL editor in DbVisualizer is based on the NetBeans editor module and supports all standard editing features. The right-click menu have the
following operations:

Figure: The SQL editor right click menu

The SQL editor is also used when editing CLOBs in the form editor.

Database Connection, Catalog and Schema

You use the Database Connection and Database (or Catalog) lists above the editor to specify which connection and database to use when executing
the SQL in the editor. The list of connections shows all connections as they are ordered in the Database Objects tree, except that all currently active
connections are listed first.

74(261

http://www.netbeans.org/

Figure: Database Connection, Database and Schema lists

If you check the Sticky box above the Database Connection, the current connection selection will not change automatically when passing SQL
statements from other parts of DbVisualizer, for instance, when opening a Bookmark. Consider an Bookmark defined for database connection
"ProdDB". If the Sticky checkbox is not checked (i.e., disabled), the database connection is automatically changed to ProdDB when you open the
Bookmark in the SQL Editor. However, if the Sticky checkbox is checked (i.e., enabled), the current database connection setting is unchanged. The
Sticky setting is per SQL editor instance.

The Database list (or Catalog) defines which catalog in the connection is the target for the execution. Since not all databases use catalogs, this list
may be disabled.

For most databases, the schema selected in the Schema list is used only to limit the tables the auto completion feature shows in the completion
pop-up; it does not define a default schema for tables referenced in the SQL, because most databases do not allow the default schema to be
changed during a session. For the databases that do allow the default schema to be changed, however, the selected schema is also used as the
default schema, i.e., the schema used for unqualified table names in the SQL. Currently, the databases that support setting a default schema are
DB2 LUW, DB2 z/OS, HP Neoview, JavaDB/Derby and Oracle. If you don't want the selected schema to be used as the default schema for these
database, you can disable this behavior in the Tool Properties, under the database node's SQL Editor settings.

Limiting Result Set size (Max Rows/Chars)

The Max Rows field in the SQL Editor toolbar is used to control how many rows DbVisualizer will fetch for each result set. If there are more rows
available than presented in the result set, you will see a notification in the grid status bar.

Figure: Max Rows exceeded warning

Clicking on the icon below the grid shows more information about the warning.

Setting Max Chars limits the number of characters that are presented for text data. A column that contains values with more characters than the
specified Max Chars is shown with a different background color to highlight that it is truncated.

The automatic display of the warning indicator can be configured in Tool Properties->General->Grid

Load from and save to file

The SQL editor supports loading statements from a file and saving the content of the editor to a file. Use the standard file operations, Open, Save

75(261

and Save As in the File main menu or the toolbar to accomplish this. Loading a file always loads it into the currently selected editor.

Figure: Loading a file into the SQL Commander

The name of the loaded file is listed in the status bar of the editor, with the full file path shown in the window title. The editor tracks any modifications
and indicates changes with an asterisk (*) after the filename.

When you exit DbVisualizer, you are asked what to do if there are any pending edits that need to be saved.

Load Recent

The File->Open Recent sub menu lists the recently loaded files. When you choose an entry, the file is opened in the current SQL editor.

Figure: Open Recent Files menu

76(261

Quick File Open

You can also use the Quick File Open feature to open recent files as well as Bookmarks and History entries. By default, it is bound to the Ctrl+Alt+O
key combination, and is also available via a toolbar button in the SQL Editor as well as in the main File->Quick File Open menu.

Figure: Quick File Open dialog

Editor Preferences

The Editor preferences pane is activated via the SQL->Show/Hide Editor Controls main menu option. It holds settings that control the appearance
of the SQL editor, result sets and the log.

77(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

Figure: Editor preferences pane

All settings made in the editor preferences pane are saved between invocations.

Tip: The Result Set Naming Scheme may include HTML code, typically used to change the style of the elements.
Example: <html>${index}: ${sql} (${rows})</html>

Multiple editors

There is always one default editor named Main Editor. You can open additional SQL editors with the File->Create SQL Editor main menu
operation. Editors can be organized as tabs or internal windows using the View buttons. To remove all but the Main Editor select the File->Close all
SQL Editors menu operation.

Permissions

All SQL commands executed in the SQL Commanded are checked with the DbVisualizer Permission verifier before being executed by the database
server. The permission verifier use various rules to determine if a specific SQL is allowed, denied or need confirmation before being executed. You
can specify the rules for the verifier in Tool Properties->Permissions.

Charsets and Fonts

You can change the SQL editor font, which is useful and necessary in order to display characters for languages like Chinese, Japanese, etc.

Figure: SQL Editor with another font

Open Tool Properties and select the Font category to set the font for the SQL Editor. (It is a good idea to set the same font for both the SQL editor
and the grid components).

Displaying data correctly is not just a matter of setting the font, because the character encoding on the client side (in which DbVisualizer runs) and in
the database server may not be compatible. There is experimental support to set encodings to accomplish proper conversation between different
encodings. Please see the Getting Started and General Overview document for more information.

Key Bindings

The editor shortcuts, or key bindings, can be redefined in the Tool Properties Key Bindings category. Select the Editor Commands folder to browse
all editor actions.

78(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId632432
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498

Figure: The Key Bindings editor in Tool Properties

Read more about configuring key bindings in the Tool Properties document.

Client-Side Comments

Comments in the SQL Editor are identified by the comment identifiers in Tool Properties. These are client side comments and are removed by
DbVisualizer before execution.

Sometimes the comments need to be passed to the database. Oracle, for example, uses the block comment identifier to express optimizer hints for
the database. These must be passed to the database for processing. To enable this, just change the delimiters for the block comment to something
that doesn't interfere with the /*+ ... */ notation that Oracle uses.
An example is that you add a space after /*.

79(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html

Figure: The SQL Editor -> Comments category in Tool Properties

Auto Completion

Auto completion is a convenient feature used to assist you when editing SQL statements.

The following figure shows the completion pop up with table names.

Figure: Auto completion pop up showing table names

Here is another completion pop-up showing column names.

80(261

Figure: Auto completion pop up showing column names

DbVisualizer currently provides auto completion for table and columns names for the following DML commands:

• SELECT
• INSERT
• UPDATE
• DELETE

To display the completion pop-up, use the key binding Ctrl-SPACE. You select an entry in the pop-up menu with a mouse double-click, the ENTER
key, or the TAB key. To cancel the pop-up, press the ESC key.

Tip: The SPACE key can be configured to select entries in the pop up. Do this in the Tool Properties General->Key Bindings category. Select the
Editor Commands key bindings and add the SPACE key for the Insert Newline editor action.

Note 1: If there are several SQL statements in the editor then make sure to separate them using the statement delimiter character (default to ";").

Note 2: In order for the column name completion pop-up to appear, you must first make sure there are table names in the statement.

Note 3: All table names that has been listed in the completion pop-up are cached by DbVisualizer to make sure subsequent displays of the pop-up is
performed quickly without asking the database. The cache is cleared only when doing a Refresh in the database objects tree or reconnecting the
database connection.

Note 4: The Schema list above the editor is used to assist the auto completion feature to limit which tables to list in the pop-up.

General display settings for the auto completion feature are managed in Tool Properties.

Here are some examples of how the auto completion works depending on when it is activated. The <AC> symbol indicates the position where the
auto completion pop-up is requested. The currently selected catalog is empty and the selected schema is HR. (These examples are when accessing
an Oracle database).

SQL Result

select * from <AC> Shows all tables in the HR schema (since HR is the selected schema)

select * from SYS. <AC> The pop up displays all tables in the SYS schema independent of the
schema list selection

select * from SYS.a <AC> Lists all tables in the SYS schema beginning with the A character

81(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId327467

select <AC> from SYS.all_objects Lists all column in the SYS.all_objects table

select <AC> from SYS.all_objects all, EMPLOYEES Lists all columns in the SYS.all_objects and EMPLOYEES table (in
the HR schema)

select emp. <AC> from EMPLOYEES emp Lists all columns in the EMPLOYEES table, here identified by the alias
emp

select emp.N <AC> from EMPLOYEES emp Lists all columns in the EMPLOYEES table identified by alias emp
starting with the N character

insert into EMPLOYEES (<AC> Lists all columns in the EMPLOYEES table. Selecting the -All
Columns- in the pop-up results in all columns being added, comma
separated.

It is possible to fine-tune how auto completion shall work in the connection properties. The following settings can be used to adjust whether table and
column names should be qualified.

Figure: Properties controlling auto completion qualifiers

With Qualify disabled (for both table names and columns):

select Name, Address from EMPLOYEE where Id > 240

With Qualify enabled:

select EMPLOYEE.Name, EMPLOYEE.Address from HR.EMPLOYEE where EMPLOYEE.Id > 240

(The setting of Qualify Columns is ignored when an alias is used for a table name in the SQL).

The property settings in the figure below define whether delimited identifiers should be part of the completed SQL.

82(261

Figure: Properties controlling delimited identifiers for auto completion

With Delimited Identifiers disabled:

select Name, Address from HR.EMPLOYEE where Id > 240

With Delimited Identifiers enabled:

select "Name", "Address" from HR."EMPLOYEE" where "Id" > 240

SQL Formatter

The SQL->Format SQL feature is used to format the complete editor buffer or current SQL (at cursor position) according to the settings defined in
the Tool Properties SQL Editor->SQL Formatting category. There are many things you can configure. After making some changes, press Apply
and format again to see the result. The formatter can work with the source SQL enclosed in quotes (e.g., when copied from a program), and it can
format the final SQL for inclusion in a program written in languages like Java, C#, PHP, VB, etc.

Example of the SQL before formatting:

select
CompanyName, ContactName, Address,
City, Country, PostalCode from
Northwind.dbo.Customers OuterC
where CustomerID in (select top 2 InnerC.CustomerId
from Northwind.dbo.[Order Details] OD
join Northwind.dbo.Orders O on OD.OrderId = O.OrderID
join Northwind.dbo.Customers InnerC
on O.CustomerID = InnerC.CustomerId
Where Region = OuterC.Region
group by Region, InnerC.CustomerId
order by sum(UnitPrice * Quantity * (1-Discount)) desc)
order by Region

And after formatting has been applied:

83(261

SELECT
 CompanyName,
 ContactName,
 Address,
 City,
 Country,
 PostalCode
FROM
 Northwind.dbo.Customers OuterC
WHERE
 CustomerID in
 (
 SELECT
 top 2 InnerC.CustomerId
 FROM
 Northwind.dbo.[
 ORDER
 Details] OD
 JOIN
 Northwind.dbo.Orders O
 ON
 OD.OrderId = O.OrderID
 JOIN
 Northwind.dbo.Customers
InnerC
 ON
 O.CustomerID =
InnerC.CustomerId
 WHERE
 Region = OuterC.Region
 GROUP BY
 Region,
 InnerC.CustomerId
 ORDER BY
 sum(UnitPrice * Quantity *
(1-Discount)) desc
)
ORDER BY
 Region

History

The SQL Editor keeps track of all executed SQL statements. You can use the Previous and Next buttons in the editor toolbar to walk forward and
backward through the statements. They insert the previously executed SQL, with accompanying settings for Database Connection, Catalog and
Schema (if Sticky is disabled). Please see Bookmarks and History for more details.

Bookmarks

Bookmarks are used to save frequently used SQL statements between invocations of DbVisualizer. They are managed primarily in the Scripts tab but
edited and executed in the SQL Commander. Please see Bookmarks and History for more details.

Execution

The execution of multiple SQL statements can be controlled using the Stop Execution On controls. These define whether the execution of the
following SQL statements will be stopped based on two states:

• Errors
Stop the execution if the SQL resulted in an error

• Warnings
Stop the execution if the SQL executed successfully but no rows were affected

84(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

The Stop Execution On controls are only effective when executing multiple SQL statements

SQL->Execute

Use the SQL->Execute main menu operation to execute the SQL in the current SQL editor. The SQL Commander executes the statements one by
one and indicates the progress in the log area. The currently selected Database Connection is used for all statements. The SQL Commander does
not support executing SQLs for multiple database connections in one batch.

The result of the execution is displayed in the output view based on what result(s) are returned. If there are several results and an error occurred in
one of them, the Log view is automatically displayed to indicate the error.

If you select a statement in the SQL editor and choose SQL->Execute main menu option, only the selected statement is executed. This is a useful
feature when you have several SQL statements are in the SQL editor and you just want to execute one or a few of the statements.

Figure: Selection execute

In the above figure, only the highlighted statement is being executed.

Comments in the SQL editor are not sent to the database when you use SQL->Execute. If you want comments to be preserved when creating or
changing a stored procedure or function, please use the Create Procedure dialog and Procedure Editor instead of the SQL Commander.

SQL->Execute Current

The Execute Current operation is useful when you have a script with several SQL statements. It lets you execute the statement at the cursor
position without first having to select the SQL statement. The default key binding for execute current is Ctrl-PERIOD (Ctrl-.).

Execute Current determines the actual statement by parsing the editor buffer using the standard statement delimiters.

Tip: If you are unsure what the boundaries are for the current statement then use Edit->Select Current Statement. This will highlight the current
statement without executing it.

SQL->Execute Buffer

Execute Buffer sends the complete editor buffer for execution as one statement. No comments are removed and no parsing of individual statements
based on any delimiters is made. This operation is useful when executing anonymous SQL blocks or SQLs used to create procedures, functions, etc.

SQL->Execute Explain Plan (Oracle, SQL Server and DB2)

Explain Plan is supported for Oracle, DB2 and SQL Server. Explain Plan executes your query and records the plan that the database devises to
execute it. By examining this plan, you can find out if the database is picking the right indexes and joining your tables in the most efficient manner.
The explain plan feature works much the same as executing SQLs to present result sets; you may highlight statements, run a script or load from file.
The explain plan results can easily be compared by using the pin feature in combination with window style presentation.

DbVisualizer presents the plan either in a tree style format or in a graph. What information is shown depends on what database it is. In the tree view
put the mouse pointer on the column header for a tooltip description what that column represents. The following screenshot shows the SQL in the
editor at top and the corresponding explain plan as the result.

85(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/sqlCommander.html#mozTocId942744

Figure: Explain Plan presented as a tree

The Graph View shows the plan as a graph. The graph can be exported to an image file or printed. Use the menubar buttons to export and print.

86(261

Figure: Explain Plan presented as a graph

Each of the supported databases use different techniques to manage their explain plan support. To control this, either click the Preferences toolbar
button or go to Connection Properties->[database]->Explain Plan.

87(261

Figure: Explain Plan configuration

The configuration options are different for each of the supported databases.

Auto Commit, Commit and Rollback

The commit and rollback buttons and the accompanying operations in the SQL main menu are enabled if the Auto Commit setting is off for the
current SQL editor. The default setting for Auto Commit is on, which means that the driver/database automatically commits each SQL that is
executed. If Auto Commit is disabled, it is very important to manually issue the commit or rollback operations when appropriate.

The following commands can be executed in the SQL Commander for database independent commit and rollback:

@commit
@rollback

The Auto Commit setting is enabled by default and can be adjusted in the Connection Properties. You may also adjust the auto commit state for the
SQL editor you are using in the SQL Commander with the following command:

@set autocommit on/off

In the editor status bar there is an Auto Commit: ON/OFF indicator:

88(261

Figure: Auto Commit status bar info

The first number represents the number of records updated in the database since the last commit/rollback. The second number show the number of
statements (except SELECTs) that has been executed since last commit/rollback.

Having auto commit off for a connection should be handled with great care since transactions may lock parts of the database (this is database
dependent). To ease the process of not forgetting uncommitted transactions there are two properties that will warn when there are changes that
hasn't been committed. These properties are:

Ask when Auto Commit is OFF: Always
Ask when Auto Commit is OFF: When Uncommitted Updates

After execution in the SQL Commander and Ask when Auto Commit is OFF: Always is enabled the following window appear:

Figure: Auto Commit is OFF confirmation window

Here is the confirmation window displayed after execution when Ask when Auto Commit is OFF: When Uncommitted Updates:

Figure: Auto Commit is OFF confirmation window

SQL Scripts

An SQL script is composed of several SQL statements and can be executed in a batch. Each SQL statement is separated by a single character, a
sequence of characters, or the word "go" on a single line. The default settings for the separator characters are defined in Tool Properties and can be
modified to match your needs.

89(261

Figure: Statement Delimiters

The following SQL script illustrates some uses of the SQL statement delimiters based on the settings in the previous figure:

select * from MyTable; /* Stmt 1 */
insert into table MyTable /* Stmt 2 */
 (Id, Name) /* This is a comment */ values (1, 'Arnold')
go
update MyTable set Name = 'George' where Id = 1; /* Stmt 3 */
select * from /* Stmt 4 */
 MyTable; // This is a comment

You can also use the @delimiter client side command to temporarily change the delimiter in a script.

Execute Large SQL Scripts

If you have a large script (tens of MB), loading it into the SQL Commander and generating log entries in the GUI for all statements require a lot of
memory.

For a script that is large but still small enough to load into the SQL Commander, you can save memory (and therefore run it faster and more
efficiently) by selecting to log to a file instead of the GUI:

To save even more memory, you can use the @run client side command to run the script without loading it into the SQL Commander:

@run my_huge_script.sql;

The @run command reads one statement at a time from the file. There are, however, still a few things that require the whole file to be read before
the statements can be executed: parsing the script for variables, parameter markers, and restricted commands, as well as counting all statements in
order to provide progress information. When you run a script that is large enough (more than 10 MB) for these things to potentially cause memory
problems and slow down the processing, DbVisualizer gives you a chance to turn off this preprocessing and progress reporting so that the
statements instead can be executed directly as the are read from the file, one at a time.

90(261

Figure: Disable preprocessing dialog

To ensure that you don't have any problems running scripts this large, you must specify a file for logging. We also strongly recommend that you click
Continue w/o Preprocessing, thereby disabling all variable, parameter and restricted commands processing. Only click Continue Normally if you
know for sure that you have enough memory available and have adjusted your installation so that DbVisualizer can use it. With the preprocessing
disabled and all logging going to a file instead of the GUI, you should be able to execute scripts of any size (we have tested with scripts as large as 4
GB).

Another alternative for execution of large scripts is to use the DbVisualizer command line interface instead of the GUI application. This option is the
absolute most efficient and fastest.

Anonymous SQL Blocks

An anonymous SQL block is a block of code which contains not only standard SQL but also proprietary code for a specific database. The anonymous
SQL block support in the SQL Commander uses another technique in the JDBC driver to execute these blocks. The way you tell the SQL
Commander that a SQL block is to be executed is to insert a begin identifier just before the block and an end identifier after the block. The figure in
the previous section shows these settings and the default values for the Begin Identifier it is --/ and for the End Identifier it is /.

Here follows an example of an anonymous SQL block for Oracle:

--/ script to disable foreign keys

declare cursor tabs is select table_name, constraint_name
 from user_constraints where constraint_type = 'R' and owner = user;

begin
 for j in tabs loop
 execute immediate ('alter table '||j.table_name||' disable constraint'||j.constraint_name);
end loop;
end;
/

If you want to execute the complete editor buffer as an anonymous SQL block, use the SQL->Execute Buffer operation. In this case, you do not need
the begin and end identifiers.

Stored Procedures

With DbVisualizer Personal, you can execute stored procedures and functions for databases with extended support using the @call client side
command described below and in the Procedure Editor chapter.

For other databases it is not officially supported by DbVisualizer even though the native commands (e.g. CALL or EXEC) work for some databases.
The best way to figure it out is to try. Our internal tests show that the Sybase ASE and SQL Server procedure calls work okay with literal IN
parameters in the SQL Commander. DbVisualizer also presents multiple result sets from a single procedure call as of version 4.0 for these
databases.

Client Side Commands

The SQL Commander supports a number of DbVisualizer specific commands that you can use in the SQL Editor. A command begins with the at sign,
"@". The following sections describe the available commands.

91(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId246198

@run <file> [<variables>] - run SQL script from file

@cd <directory> - change directory

Use the following commands to locate and execute SQL scripts directly from a file without first loading the file into the SQL editor. This is useful if you
are using an external editor or a development environment to edit the SQL but use DbVisualizer to execute it.

• @run <file> [<variables>]
Request to execute the file specified as parameter, optionally with a list of variables

• @cd <directory>
Change the working directory for the following @run command

Example of a script utilizing the file referencing commands:

select * from MyTable; -- Selects data from MyTable
@run createDB.sql; -- Execute the content in the
 -- createDB.sql file without loading into the SQL editor.
 -- The location of this file is the same as the working
 -- directory for DbVisualizer.
@cd /home/mupp; -- Request to change directory to /home/mupp
@run loadBackup.sql; -- Execute the content in the loadBackup.sql
 -- file. This file will now be read from the
 -- /home/mupp directory.

You can also include DbVisualizer variables as parameters to the @run command, with values to be used for the corresponding variables in the
script:

@run monthlyReport ${month||2010-05-05||Date||noshow}$ ${dept||HR||String||noshow}$

@export - export result sets to file

The @export commands are used to declare that any result sets from the SQL statements that follows should be written to a file instead of being
presented in the DbVisualizer tool. This is really useful, since it enables dumping very large tables to a file for later processing or, for example, to
perform backups. The following commands are used to control the export:

• @export on
Defines that the SQL statements that follows will be exported rather then being presented in DbVisualizer

• @export set parm1="value1" parm2="value2"
The set command is used to customize the export process. Check the table below for the complete set of parameters.

• @export off
Defines that SQL statements that follows will be handled the normal way, i.e., the result sets are presented in the DbVisualizer tool

These parameters are supported:

Parameter Default Valid Values

AppendFile false true, false, clear

BinaryFileDir Directory path for data files when BinaryFormat is set to File

BinaryFormat Don't Export Don't Export, Size, Value, Hex, Base64, File

BooleanFalseFormat false false, no, 0, off

BooleanTrueFormat true true, yes, 1, on

CLOBFileDir Directory path for data files when CLOBFormat is set to File

92(261

CLOBFormat Value Don't Export, Size, Value, File

CsvColumnDelimiter \t (TAB)

CsvIncludeColumnHeader true true, false

CsvIncludeSQLCommand false true, false

CvsRemoveNewlines false true, false

CsvRowCommentIdentifier

CsvRowDelimiter \n \n (UNIX/Linux/Mac OS X), \r\n (Windows)

DateFormat yyyy-MM-dd See valid formats in Tool Properties document

DecimalNumberFormat Unformatted See valid formats in Tool Properties document

Destination File File

Encoding UTF-8

ExcelIncludeColumnHeader true true, false

ExcelIncludeSQLCommand false

ExcelIntroText Any description

ExcelTextOnly false true, false

ExcelTitle DbVisualizer export output Any title

Filename REQUIRED

Format CSV CSV, HTML, XML, SQL, XLS

HtmlIncludeSQLCommand false true, false

HtmlIntroText Any description

HtmlTitle DbVisualizer export output Any title

NumberFormat Unformatted See valid formats in Tool Properties document

QuoteDuplicateEmbedded true true, false (quote char is the same as QuoteTextData)

QuoteTextData None None, Single, Double

Settings

ShowNullAs (null)

SqlIncludeCreateDDL false true, false

93(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566

SqlIncludeSQLCommand false true, false

SqlRowCommentIdentifier --

SqlSeparator ;

TableName
Can be set if DbVisualizer cannot determine the value for
the ${dbvis-object} variable

TimeFormat HH:mm:ss See valid formats in Tool Properties document

TimeStampFormat yyyy-MM-dd HH:mm:ss.SSSSSS See valid formats in Tool Properties document

XmlIncludeSQLCommand false true, false

XmlIntroText

XmlStyle DbVisualizer DbVisualizer, XmlDataSet, FlatXmlDataSet

Example 1: @export with minimum setup

The following example shows the minimum commands to export a result set.
The result set produced by the select * from Orders will be exported to the C:\Backups\Orders.csv file, using the default settings.

@export on;
@export set filename="c:\Backups\Orders.csv";
select * from Orders;

Example 2: @export with automatic table name to file name mapping

This example shows how to make the filename the same as the table name in the select statement. The example also shows several select
statements. Each will be exported in the SQL format. Since the filename is defined to be automatically set, this means that there will be one file per
result set and each file is named by the name of its table.

There must be only one table name in a select statement in order to automatically set the filename, i.e if the select joins from several tables or
pseudo tables are used, you must explicitly name the file.

@export on;
@export set filename="c:\Backups\${dbvis-object}$" format="sql";
select * from Orders;
select * from Products;
select * from Transactions;

Example 3: @export all result sets into a single file

This example shows how all result sets can be exported to a single file. The AppendFile parameter supports the following values.

• true
 The following result sets will all be exported to a single file

• false
 Turn off the append processing

• clear
 Same as the true value but this will in addition clear the file before the first result set is exported

@export on;
@export set filename="c:\Backups\alltables.sql" appendfile="clear" format="sql";

94(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566

select * from Orders;
select * from Products;
select * from Transactions;

Example 4: @export using predefined settings

The Export dialogs let you save export settings to a file for later use. Such an export settings file can be referenced in the @export set command.

@export on;
@export set settings="c:\tmp\htmlsettings.xml" filename="c:\Backups\${dbvis-object}$";
select * from Orders;
select * from Products;
select * from Transactions;

The example shows that all settings will be read from the c:\tmp\htmlsettings.xml file.

@delimiter - Temporarily change the statement delimiter

When you use SQL statements to create functions and stored procedures in a script that also contains other SQL statements, the statement
delimiters for statements within the code body of the CREATE statement often clash with the delimiters for the other statements. One way to handle
this is with Anonymous SQL Blocks, but it may be more convenient to temporarily change the statement delimiter. That is what the @delimiter
command is for:

@delimiter ++;
CREATE OR REPLACE FUNCTION HELLO (p1 IN VARCHAR2) RETURN VARCHAR2
AS
BEGIN
 RETURN 'Hello ' || p1;
END;
++
@delimiter ;++
@call ${returnValue||(null)||String||noshow dir=out}$ = HELLO('World');
@echo returnValue = ${returnValue}$;

The first @delimiter command sets the delimiter to "++" so that the default ";" delimiter can be used within the function body in the CREATE
statement. The "++" delimiter is then used to end the CREATE statement, and another @delimiter command sets the delimiter back to ";" for the
remaining commands in the script.

Note that current delimiter must be used to delimit the @delimiter command itself from the other statements: the first @delimiter command uses ";"
and the second uses "++".

@call - Execute a function or stored procedure

You can use the @call command to execute a function or a stored procedure.

For a function, returning a value, use this syntax:

@call <OutVariable> = <FunctionName>(<ParamList>);

where the <FunctionName> may need to be fully qualified with a schema (and/or catalog/database) and the <ParamList> is a comma separated list
of literal values or variables. Here's an example:

@call ${return_value||(null)||String||dir=out noshow}$ = get_some_value();

For a procedure, use this syntax:

@call <ProcedureName>(<ParamList>);

95(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportImport/exportImport.html

where the <ProcedureName> may need to be fully qualified with a schema (and/or catalog/database) and the <ParamList> is a comma separated
list of literal values or variables. Here's an example:

@call my_process('literal input',
 ${var_in||(null)||String||dir=in}$,
 ${var_out||(null)||String||dir=out noshow}$,
 ${var_inout||'in_value'||String||dir=inout}$);

As shown in these examples, you must use the dir option to specify how the variable is to be used (in, out or inout) and you may use the noshow
option to prevent being prompted for a value for an output variable .

You can use the @echo command described earlier to write the value assigned to an output variable to the log.

The Procedure Editor chapter shows a few more examples, and how you can generate a script for calling a procedure or function. The Variables
section below describes the variable syntax in more detail.

@beep - Emit a beep sound

The @beep command emits a beep sound, which can be used to signal the completion of a script or some other significant script event.

@echo - Echo text

The @echo command simply echos the supplied text or the value of a variable in the output.

@window iconify - Iconify the main window

This command results in the main window being lowered (iconified).

@window restore - Raise the main window

This command results in the main window being raised (if iconified).

@desc table - Describe the columns in table

Use the @desc command to show column information for a table. For tables that are not in the current database or schema, you need to qualify the
table name properly.

@desctable;
@desc database.table;
@desc schema.table;

@ddl - Generate DDL command

The @ddl command is used to generate a DDL command (CREATE statement) for a number of different database object types. The command
supports this general syntax:

@ddl <objType>="<objId>" [drop="true | false"] [constrCtrl="<constrCtrl>"]

<objType> is one of table, indexesfortable, view, procedure, function, package (Oracle only), packagebody (Oracle only), module (Mimer only)
or trigger, and <objId> is the qualified identifier for the object (case sensitive).

If drop is set to true, a DROP statement is included before the CREATE statement.

The constrCtrl parameter only applies to tables. It accepts two values: noconstr means that no constraints should be included in the statement that
can potentially cause creating the table or inserting data into it to fail (FK and CHECK constraints), while onlyconstr means that an ALTER

96(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html

statement adding the remaining constraints should be generated instead of a CREATE statement.

@spool log - Save log to file

The @spool log command is used to save the log to file. (The log is not cleared after being saved).

@spool log mylog.txt

@stop on error - Stop execution if any error occurs

@stop on warning - Stop execution if any warning occurs

The @stop on error and warning can be used to control that the script processing should stop if any error or warning occurs. The corresponding
@continue on xxx command is used to ignore any error or warning conditions.

@stop on error;
@stop on warning;
@continue on error;
@continue on warning;

@set autocommit - Set the auto commit state

Pass either on or off as a parameter and it will set the auto commit state accordingly.

@commit - Commit the current transaction

Commit the current transaction via this database independent command.

@rollback - Rollback the current transaction

Rollback the current transaction via this database independent command.

@set serveroutput - Enable/disable the DBMS output management for Oracle

Pass either true or false as a parameter to start or stop the DBMS output management for Oracle.

@set maxrows <number> - Temporarily set the row limit for the script

Limit the number of rows retrieved for a result set to the specified number. The limit applies to statements following this command in the script. The
limit for the SQL editor is not changed.

@set maxchars <number> - Temporarily set the text field width limit for the script

Limit the number of characters that are presented for text fields in a result set to the specified number. The limit applies to statements following this
command in the script. The limit for the SQL editor is not changed.

97(261

Variables

Variables are used to build parameterized SQL statements and let DbVisualizer prompt you for the values when the SQL is executed. This is handy if
you are executing the same SQL repetitively, just wanting to pass new data in the same SQL statement.

Variable Syntax

The variable format supports setting a default value, data type and a few options as in the following example:

${FullName||Andersson||String||where pk}$

Here is the complete variable syntax:

${name || value || type || options}$

• name
Required. This is the name that appear in the substitution dialog. If multiple variables in a script have the same name, the substitution
dialog shows only one and the entered value will be applied to all variables of that name.

• default
The default value that appears in the substitution dialog

• type
The type of variable - String, Integer, Float, etc. This is used to determine whether the value should be enclosed by quotes. If no type is
specified, it is treated as an Integer (no quotes).

• options
The options part is used to express certain conditions:

• pk
Indicates that the variable is part of the primary key in the final SQL. Represented with a key icon

• where
Defines that the variable is part of the WHERE clause. The green star icon further illustrate this condition

• noshow
This option define that the variable should not appear in the substitution dialog. A proper value must be set when using this
option, unless it is an output variable (see dir below)

• nobind
Specifies that the value should be replaced as text in the final statement instead of being replaced as a parameter marker

• dir=in | out | inout
The direction for a variable used with the @call command (it is ignored for other uses). A variable assigned the return value for a
function must be declared as dir=out, and a variable used for a procedure parameter must use a dir type matching the
procedure parameter direction declaration. in is the default.

Pre-defined Variables

A few pre-defined DbVisualizer variables can be used anywhere in the SQL. These are replaced with actual values just before the SQL is sent to the
DB server. The final value for these variables are self explanatory.

${dbvis-date}$
${dbvis-time}$
${dbvis-timestamp}$

By default, the values are formatted as defined in Tool Properties->Data Formats, but you can also specify a custom format for a single use of the
variable, e.g.

${dbvis-date||||||format=[yyyyMMdd]}$

The following variables can be used only when monitoring a SQL statement that produce a result set and the Allowed Row Count for the monitor is
> 0. The output format is seconds and milliseconds. Ex: 2.018

${dbvis-exec-time}$
${dbvis-fetch-time}$

Note that none of the above variables will appear in the Variable Substitution window explained below.

98(261

Variable Substitution in SQL statements

For variable processing to work in the SQL Commander, make sure the SQL->Process Variables in SQL main menu option is enabled.

A simple variable may look like this:

${FullName}$

A variable is identified by the start and end sequences, ${ ... }$. (These can be re-defined in Tool Properties). During execution, the SQL Commander
searches for variables and displays a window with the name of each variable and an input (value) field. Enter the value for each variable and then
press Execute. This will then replace the variable with the value and finally let the database execute the statement.

Consider the following SQL statement with variables. It is the simplest use of variables as it only contains the variable names. In this case it is also
necessary to enclose text values within quotes since the substitution window cannot determine the actual data type from these variable expressions.

INSERT
INTO
 "SCOTT"."EMP"
VALUES
(
 ${EMPNO}$,
 '${ENAME}$',
 '${JOB}$',
 ${MGR}$,
 '${HIREDATE}$',
 ${SAL}$,
 ${COMM}$,
 ${DEPTNO}$
)

Executing the above SQL will result in the following window being displayed:

99(261

Figure: The substitute variables window

The substitution window have the same look and functionality as the Form Data Editor i.e. you can sort, filter, insert pre-defined data, copy,
paste and edit cells in the multi line editor, plus a lot of other things. In addition the substitution window adds two new commands (leftmost in the
toolbar and in the form right-click menu) specifically for the substitution window:

• Set Default Values
This will set the value to the default value for the variable. If a default value was not specified in the variable, (null) will appear

• Set Previously Used Values
Set the value for each variable to the values used in the previous run (if there is no values from a previous run, this button is disabled).

The SQL Preview area shows the statement with all variables substituted with the values.

Here is an example of a more complex use of variables.

update SCOTT.EMP set
 EMPNO = ${EMPNO||7698||BigDecimal||pk ds=22 dt=NUMERIC }$,
 ENAME = ${ENAME||BLAKE||String||nullable ds=10 dt=VARCHAR }$,
 JOB = ${JOB||MANAGER||String||nullable ds=9 dt=VARCHAR }$,
 MGR = ${MGR||7839||BigDecimal||nullable ds=22 dt=NUMERIC }$,
 HIREDATE = ${HIREDATE||1981-05-01 00:00:00.0||Timestamp||nullable ds=7 dt=TIMESTAMP }$,
 SAL = ${SAL||2850||BigDecimal||nullable ds=22 dt=NUMERIC }$,
 COMM = ${COMM||(null)||BigDecimal||nullable ds=22 dt=NUMERIC }$,
 DEPTNO = ${DEPTNO||30||BigDecimal||nullable ds=22 dt=NUMERIC }$

100(261

where EMPNO = ${EMPNO (where)||7698||BigDecimal||where pk ds=22 dt=NUMERIC }$

This example use the full capabilities of variables. It is in fact generated by the Script to SQL Editor->INSERT COPY INTO TABLE right click menu
choice in the Data tab grid.

Figure: The substitute variables window

To highlight that a variable is part of the WHERE clause in the final SQL it is represented with a green icon in front of the name.

When executing a statement that consist of variables, DbVisualizer replaces each variable with either the value as inline text or as a parameter
marker. Using parameter markers to pass data with a statement is more reliable and safe than inline values. It is also the recommended technique to
set values as the database engine may then pre-compile these statements properly. DbVisualizer will automatically generate a parameter marker if
the variable have the type section set and if there is no nobind option specified.

The following will be replaced with a parameter marker:

${Name||rolle||String}$

These will be replaced with the variable value:

${Name||rolle}$
${Name||rolle||String||nobind}$

Variables in DbVisualizer may be used anywhere in a statement. However, there may be problems once the final statement is passed to the
database for execution and it contain parameter markers in non supported places. A simple example is Oracle that don't accept parameter markers
for a table name. To solve this problem either clear the type part of the variable expression or add the option nobind (see above).

101(261

Parameter Markers

Parameter markers are are usually represented in a SQL statement with a question mark, ? or a string prefixed with a colon, :somename. Example:

select * from EMP where ENAME = ? or ENAME = ?

Parameter markers are primarily used in prepared SQL statements that will be cached by the database server. The purpose with cached statements
is that the database server will analyze the execution plan once when the SQL is first executed. Subsequent invocations of the same SQL will then
only replace the parameter markers with appropriate values, which results in much better response than executing SQLs with dynamic values
directly in the SQL.

Parameter marker processing is managed by the JDBC driver and not all drivers supports it. One notable example is that the Oracle JDBC driver
lacks support completely.

With a JDBC driver that does support parameter marker processing, the following window appears when executing the previous SQL statement.

Figure: The parameter marker substitution window

(For parameter marker processing to work in the SQL Commander, make sure the SQL->Process Parameter Markers in SQL main menu option is
enabled).

Output View

The Output View in the lower area of the SQL Commander is used to display the result of the SQLs being executed. How the results are presented
is based on what type of result it is. A log entry is always produced in the Log view for each SQL statement that is executed. This entry shows at a
minimum the execution time and how many rows were affected by the SQL. There may also be a result set if the SQL returned one. These result
sets are presented either as tabs or windows based on your choice.

102(261

Figure: The output view

If an error occurs during execution, the SQL Commander automatically switches to the Log view so that you can further analyze the problem.

Log

At the top of the Log tab, you can choose to log information about the execution of your SQL statements to the GUI or to a file.

Figure: The Log destination controls

If you choose to log to file, you can enter the file path in the text field or click the button to the right of the field to launch a file browser. By default, the
log information is written to the GUI, below the log destination controls.

The log keeps an entry for each SQL statement that has been executed. It provides generic information, such as how many rows were affected and
the execution time. The important piece of information is the execution message which shows how the execution of that specific statement ended. If
an error occurred, the complete log entry will be in red, indicating that something went wrong.

Figure: The Log with one failed statement

The detail level in an error message depends on the driver and database that is being used. Some databases are very good at telling what went
wrong and why, while others provide less detail.

Clicking the icon to the left of each log entry selects the corresponding SQL statement in the SQL editor. The icon also has a right-click menu with
two choices: Load SQL into Editor and Insert SQL into Editor. The first choice replaces the current content of the SQL Editor with the SQL
statement corresponding to the log entry, while the second inserts it at the caret position in the SQL Editor.

103(261

Log controls

The Editor Control area contains a Log tab where you can control the log content. Use the Show controls to define which information you want to
appear in the log. The Filter controls are used to specify which entries should be displayed.

Auto clear log

If you enable the Auto Clear Log control, the SQL Commander automatically clears the log between executions.

Result Set

A result set grid is created for every SQL that returns one or more result sets. These grids can be displayed in a tab or window style view, similar to
how the SQL editors are displayed. Each grid shares the common layout and features as described in the Getting Started and General Overview
document. The format of the result can be one:

• Grid
The result is presented in a grid.

• Text
The result is presented in a tabular format.

• Chart
Read more in Monitor and Charts.

104(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Figure: The windows output view

The figure above shows the windows output style with three result set grids. A result set grid can be closed using the red cross in the window frame
header.

With the tabs style, you use the Close right click menu choice when the mouse pointer is in the tab header to close a result set:

Figure: The right click menu for tabs

Result set menu

The result set menu is available by right-clicking on a tab or on the result set desktop (window style). It contains options to control the current result
set and all result sets. The following actions are available:

Menu Choice Description

Load SQL into Editor Loads the SQL for the selected result set tab or window into the current editor.

Insert SQL into Editor Inserts the SQL for the selected result set tab or window into the current editor at the cursor position.

Close Current Closes the current result set

105(261

Close All Closes all result sets

Close All But Current Closes all but the current result set

Close All Empty Closes all result sets that are empty (no data)

Pin Current Pins the current result set (preventing it from being removed at the next execution).

Unpin Current Unpins the current result set

Pin All Pins all result sets. Pinning a result set prevents it from being removed at the next execution.

Unpin All Unpins any pinned result sets, making them candidates for removal during the next execution.

Close All Pinned Removes all pinned result sets directly.

Close All Unpinned Removes all unpinned result sets directly.

Show Grids Changes the display mode to show the grid tab for all result sets

Show Texts Changes the display mode to show the text tab for all result sets

Show Charts Changes the display mode to show the chart tab for all result sets

Editing

A result set grid may be enabled for editing based on the following criteria:

1. The result really is a result set
2. The SQL is a SELECT command
3. Only one table is referenced in the FROM clause
4. All columns in the result set exist in the table with exactly the same names

For some databases, you must also either qualify the table name with the schema name, or make sure that the table belongs to the schema selected
in the Schema list for the SQL Editor. If all of the above is true, the standard editing tool bar appears just above the grid. Read more about editing in
the Edit Table Data chapter.

Multiple result sets produced by a single SQL statement

Some SQL statements may produce multiple result sets. Examples of this are stored procedures in Sybase ASE and SQL Server. The SQL
Commander checks the results as returned by the JDBC driver and add grids to the output view accordingly. The following shows the sp_help
command which returns several result sets with various information about the newTable table.

106(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html

Figure: Multiple result set grids produced by a single SQL statement

The result set grids in the figure above all share the same label, sp_help newTable. The number after the label represents the order number for the
actual result. A stored procedure can return different results, not all being result sets. The number helps you identify which entry matches which
result set grid in the log. Here is the Log output view for the previous example.

107(261

Figure: The Log after executing an SQL statement that returns multiple results

All entries with the log message "Result set fetched" are represented by a grid in the previous figure.

Text

The Text format for a result set presents the data in a tabular style. The column widths are calculated based on the length of each value and the
length of the column label.

The column widths may vary between executions of the SQL.

Figure: The Text result set format

Chart

A result set can be charted using the Chart view in a grid. Please read more about it in the Monitor and Charts document.

DBMS Output (Oracle)

The DBMS Output tab for Oracle is used to enable and disable capturing of messages produced by stored procedures, packages, and triggers.
These messages are typically inserted in the code for debugging purposes. For SQL*Plus users, the corresponding feature is enabled via the set
serveroutput on command. To enable display of DBMS messages in DbVisualizer, select the DBMS Output tab and press the Enable button.

Once DBMS output is enabled, the icon in the tab header is changed. Invoking a stored procedure in the SQL editor will result in the following being
displayed in the output tab. (Each block of output is separated with a timestamp).

108(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html

Figure: DBMS Output tab

109(261

Query Builder

Introduction

The Query Builder provides and easy way to develop database queries. The Query Builder provides a point and click interface and does not require
in-depth knowledge about the SQL syntax.

The Query Builder is part of the SQL Commander, alongside the SQL Editor. To open the Query Builder, make sure the SQL Commander tab is
selected and then choose either the SQL->Show Query Builder menu choice or click the vertical Query Builder button to the right in the SQL
Commander. When you are ready to test a query built with the Query Builder, you just load it to the SQL Editor for execution.

This document talks only about Tables even though the Query Builder supports both table and view objects.

110(261

Figure: The query builder

Current Limitations

These are the current limitations in the Query Builder:

• Unions and sub queries are not supported.
• Not all join types are supported when joins are expressed as WHERE clause conditions. The Inner join type is supported for all databases,

but the Left and Right types are only supported for databases with proprietary syntax to express these types, e.g., Oracle, SQL Server
and Sybase. The Full type is not supported for any database. If a join type is not supported, the setting in the Join Properties dialog is
silently ignored.

• When importing an SQL query from the SQL Editor, unsupported keywords and statement clauses are ignored. A dialog tells you which
parts of the query are being ignored when unsupported parts are found in the imported statement.

Creating a Query

To create a query, open the query builder using the SQL->Show Query Builder menu choice or click the Query Builder button in the SQL
Commander as described earlier. Make sure that the controls in the top section of the Query Builder are set correctly, as described in Database
Connection, Catalog and Schema.

Figure: The initial appearance of the query builder

The easiest way to jump between the Query Builder and the SQL Editor is by clicking the vertical control buttons to the right in the SQL Commander.
Clicking these buttons changes the display, but does not copy the query from one display to the other. To copy the current query from the Query
Builder to the SQL Editor, use the toolbar buttons at the top of the Query Builder:

111(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId255438
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId255438

Figure: Query builder toolbar

1. The first button (from left) replaces the content of the SQL Editor with the query SQL and executes it
2. The second button replaces the content of the SQL Editor with the query SQL, without executing it
3. The third button adds the query last in the SQL Editor
4. The fourth button copies the query to the system clipboard
5. The fifth button opens a dialog that lets you add tables matching a search criteria
6. The sixth button opens the editor properties

The first three buttons automatically change the display to the SQL Editor.

You can also load a query from the SQL Editor into the Query Builder, as described in detail below.

Adding Tables

Using Drag and Drop

To add tables, make sure the database objects tree and the table and/or view objects are visible. Then select and drag nodes from the tree into the
diagram area.

Figure: Adding tables to the query builder

To add a table, drag it from the object tree to the diagram area of the Query Builder. When the table is dropped in the diagram area, it is shown as a
window with the table name as the window title.

Below the title is a text field where an optional table alias can be entered. If a table alias is specified, it is used in the Query Builder and the
generated SQL statement to refer to this table.

112(261

Under the table alias field is a list of all table columns. A check box in front of each name is used to select whether the column should be included in
the query result set. Columns selected for the query result set also appear in the Columns and Sorting details tabs.

Using the Quick Table Add Dialog

An alternative to dragging and dropping tables into the Query Builder is to use the Quick Table Add dialog.

It lists tables matching the search criteria as you type it in the search text field. An asterisk ("*") can be used as a wildcard for any characters.

Joining Tables

Manually Joining Tables

To join two tables, select the column in the source table window with the mouse, drag it to the target table column, and drop it.

Figure: Joining two tables

The two columns now represent a join condition, shown in the graph as a link between the columns. If more than one join condition is needed, link
additional columns in the two tables by dragging and dropping the columns in the same way as for the first join condition. The default join type is an
Inner join and the default condition is "equal to" (=), represented as an icon with overlapping circles with the shared area shaded and an equal sign
below them.

113(261

Joining Tables Automatically

Some database schemas declare how tables are related using primary and foreign keys. Other schemas use column names to indicate these
relationships. For instance, in the figure above, the EMPLOYEES table has a column named DEPARTMENT_ID, which refers to the column with the
same name in the DEPARTMENTS table. The Query Builder can be configured to use both kinds of rules to automatically join the tables you add to
the query builder.

The auto-join feature is disabled by default. You can enable it in the tool properties for the database type (Tools->Tool Properties, under the
Database tab) or for a specific connection (the Properties tab at the bottom of the Object View window when the connection is selected in the object
tree).

Figure: Query Builder Properties

The Query Builder node lets you enable the auto-join feature and select whether to use key declarations (FK/PK) or column names to find out how
the tables are related.

When you add a new table with auto-join enabled, the Query Builder automatically joins it to the tables already in the builder if table columns match
the selected matching rule.

If columns in the table you add are related to other columns in the same table, the Query Builder creates two windows for the table and joins them
based on the matching rule. In this case, a table alias is also added for one of the windows so that you can tell the two windows for the same table
apart.

Join Properties

A Join Properties dialog can be opened by double-clicking the icon or selecting Join Properties from the right-click menu while the mouse pointer is
over the join icon. The Join Properties dialog shows the source and target table columns and the conditional operator.

You can change the join type and the conditional operator in the Join Properties dialog. The join type defines how the records from the tables should
be combined:

• Inner
This is the most common join type as it finds the results in the intersection between the tables.

• Left
This join type limits the results to those in the left table leaving 0 matching records in the right table as NULL.

• Right
This is the same as left join but reversed

• Full
A full join combines the results of both left and right joins.

114(261

Figure: Join Properties dialog

If you have multiple join conditions (linked columns) between two tables, you can specify different conditional operators for each join condition, but
the join type is shared between all join conditions; if you change it for one join condition, it is changed for all the other join conditions linking the two
tables. This is not a restriction in the Query Builder but rather how SQL is defined.

Here is the sample SQL generated from the previous join definition:

SELECT
 *
FROM
 HR.EMPLOYEES
INNER JOIN
 HR.DEPARTMENTS
ON
 (HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID)

Remove Tables and Joins

A table window is removed by clicking the close icon in the window header. A join is removed by selecting Remove Join in the right-click menu while
the mouse pointer is over the join icon.

Figure: Diagram right click menu

All tables and joins may be removed via Remove All Joins and Remove All Tables.

Query Details

The Details tabs below the diagram area are used to define the various parts of the query. The tabs basically represent the following parts of the final
SQL:

 SELECT <Columns>
 FROM <Tables>
 WHERE <Conditions>

115(261

GROUP BY <Columns>
 HAVING <Grouping>
ORDER BY <Sorting>

(The Tables clause is defined in the diagram, not by a tab).

Columns

Use the Columns tab to specify characteristics of the columns that are included in the query. The list is initially empty until a column is checked in a
table window or a column expression is added manually (see below). Columns will appear in the list in the same order as they are checked but may
be moved at any time with the up and down buttons. To include all columns from a table, right-click in the column list in the table window and choose
Select All.

Figure: The Columns tab

The previous screenshot shows a total of 5 checked columns in the two tables. These are presented in the columns list by their full column identifier,
qualified by either the table name or the table alias. To remove a column from the list, uncheck the corresponding column in the table window.

The alias field is used to specify an optional alias identifier for the column. The alias is used as the identifier for the column in the final query and also
appears as the column name in the result set produced by the query. Check the documentation for the actual database to see if the alias must be
quoted since the Query Builder does not do this for you.

The Aggregate and Group by fields are used in combination:

• The Aggregate field lists the available aggregation functions (AVG, COUNT, MAX, MIN, SUM) that may be used for columns
• The Group By field specifies whether the column should be included in the group for which aggregate columns are summarized

The Group By field is disabled unless an aggregate function is selected for at least one column, and once you select an aggregate function for one
column, you must set Group By for at least one of the other columns to form a valid query. If you remove the aggregate function for all
columns, Group By is automatically reset for all columns. Group By and aggregate are also mutually exclusive options for one column, so when you
select one of them, the field for the other is disabled for that column.

A custom expression may be added by entering data in the empty row last in the list, e.g., "col1 + col2" or "TO_CHAR(ts_col, 'DD-MON-YYYY
HH24:MI:SSxFF')". Once entered, press enter to insert a new empty row. You can remove a custom expression by selecting it and clicking the

116(261

Remove button.

Conditions

The Conditions tab is used to manage the WHERE clause for the query. A WHERE clause may consist of several conditions connected by AND or
OR. The evaluation order for each condition is defined by indentation in the condition list. Each level in the list will be enclosed by brackets in the
final SQL.

Here is an example from the Conditions tab.

Figure: Condition settings

To create a new WHERE condition, press the indexed button in the list. In the menu that is displayed you may choose to create a new condition on
the same level, a compound condition or delete the current condition.
For compound conditions you may choose whether All (AND), Any (OR), None (NOT OR) or Not All (NOT AND) conditions must be met for its sub
conditions. The SQL for the Conditions tab in the figure is:

WHERE
 emp.SALARY > 4000
AND
 (
 dept.DEPARTMENT_NAME = 'Human Resources'
 OR dept.DEPARTMENT_NAME = 'IT'
)

Next to the input field for each condition, there is a drop down button. When pressed it shows all columns that are available in the tables currently
being in the Query Builder. You can pick columns from the list instead of typing these manually.

117(261

Figure: List of columns in the Conditions tab

Grouping

The Grouping tab is used to define the conditions for the HAVING clause that may follow a GROUP BY clause in an SQL query. This tab is only
enabled when at least one of the columns in the Columns tab is marked as a Group By column.

The HAVING clause is similar to the WHERE clause, except that the HAVING clause limits what rows are included in the groups defined by the
GROUP BY clause, after the WHERE clause has been used to limit the total number of rows to process.

You work with conditions in this tab in the same way as described in the Conditions section, with one exception regarding the drop-down button for
the fields in a condition. In the Grouping tab, the drop-down shows all columns listed in the Columns tab, with an aggregate function expression for
columns that have an aggregate function defined. This is because (according to the SQL specification) the conditions in a HAVING clause must only
refer to columns that are being returned by the query.

Sorting

The sorting tab is used to specify how the final result set will be sorted. All columns for the tables in the graph, plus any custom expressions created
for the selection list in the Columns tab, are listed in the Sorting tab.

Figure: The Sorting tab

All columns listed in the Columns tab are initially listed in the Available Columns table. Select the ones you want to use in the sorting criteria and
click the Move Right button to move them to the Sorted Columns table.

In the Sorted Columns table, you can change the default sort order (ascending) by clicking the check box in the Descending Order column. You can
remove columns from the sorting criteria by selecting them in the Sorted Columns table and clicking the Move Left button.

SQL Preview

The SQL Preview tab at the bottom of the query builder is used to show a preview of the final SQL. This is a read-only view and cannot be modified.

Testing the Query

To test the query, simply press the appropriate toolbar buttons in the Query Builder to copy the SQL to the SQL Editor. Then execute the SQL as
usual in the SQL Editor.

118(261

Figure: Testing the SQL

To further refine the SQL press the Query Builder button and make the necessary changes.

Loading a Query from the SQL Editor

If you have an existing SQL query that you want to modify using the Query Builder, you can load it from the SQL Editor into the Query Builder by

clicking the rightmost button in the SQL Editor toolbar:

It's important to be aware that the Query Builder does not support all features of the SQL SELECT statement, such as comments, UNION, and
database-specific keywords. If you load a query into the Query Builder that contains unsupported constructs or keywords, they are ignored and a
dialog pops up with a warning about this fact. You can then use the SQL Preview tab in the Query Builder to compare the SQL as it is represented in
the Query Builder with the original SQL that you loaded to understand what was ignored.

Properties controlling Query Builder

There are a few properties that control how the Query Builder works and the SQL it generates. You can set these properties for the database type
(Tools->Tool Properties, under the Database tab) or for a specific connection (the Properties tab at the bottom of the Object View window when
the connection is selected in the object tree). Check the following sections for details.

Express joins as JOIN clause or WHERE condition

The Generate JOIN Clause in SQL Builder property is available in the [Database Type]->Query Builder node. Joins can be expressed either via
the standardized SQL JOIN clause or a WHERE clause, using database-specific syntax for the Left and Right join types. The database-specific
WHERE clause syntax is somewhat different between the supported databases and the Full outer join type is not supported. The default for this
property is to use a JOIN clause.

A simple inner join expressed as a JOIN clause:

119(261

FROM HR.EMPLOYEES
INNER JOIN HR.DEPARTMENTS
ON (HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

Here is the same join expressed as a WHERE condition:

FROM HR.EMPLOYEES, HR.DEPARTMENTS
WHERE HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

The syntax for expressing Inner and Outer joins in WHERE conditions is different between databases. Oracle, for example, uses the "(+)" sequence
to the left or right of the conditional operator to express left or right joins. SQL Server and Sybase use "*=" or "=*" for the same purpose.

DbVisualizer automatically uses the correct join notation when generating joins as WHERE conditions for databases that support left and right joins
using WHERE conditions. For databases that do not provide syntax for left and right joins, the join type is ignored and the WHERE condition that is
generated produces an inner join result.

Table and Column Name qualifiers

Whether to qualify table names with the schema or database name and whether to qualify column names with the table name are defined in the
[Database Type]->Qualifiers node.

Delimited Identifiers

Identifiers that contain mixed case characters or include special characters need to be delimited. Define this in the [Database Type]->Delimited
Identifiers node.

Drag style and Diagram Size

If you enable the editor controls from the Query Builder or SQL Editor toolbar, you can also set the style table windows in the Query Builder diagram
should have when moving them, as well as the default size for newly added table windows.

120(261

Bookmarks and History

Introduction

When you work with a database, there are often some set of SQL statements that you use over and over to perform frequent tasks. You probably
have them saved in script files that you can load into an SQL Editor, but DbVisualizer Bookmarks make it even easier to work with them. A Bookmark
is a script visible in the Scripts tab in the tree area of the GUI.

Other times you type SQL statements directly in an SQL Editor and execute them. Later you may realize that you need to execute a statement again.
You can then use the History window to locate the statement and reuse it.

In this chapter, you will learn all about how to use Bookmarks and the History.

Bookmarks

You find your Bookmarks under the Scripts tab in the tree area to the left in the main DbVisualizer window. The content of a Bookmark is one or
more SQL statements. It may also be associated with a Connection, a Catalog and a Schema, to be used when executing the statements. This
information is displayed, and can be edited, in the lower part of the Scripts tab, along with information about the file that holds the Bookmark. If you
don't want to see these details, you can disable it with the Show Details toggle control in the right-click menu for a node.

Figure: The Scripts tab with Bookmarks

121(261

Creating, Editing and Organizing Bookmarks

You can create a new Bookmark by selecting the Bookmarks node in the tree and clicking the Create File toolbar button. This adds a new node in
the tree, with the default name selected so that you can replace it with the name you want to use. You can also rename the Bookmark later using the
Rename toolbar button with the node selected.

A Bookmark can also be created from the current content in an SQL Editor. Click the Save File As toolbar button to open a file chooser dialog, and
click the Bookmarks button in the file chooser dialog to go to the Bookmarks root directory. Enter a filename for the Bookmark and click Save.

Figure: The File Chooser dialog

To put some SQL statements in a new empty Bookmark or to edit the contents of an existing Bookmark, you need to open the Bookmark in an SQL
Editor. If you want to use the SQL Editor you currently have open, you can double-click the Bookmark node in the tree or click the corresponding
toolbar button. If you want to edit the Bookmark in a new editor, use the right-click Open File -> Open in New Editor operation or press Alt and then
double-click. When you are done with your edits, use the Save toolbar button in the SQL Editor to save them.

The default open behaviour when double-click a script file can be configured in Tool Properties->Script category.

You can also add the content of a Bookmark to the current content of an SQL Editor. Select the Bookmark node, drag it with the mouse key
depressed to the position in the editor where you want to add it, and drop it there by releasing the mouse button.

Folders can be used to organize your Bookmarks. Click the Create Folder toolbar button to create a new folder and give it the name you want. You
can then drag an existing Bookmark node to the folder, and create new Bookmarks and subfolders in the folder by selecting it and clicking the
Create File and Create Folder buttons.

The order of the folders and the Bookmarks within a folder is determined by the filesystem and cannot be changed manually.

Executing Bookmarks

With a Bookmark opened in the SQL Editor, you can of course execute its statements by clicking the Execute toolbar buttons as usual, but you can
also open and execute a Bookmark directly by selecting it in the tree and using the Execute File operations in the right-click menu.

122(261

Figure: The Execute File operations in the right-click menu for a Bookmark

Adding a Bookmark as a Favorite

If you are using a Bookmark very often, you may find it more convenient to add it to the Favorites area. You can drag and drop a Bookmark from the
Scripts tab to the Favorites area, or launch the Favorites editor via the Add to Favorites right-click menu operation.

Sharing Bookmarks

It's easy to share your Bookmarks with someone else because they are stored as regular files. The files are located in a subfolder of the DbVisualizer
user preferences folder named Bookmarks. The user preferences folder is typically a subfolder named .dbvis in your home folder.

The main Bookmark content is stored in a file with exactly the same name as the node in the Scripts tab. The additional data associated with the
Bookmark is stored in a file with the same name plus the .met extension.

To share some of your Bookmarks with someone, we recommend that you use DbVisualizer to create a separate Bookmarks subfolder for the
shared Bookmarks. You can then use any external tool to create a file archive (e.g. a ZIP file) of that subfolder and send it to your friend or colleague.
He or she can then extract the files into the local DbVisualizer user preferences Bookmarks folder.

History

As you execute SQL statements in the SQL Commander, DbVisualizer saves them as History entries, along with information about the Connection,
Catalog, Schema and the execution result. This makes it easy to locate statements and scripts you have executed in the past.

If you just want to go back and forth between statements you have executed recently, you can use the Get Previous from History and Get Next
from History toolbar buttons in the SQL Editor.

To look through all saved statements, you can display the History entries by clicking the Display SQL History toolbar button in the main window or
select the corresponding operation from the Tools menu.

123(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/favorites/favorites.html

Figure: The SQL History window

The entries are ordered with the most recently executed entries at the top by default, but you can reorder them by clicking on the column headers.
The complete content of the selected entry is shown below the list, unless you disable it by clicking the Show Details toolbar button or select the
corresponding operation from the right-click menu.

Reusing a History Entry

When you have found the entry you're looking for, you can open it in the current SQL Editor by double-clicking it or clicking the corresponding toolbar
button. If you want to open the entry in a new editor, use the right-click Open File -> Open in New Editor operation.

You can also add the content of an entry to the current content of an SQL Editor. Select the entry in the list, drag it with the mouse key depressed to
the position in the editor where you want to add it, and drop it there by releasing the mouse button.

Saving a History Entry as a Bookmark

If you realize that you need easy access to a History entry in the future, you can save it is as a Bookmark. Just select the entry and use the Save as
Bookmark operation, or just drag it to the Bookmarks tree and drop it.

Quick Load

An alternative to locating Bookmarks in the Scripts tab and History entries in the History window is to use the Quick Load feature, by default bound to
the Ctrl+Alt+O key combination. It is also available via a toolbar button in the SQL Editor as well as in the main File->Quick File Open menu.

124(261

Figure: Quick Load window

The Quick Load feature locates files with partly matching names from the categories you have selected, as you type. You can use an asterisk ("*") as
a wildcard in the search string.

When you see the file you're looking for, just select it and click Enter to load it into an SQL Editor. Use the New Editor checkbox to decide whether
you want to open it in a new editor or in the current editor, and use the Max field to limit the number of matching files to display in the list.

125(261

Monitor and Charts

Introduction

With the monitor feature, you can track changes in data over time, viewing the results of one or many SQL statements either as grids or graphs.
Typically, you configure the monitor to run the statements automatically at certain intervals.

The monitoring feature combined with the charting capability in DbVisualizer Personal is really powerful, delivering real time charts of many result
sets simultaneously. For example, you can use monitoring to spot trends in a production database, surveillance, statistics, database metrics, and so
on. At DbVis Software, we have a dedicated workstation that uses the monitoring feature to automatically present live chart information from our
Internet servers and customer database.

Any SQL statement that produces a result set can be monitored, and when you monitor multiple statements, different statements may use different
database connections concurrently.

Figure: Monitor window showing result as charts

The chart customization covered in this document is also applicable to the charts for result sets in the SQL Commander (DbVisualizer Personal).

126(261

Monitored SQL Statements

Monitored SQL statements are managed under the Monitors node in the Scripts tab in the tree area to the left in the main DbVisualizer window. A
monitored SQL statement is associated with information about the target database connection and (optionally) the catalog (the JDBC term which
translates to a database for some databases, like Sybase, MySQL, SQL Server, etc) and schema. It also has a title, a maximum row count (how
many results to keep track of) and a visibility status (whether the monitored statement result should be included in the Monitors windows, discussed
below). This information is displayed, and can be edited, in the lower part of the Scripts tab, along with information about the file that holds the
monitored statement. If you don't want to see these details, you can disable it with the Show Details toggle control in the right-click menu for a node.

Figure: The Scripts tab with Monitors

The figure above shows the Incidents/Day monitored statement and the SQL that is associated with it.

The following is an example of the result set produces by the statement:

127(261

Figure: Monitor window showing the result in Grid format

The interesting columns in the result are the Month and Count. The Year and MonthNum are there just to get the correct ascending order of the
result.

Creating, Editing and Organizing Monitored Statements

You can create and work with monitored statements in the same way as with a Bookmark. The main difference is how they are used and a couple of
additional ways monitored statements can be created. For information about how to manually create, manage and share monitored statements,
please see the Bookmarks and History. The following sections describe how you can get help creating the bookmarks for a couple of cases that are
commonly used for monitoring.

Monitor table row count

It is very common to want to keep track of how the number of rows in a table varies over time. The right-click menu in the Data tab grid for a table
therefore has a Create Row Count Monitor operation that creates a monitored statement for you automatically.

It creates a monitor with SQL for returning a single row with the timestamp for when the monitor was executed and the total number of rows in the
table at that time. Every time the monitor is executed, a new row is added to the grid, up to a specified maximum number of rows. When the
maximum row limit is reached, the oldest row is removed when a new row is added. Example:

PollTime RowCount

2003-01-23 12:19:10 43123

2003-01-23 12:11:40 43139

2003-01-23 12:21:10 43143

2003-01-23 12:22:40 43184

... ...

Figure: Example of the result from a Table Row Count monitor

The SQL for this monitor uses two variables, DbVis-Date and DbVis-Time. These variables are substituted with the current date and time, formatted

128(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

according to the corresponding Tool Properties settings. The reason for using these variables instead of using SQL functions to retrieve the values is
simply that it is almost impossible to get the values in a database-independent way. Another reason is that we want to see the client machine time
rather than the database server time. You can, of course, modify the SQL any way you see fit, as long as the PollTime and RowCount labels are
not changed.

select '${DbVis-Date}$ ${DbVis-Time}$' as PollTime,
 count(*) as RowCount
from Computers

Figure: Sample of the SQL for the Table Row Count monitor

DbVisualizer keeps the result for previous executions, up to the specified maximum number of rows, so that you can see how the result changes
over time. You define the maximum number of rows in the Max Row Count field in the details area at the bottom of the Scripts tab. This property is
initially set to 100 when you use Create Row Count Monitor to create the monitor.

Figure: Details area with the Max Row Count field for a monitored statement

You can change the value to limit or extend the number of rows that DbVisualizer should keep. Setting it to 0 or a negative number tells DbVisualizer
to always clear the grid between executions of monitors.

Monitor table row count difference

In addition to tracking the number of rows in a table over time, you may want to see by how many rows the value changes. You can create a monitor
for this purpose with the Create Row Count Diff Monitor operation, available in the right-click menu for the grid in the Data tab.

In addition to the Row Count Monitor, the Row Count Diff Monitor reports the difference between the number of rows in the last two executions:

PollTime RowCount RowCountChange

129(261

2003-01-23 12:19:10 43123 0

2003-01-23 12:11:40 43139 16

2003-01-23 12:21:10 43143 4

2003-01-23 12:22:40 43184 41

...

Figure: Example of the result from a Table Row Count Difference monitor

The SQL for this monitor adds a third column, named RowCountChange. It utilizes the fact that DbVisualizer automatically creates variables for the
columns in a monitor result set, holding the values from the previous execution. The RowCountChange column is set to the value returned by the
count(*) aggregate function for the current execution minus the value from the previous execution, held by the RowCount variable. All columns in a
monitor result set can be used like this to reference values from the previous execution of the monitor.

select '${DbVis-Date}$ ${DbVis-Time}$' as PollTime,
 count(*) as RowCount,
 count(*) - ${RowCount||count(*)}$ as RowCountChange
from Computers

Figure: Sample of the SQL for the Table Row Count Difference monitor

Monitor Window

The Monitor window, launched via the Tools->Monitor menu option, is where you active monitors and look at the results. The monitors can be
organized either as tabs or internal windows. The monitor results can be viewed only as grids in DbVisualizer Free, while DbVisualizer Personal adds
the capability to view them as charts or text.

Figure: The Monitor window with all monitors organized as tabs

130(261

The Monitor window has toolbar at the top with an Auto Reload Interval field and a Adjust box. The rest of the window holds result areas for each
monitored statement with the Visible attribute enabled. Each individual monitor result tab or window also has a toolbar with controls that apply just to
that result. The screenshot is from DbVisualizer Personal, with View buttons in the toolbar for the selected monitor; these buttons are not included in
DbVisualizer Free.

The main toolbar buttons have the following functions:

Toolbar Button Description

Close Closes the Monitor window

Reload Reloads all results (i.e., executes all monitors and updates the result sets)

Locate Current Locates and select the monitor node in the Scripts tab corresponding to the currently selected result

Clear Current Clears the currently selected result

Clear All Clears all results

Show as Tabs Shows the results as tabs

Show as Windows Shows the results as internal windows

Show Grids Shows all results as grids

Show Graphs Shows all results as graphs

Show Text Shows all results as text

Cascade Windows Arrange the result windows so the overlap each other

Tile Vertically Arrange the result windows side-by-side vertically

Tile Horizontally Arrange the result windows side-by-side horizontally

Start Monitors Starts auto-update of all monitors, repeatedly executing all statements at the intervals specified by
the Auto Reload Interval field

Stop Monitors Stops the auto-update

The Auto Reload Interval field is used to control how often to execute the monitors when auto update is running. Use the field to specify how many
seconds to wait between auto-reloads. The specified number of seconds may be increased automatically by DbVisualizer if the total execution time
for all monitors is longer than the specified value.
Check the Adjust box and the Monitor feature will automatically increase the number of seconds so that all monitors will complete before next auto-
update.

Charts

This section is only applicable to DbVisualizer Personal.

Charts in conjunction with the Monitor feature is really powerful, since monitored data is very often a good candidate to be charted. The charting
capability in DbVisualizer Personal is also available in the SQL Commander; everything described here also applies to the grids for the result sets in
the SQL Commander.

The basic setup of a chart is really easy. It is just a matter of selecting one or more columns that should appear as series in the chart. The basic
requirement is that the monitor has been executed, so that there are columns to choose the series from. The appearance of the charts can be
thoroughly customized using the advanced customization editor.

131(261

The chart view is controlled by the buttons in toolbar shown in the monitor result area when the graph mode is selected:

Figure: Chart control buttons

The following sections explain the features and how to setup the chart.

Chart Controls

The chart controls are used to customize the Data that shall be displayed in the chart, optional axis labels, titles, etc. It is also used to control the
Layout of the chart in terms of chart type, legend type, etc.

Data

Use the controls in the Data tab to customize which data shall appear in the chart.

Figure: Data customizer

Select at least one Series from the list of columns. As soon as you select a series, it is immediately added to the graph. The Label field can be used
to specify an optional label for the series as it should appear in a legend. The column name is used if no label is specified.

The X-Axis Label box is used to specify the column in the result that should be used to render the labels of the X-axis. X-Axis Title and Y-Axis Title
specifies the titles for the X and Y axis. You can use the Rotation settings if you want the X and Y axis text rotated.

The title for the monitored statement, as defined in the details area in the Scripts tab, is used as the title for the chart. The script file name is used if
no title has been specified.

Layout

The layout tab is used to configure the appearance of the chart, primarily the type of chart want to use. Note that all settings are per monitor. The
following screen shots show some of the most commonly used chart types.

132(261

Figure: Chart type examples

The advanced layout editor can be used to customize every aspect of the layout. The basic layout settings, however, are the following:

Figure: Layout customizer

Show symbols specifies whether each value in a line chart should be represented by a symbol. Show Inverted defines whether the X and Y axis
will be switched. 3D specifies if a bar chart will be displayed in 3D. The Chart Type lists all the available chart types. Fill Pattern defines how a bar,
area and pie chart shall be filled. Legend Type specifies whether a legend will be displayed or not.

You can use the Advanced Settings editor to customize all the bits and pieces of the chart. This document does not explain all the configurations
that can be done using this editor since that would result in a 100 page book. Play around with the different settings and see how the graph changes.

Settings that are made in the Advanced Editor are not saved between invocations of DbVisualizer.

133(261

Chart View

Zooming

Charts support zooming by selecting a rectangle in the chart area. Selecting another rectangle in that zoomed area will zoom the chart even further,
and so on. To reset the zoom, click the Reset Zoom button or press the "r" keyboard button while the mouse pointer is in the chart area.

Rotating

All 3D chart types support rotating and changing the depth of the chart. Use the following to change the appearance:

• Shift+Left Mouse button
Changes the depth of the chart

• Ctrl+Left Mouse button
Changes the rotation of the chart

Examples:

Figure: Example of 3D charts

The above screen shots are just a few examples of the 3D chart types and how depth and rotation settings are used to change the appearance.

134(261

Export

The export operation is context sensitive and works on the currently selected chart, graph or grid. The controls in the export dialog also adapt to the
currently selected object. If a chart is the current object the following export dialog will appear:

Figure: Export dialog for charts

The default size of the exported image is the same as it appears on the screen. To change the size, either select a pre-defined paper size in the Size
list or enter a size in pixels.

135(261

Create and Alter Table

Introduction

The Create Table, Create Index and Alter Table Assistants are used to create new tables and indexes and to alter existing tables. The assistants are
quite simple to use since they examine various metadata in the database (depending on which assistant is used) and then let you point and click to
define the table or index.

The assistants are launched from the Database->Selected Object main menu, from in the Database Objects tree right-click menu, or from the
Actions menu button in the object view. The menu choices are enabled only if a table or index can be created for the selected node in the Database
Objects tree.

Create Table

To create a table, select an appropriate node in the objects tree, typically a Tables node, and launch the Create Table assistant from one of the
menus as described earlier.

Figure: The right-click menu in the Database Objects tree

The Create Table assistant is organized in three areas from the top:

• General Table Info
Specifies the owning database connection, database and/or schema. These are picked up from the selection in the tree when the assistant
is started. Table name is is set to a default name that you can change to the real table name.

• Table Details
A number of tabs where you specify information about the columns and, optionally, various constraints. The Columns, Primary Key and
Foreign Key tabs are available for all databases. The remaining tabs are database-specific and depends on the features supported by the
database engine.

• SQL Preview
The SQL previewer instantly shows the SQL statement for creating the table.

136(261

Figure: The Create Table assistant

Just enter as much information as is needed to describe the table and click Execute to create the table.

Columns tab

The Columns tab lists all table columns along with their attributes.

137(261

Figure: The Columns tab (for Oracle)

Add columns by clicking on the Add button, and remove the currently selected column by clicking on the Remove button. You can reorganize the
columns using the Up and Down buttons.

Enter the name of the column in the first field and select a data type from a drop down list in the second field. The list contains the names of all data
types the database supports.

Figure: Data Type list (for Oracle)

For some data types, such as character types, you may also specify a size, i.e., the maximal length of the value. For others, like the decimal types,
you can may specify both a size and a scale (the maximal number of decimals).

Figure: Size and scale for a decimal data type

The above example will allow a total length (including the decimal places) of 7. Examples:

 1.02

138(261

 9871.1
 8172.0
 12.112 Error!
1921211.11 Error!

The last two fields let you specify if the table is nullable and a default value to use for rows inserted into the table without specifying a value for the
column.

Below the column list, you may see one or two additional fields, depending on the features supported by the database you create the table for. The
fields are enabled when you select a column that they apply to. The Collation field is enabled for character columns if the database supports the
declaration of a collation for textual data. The Auto Increment field is enabled for numeric fields if the database supports automatically inserting the
next available sequence number in a numeric column.

Figure: Collation and Auto Increment controls

The Create Table assistant uses database metadata to try to enable only the fields that apply to the selected data type, but please note that it is not
always possible. For instance, there is no metadata available to tell if a data type requires, or allows, a size. If you don't enter a required attribute or
enter an attribute that is unsupported for a data type, you will get an error message when you click Execute to create the table.

Primary Key tab

The Primary Key tab contains information about an optional primary key for the table. A primary key is a column, or a combination of columns, that
uniquely identifies a row in a table.

139(261

Figure: Primary Key tab

You can, optionally, enter a constraint name for the primary key constraint in the Constraint Name field. Select the columns to be part of the primary
key by clicking the checkboxes in the Include field in the columns list.

You can change the order of the columns in the key by selecting a column and move it using the Up and Down buttons.

Foreign Keys tab

In the Foreign Keys tab, you can declare one or more foreign keys for the table. A foreign key is a column, or a combination of columns, that refer to
the primary key of another table. Foreign keys are used by the database to enforce integrity, i.e., that there is a row in the referenced table with a
primary key that matches the foreign key value when a new row is inserted or updated, and can optionally declare rules for what to do when a
referenced primary key is removed or updated in the referenced table.

Figure: Foreign Keys tab

The tab has the following sections:

• A list of foreign keys.
• Controls for selecting the table the currently selected foreign key refers to, including the database (catalog) and/or schema for the table.
• A list of all columns for the table being created.

140(261

To declare a new foreign key constraint, click the Add button next to the list of foreign keys. You can then enter a name for the foreign key in the first
field in the list, and select On Delete and On Update actions from the pull-down menus. The pull-down lists include all actions that the database
support, typically CASCADE, RESTRICT, NO ACTION and SET NULL. The Columns field is read-only and gets its value automatically when you
select which columns to include in the key later.

Next, use the Referenced Table controls to select the table that the foreign key refers to.

Finally, check the Include checkbox for all columns in the column list that should be part of the foreign key and then select the corresponding column
in the referenced table from the pull-down menu in the Referenced Column field. You can change the column order for the key with the Up and
Down buttons.

To remove an existing foreign key, select it in the list in the top section and click the Remove button.

Unique Constraints tab (database-specific)

The Unique Constraints tab is only available for databases that support this constraint type. A unique constraint declares that the columns in the
constraint must have unique values in the table.

Figure: Unique Constrains tab

The top portion of the tab holds a list of all unique constraints, and the lower portion holds a list of all table columns.

To create a constraint, click the Add button and optionally enter a constraint name in the Constraint Name field. The Columns field in the constraints
list is read-only, filled automatically as you include columns in the constrain. Select the columns to be part of the constraint by clicking the
checkboxes in the Include field in the columns list.

You can change the order of the columns in the constraint by selecting a column and move it using the Up and Down buttons.

To remove an existing constraint, select it in the list in the top section and click the Remove button.

Check Constraints tab (database-specific)

The Check Constraints tab is only available for databases that support this constraint type. Check constraints declare that a column value fulfills a
certain condition when a row is inserted or updated. Some databases uses check constraints to enforce nullability rules, so when you alter a table
(as described later), you may see auto-generated check constraints for columns that you marked as not allowing null values in the Columns tab.

141(261

Figure: Check Constrains tab

To create a check constraint, click the Add button and optionally enter a constraint name in the Constraint Name field. Enter the condition for the
column in the Condition field. You can use the same type of conditions as you use in a SELECT WHERE clause.

To remove an existing constraint, select it in the list and click the Remove button.

Indexes tab (MySQL only)

The Indexes tab is only used for the MySQL database, as a replacement for the Unique Constraints tab. The reason is that for MySQL, the CREATE
TABLE statement can be used to declare both unique and non-unique indexes. MySQL also does not make a clear distinction between a unique
constraint (a rule, most often enforced and implemented as an index by the database) and a unique index (primarily a database structure for
speeding up queries, with the side-effect of ensuring unique column values), as most other databases do.

Figure: Indexes tab

The top portion of the tab holds a list of all indexes, and the lower portion holds a list of all table columns.

To create an index, click the Add button and optionally enter a name in the Constraint Name field. The Columns field in the constraints list is read-
only, filled automatically as you include columns in the constrain. If you want the index columns to have unique values for all rows in the table, click
the checkbox in the Unique field.

142(261

Select the columns to be part of the index by clicking the checkboxes in the Include field in the columns list. You can change the order of the columns
in the constraint by selecting a column and move it using the Up and Down buttons.

To remove an existing constraint, select it in the list in the top section and click the Remove button.

SQL Preview

The SQL Preview area is updated automatically to match the edits made in the assistant. The preview is read only, but you can copy the SQL to the
SQL Commander and flip between formatted and unformatted views using the two buttons in the toolbar above the preview area.

Execute

When you are satisfied with the table declaration, click the Execute button to create it.

Alter Table

To alter a table, select the table node in the objects tree and launch the Alter Table assistant from the Database->Selected Object main menu, the
Database Objects tree right-click menu, or from the Actions menu button in the object view.

143(261

Figure: The Alter Table assistant

The Alter Table assistant has exactly the same layout as the Create Table assistant, with all information about the table you wish to alter shown when
you launch it. As you make changes, such as adding a column, the SQL Preview area shows the corresponding ALTER TABLE statements. See the
Create Table section for descriptions of all parts of the assistant.

The controls, such as the fields, pull-down menus and buttons, in the assistant are only enabled if the ALTER TABLE statement for the database
holding the table provides a way to alter the corresponding table attribute. For instance, for a database that only allows the size of a VARCHAR
column to be altered, the Size field in the Columns tab is disabled for all columns with other data types. If you find that you can not make the change
you want, it is because the ALTER TABLE statement does not allow that change to be made.

144(261

Edit Table Data

Introduction

The table data editing feature mimics how editing is performed in standard spreadsheet applications; just click a cell value and edit. Edits are saved
in a single database transaction which ensures that all or no changes are committed. The editing feature supports saving binary and large text data
and it even presents common data formats in their respective viewers, such as image viewer, PDF, XML, HEX, etc.

A block of data can easily be interchanged via standard copy and paste operations between the grid editor and other applications, such as Microsoft
Excel, StarOffice and OpenOffice.

Editing is primarily performed in the grid editor. For some data, such as binary or large formatted text data, editing in the grid editor is not optimal, so
for these situations, we recommend that you to use the form or cell data editors. The form editor presents a single row of data in a separate window,
organized as a form with the column name in the first column and the data in the second column. All editing capabilities in the grid editor are also
available in the form editor. The cell editor is used to edit a single cell value in a separate window. This is useful when editing formatted text data or
to browse binary data.

Most of the editing functions have a key binding assigned. Check the right-click menu in the data grid to find out what they are.

Features that support editing

Editing of table data can be performed in the Database Objects->Data tab and in a result set generated by a SELECT statement in the SQL
Commander.

There are a few conditions that must be fulfilled for editing to be enabled in the SQL Commander:

1. It is a result set
2. The SQL is a SELECT command
3. Only one table is referenced in the FROM clause
4. All current columns exist by name (case sensitive) in the identified table

The editing tool bar is hidden if these rules are not met.

Update and Delete must match one table row

The editing features in DbVisualizer ensure that only one row in the table will be affected by update and delete edits. This prevents the user from
doing changes in one row that might also silently affect data in other rows. DbVisualizer uses the following strategies to determine the uniqueness of
the edited row:

1. Primary Key
2. Unique Index
3. Manually Selected Columns

The Primary Key concept is widely used in databases to uniquely identify the key columns in tables. If the table has a primary key, DbVisualizer will
use it. There are situations when primary keys are not supported by a database or when primary keys are supported but not used. If no primary key
is defined, DbVisualizer will check if there is a unique index. If there are several unique indexes, DbVisualizer will pick one of them. If there is no
primary key or any unique indexes defined for the table, you need to manually choose what columns to use. The key column chooser is automatically
displayed if the key columns can't be determined automatically.

Edit Multiple Rows

The grid editor supports editing multiple rows and saving all changes in one database transaction. Edited rows are indicated with an icon in the row
header:

 Cell(s) in the row has been edited

 Row is new

 Row is duplicated from another row

 Row is marked for deletion (edit is not allowed)

145(261

Edits are saved when explicitly saving changes via the Edit Table Data->Save Edit(s) right click menu choice or via the Save button in the tool bar.

Data Type checking

When leaving an edited cell the new value is validated with the data type for the column. If there is an error, the following dialog is displayed.

Figure: Data type error

New Line and Carriage Return

If a cell in the grid editor or form editor contains new line, carriage return or tab characters, these are not visually represented in the grid. Instead a
warning will be displayed whenever you try to edit such value:

Figure: Warning when editing a value containing a carriage return, line feed and tab characters

You may chose to edit the value in the Cell Editor, which we recommend, as the control characters will then be preserved. The other choice is to
edit the value anyway and risk loosing the control characters. This is not recommended.

The Cell Editor is a designated multi-line text editor suitable for editing large chunks of text:

146(261

Figure: Editing multi lined text data in the cell editor

Grid Editor

The grid editor tool bar is decorated with buttons for editing and the right-click menu contains all related operations.

Figure: Toolbar buttons to control the grid editor

Cells that have been edited are indicated by a yellow background color. Only these cells will be updated (part of the final SQL) when the changes are
saved in the database. To make sure a cell (column) is not part of the final SQL you need to select the cell and chose the Edit Table Data->Undo
Edits in Selected Cell(s) right click menu choice.
All cells in the edited row are highlighted with a yellow border to indicate that some cell(s) in the row has been edited.

Insert row

To insert a new row, choose the Edit Table Data->Insert New Row right-click menu choice or press the Insert toolbar button. The new row will be
inserted after the selected row or at the top if no row is selected. You can now start editing the cells in the grid or open the form editor to insert
values.

147(261

Update row

To update a row, just double-click in the target cell and modify the value.

Delete row(s)

One or multiple selected rows are marked for deletion via the Edit Table Data->Delete Row(s) right-click menu choice or by pressing the Delete
toolbar button. Each deleted row will be highlighted with a red background color and no further editing of the content is allowed.

Deleting a row that has been updated will automatically undo all edits and show the original values. This is done so that it is obvious which data will
be deleted. Deleting a row that has been inserted (or via duplication) will be removed from the grid.

Duplicate row(s)

Duplicate a row or several rows by selecting the cells in the rows that should be duplicated, then choose Edit Table Data->Duplicate Row(s) or
press the Duplicate tool bar button. All cells in the new row will be marked as being edited (yellow background color). The exception is any Auto
Increment/IDENTITY field, which will be assigned a value by the database.

Copy/Paste

Copying selected cell values is accomplished via the Copy Selection right-click menu choice. The data on the clipboard may then be pasted either
into DbVisualizer or any external application. The copy and paste operations in the grid editor are defined by the Grid->Copy category in Tool
Properties. The default setting for column and newline delimiters are sufficient for most uses.

Paste data from Excel and OpenOffice

The grid editor supports pasting data from the major spreadsheet applications. The grid editor support pasting single data as well as block of data.

Copy from Excel Paste into DbVisualizer Grid

A single cell is copied in Excel
The selected cell is pasted into one selected target cell

A single cell is copied in Excel The selected cell is pasted into multi selected target cells

148(261

A block of cells is copied from Excel
The block is pasted into the selected region

A block of cells copied from Excel
The block is pasted into a non equal number of target cells

Insert pre-defined values (Set Selected Cells)

The Edit Table Data->Set Selected Cells right-click menu choice or the Set Selected Cells tool bar button lists a few pre-defined functions that will
fill the selected cells with data.

149(261

Figure: Set Selected cells functions

Use these to insert data into the selected cells. Note that the target column type must accept the selected value type; nothing will happen if if you
choose, for example, "Insert Current Time" for a DATE data type cell.

Undo Edit(s)

The Edit Table Data->Undo Edit(s) operation is used to revert all edits in the selected cell(s). Reverting all cells in a row that are marked as Insert
or Duplicate will remove the complete row from the grid while a Delete marked row is cleared from its delete state. Undoing updated cells simply
reverts the changes to the original values.

Key Column(s) Chooser

Normally database tables have a primary key or at least one unique index. If this is the case, editing is no problem. If there is no way to uniquely
identify rows in the table, you need to manually define what columns DbVisualizer should use. While saving the changes DbVisualizer will check that
there is a way to identify unique rows in the table. If it cannot be accomplished, the following window is displayed.

Figure: Key Column(s) Chooser

The key column chooser can be manually opened via the Edit Table Data->Key Column Chooser right-click menu choice.

If the database request to save the edits cannot uniquely identify the single row that should be changed, the error dialog is displayed and the editing
state is kept for that row in the grid editor.

150(261

Preview Changes

You may preview the SQL statements that will be executed when choosing to Save the edits. It is displayed via the Edit Table Data->SQL Preview
right-click menu choice.

Figure: SQL Preview

(The listed SQL statements may not be 100% compliant as the save process use variable binding to pass values to the database).

Saving Changes

To save table data edits, select the Edit Table Data->Save Edit(s) right-click menu choice or click the Save toolbar button. If there are rows that
have been edited or deleted, these are first checked so that there is only one database table row affected by each edited row. If this pass is
successful, DbVisualizer will save the changes in the table. The progress is displayed in the status bar and Save may be interrupted by pressing the
Stop button in the toolbar. While save is in progress, no other operation may be performed in DbVisualizer, i.e., the rest of the application is locked.

Transaction Control

DbVisualizer use the physical root connection for the actual database connection when saving table data. Once save is requested, DbVisualizer will
implicitly set the auto commit state to off and reset it to what it was prior to requesting save when saving is completed. If the Use Single Shared
Physical Database Connection is enabled in connection properties, DbVisualizer will check whether there are any uncommitted updates in the
database when save is requested. If there are uncommitted changes you must first commit or rollback these changes before save is started.

Saving table data edits are batched in a single transaction. There is no DbVisualizer restriction on the number of edits that may be saved in a single
save operation, but the database server may put either explicit or implicit restrictions. The connection property Physical Connection->Transaction-
>Commit Batch Size specifies how many edits should be performed in the database table until commit is automatically initiated. If you, for example,
are saving 150 edited rows and an error occurs while saving the 121:st row, then the first 100 rows will have been committed and the rest are left
unchanged. The visual indication in the grid after a incomplete save operation is that rows that weren't saved keep their original editing state
indicator. Rows that were saved properly are indicated with a green checked cylinder icon.

151(261

Figure: Saved rows state

The cylinder icon with the green check mark indicates that the row was saved in the database table. Normally the grid is reloaded after a successful
save operation and there is no cylinder icon displayed. It only appears if the save operation was partly successful. Rows that weren't saved are still
represented with the original editing state icon and you may request save one more time.

Rows that have been properly saved (indicated with the cylinder icon) cannot be edited until all rows are saved properly or the grid is reloaded.

Permissions

All of the insert, update and delete requests performed by the grid editor may require confirmation before being executed by the database server.
Specify in Tool Properties->Permissions which operations should require confirmation. The default behavior is that delete operations must be
confirmed while insert and update need no confirmation.

Errors

If a database error occurs while saving changes, details about the errors are displayed in a window along with the actual SQL that was executed.

Form Editor/Viewer

The Form Viewer is available in the right-click menu (Browse Row in Form) for all grids in DbVisualizer. It is used to browse information and to
present binary data in viewers.

The Form Editor adds editing capability to the form viewer. This editor is useful when inserting new rows and when it is important to get a more
balanced overview of all the data.

The form editor "rotate" the data in one row and presents it as a vertical form with the column name as a label. All edits made in the form editor are
reflected in the grid with the edited state icon being updated along with new values. Saving edits in the database is always done with the Save
Edit(s) control in the original grid editor.

Open the form editor via the Edit Row in Form right-click menu choice, via the button in the toolbar or by double-clicking the row number header.

152(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498

Figure: A row in the grid

Here is the same row as selected in the previous screen shot displayed in the row form window.

Figure: Form viewer

The Key field optionally contains an icon for primary key columns and the Name field corresponds to the column name in the grid. None of Key or
the Name fields can be edited. You can edit the values in the form in the same way as you edit values in the grid editor.

The form viewer presents images as thumbnails. The size of these is controlled in Tool Properties->Form Viewer->Image Thumbnail Size. To see
the original size of an image, open the cell in the cell viewer either by selecting Edit in Cell Window in the right-click menu, the toolbar button or by
double-clicking on the image.

Cell Editor/Viewer

The Cell Viewer is available in the right-click menu for all grids in DbVisualizer. It presents the data for a single cell (column in a row) in a window. If
the data is of a recognized type, it is presented by a corresponding viewer:

• Image viewer
• XML viewer
• Serialized Java object viewer
• Hex viewer
• Text viewer

The cell viewer allows saving data to a file and to print it.

The Cell Editor adds editing capability to the cell viewer. You may import data from a file or manually change the text in a text editor.

153(261

Opening an image in the cell editor will display the following window.

Figure: Cell editor

The tabs at the top shows the available viewers for the current data. When you load a file into the cell editor, the tabs may change to reflect the
newly loaded data. To nullify the cell value, press the Set Value to NULL toolbar button.

Read more about binary and formatted text data in the following chapters.

Binary/BLOB

Due to the nature of binary/BLOB and CLOB data, cells of these types can only be fully modified and viewed in the cell editor. (There is partial
support in the form editor to view image data and to load from file). Editing binary data can be done by importing from a file or via the text editor.

Binary data in DbVisualizer is the generic term for several common binary database types:

• LONGVARBINARY
• BINARY
• VARBINARY

154(261

• BLOB

Image Viewers

The image viewer supports displaying the full size images for the following formats:

• GIF
• JPG
• PNG
• TIFF
• BMP

PDF Viewer

The PDF viewer shows Portable Document Format documents in a viewer.

155(261

156(261

Figure: PDF viewer

XML Viewer

The XML Viewer shows the content of an XML document in a tree with color highlighting. You can switch to an editable text view by pressing the Edit
value in text editor toolbar button.

Figure: XML viewer

Serialized Java Objects Viewer

The serialized Java object viewer renders a java object in a tree style. All aspects about the object may be browsed.

157(261

Figure: Binary data viewer for serialized Java objects

Hex Viewer

The generic Hex/ASCII viewer shows the hexadecimal representation of every byte in the data and its text representation. This is the default viewer
for unknown data.

158(261

Figure: Hex/ASCII viewer

Large text data/CLOB

Large text data and CLOB data types are typically edited in the multi line text editor. For formatted data (that includes new lines), the default editor is
useful. If editing a large chunk of non-formatted data, enable the Use Wrapped Editor setting and DbVisualizer will then automatically wrap the text
for easy editing.

159(261

Figure: The text viewer and editor

Import from File

Importing data from a file can be done in the form and cell editors. Imported binary data of a recognized type is displayed by the corresponding
binary viewer. Import is supported for both binary and text data.

Export to File

Export can be made in the grid, form and cell editors for binary and text data.

160(261

Table Data Navigation

Introduction

A powerful way to study database data is to navigate between the tables in a schema by following table relationships declared by primary and foreign
keys. DbVisualizer includes a Navigator feature for this purpose, visualizing the relationships graphically while making the data for each navigation
case easily accessible in a data grid.

To launch the Navigator, select the table you want to start the navigation from in the Database Objects Tree, and then open the Navigator tab in the
Object View.

Figure: The Navigator tab showing the initial table

The Navigator has two parts: a graphical view and a data grid. Initially, the graphical view shows just the selected start table, and the data grid shows
the data for the start table.

The data grid is a read-only grid of the same type as you encounter in other parts of DbVisualizer, but extended with a Related Table list and a Tag
button. You can learn more about the general data grid in the Data Grid section of the Getting Started chapter. The Navigator specific extensions are
described in detail in the following section.

161(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Data Navigation

Data navigation in DbVisualizer means following table relationships declared by primary and foreign keys, using a unique key value. In the example
schema shown in the screenshots in this section, there is a table named DEPARTMENTS with a primary key named DEPARTMENT_ID. Another
table named EMPLOYEES has a foreign key constraint, declaring that values in its DEPARTMENT_ID column refer to primary key values in the
column with the same name in the DEPARTMENTS table.

Figure: The Related Table list

If you use DEPARTMENTS as you start table, you can easily navigate to the EMPLOYEES table for different DEPARTMENT_ID values. In the data
grid, select one or more columns in the row that holds the DEPARTMENT_ID you want to use for navigation. In the figure above, the
DEPARTMENT_NAME column in the row for DEPARTMENT_ID = 60 is selected.

Next, bring up the Related Table list. It lists all tables the DEPARTMENTS table is related to through primary and foreign keys, with the key columns
within parenthesis. A forward arrow (->) in front of the table name means that the DEPARTMENTS table has a foreign key relation to the named
table. A backward arrow (<-) means that the named table has a foreign key relation to the DEPARTMENTS table.

Figure: Tooltip for a Related Table list entry

The Related Table list shows only the table name and columns of the related table, because there is not room for more when a key contains many
columns with long names. Sometimes this information is not enough to understand what the relation really means. To make it easier to figure out,
you can let the mouse hover over a list entry. A tooltip then shows you the other end of the relation as well, e.g., in the figure above, the tooltip shows
that "<- EMPLOYEES (DEPARTMENT_ID)" represents a foreign key from the EMPLOYEES DEPARTMENT_ID column to the DEPARTMENTS
DEPARTMENT_ID column.

162(261

Figure: Navigation from DEPARTMENTS to EMPLOYEES for DEPARTMENT_ID = 60

When you select "<- EMPLOYEES (DEPARTMENT_ID)" in the Related Table list, a node is added to the graph for the EMPLOYEES table, with an
arrow from the DEPARTMENTS table node to show the navigation direction. We call this a navigation case.

The EMPLOYEES node contains the key columns (just one in this example) and their values.

The arrow betwwen the nodes is labeled with the key column name. In addition, the arrow label also shows the name and value of the column that
you selected in the DEPARTMENTS table when you created this navigation case, i.e., the DEPARTMENT_NAME column. If you select multiple
columns when you create a navigation case, all non-key column names and values are included in the arrow label. This can make it easer to see at a
glance what a navigation case represents.

The grid is also updated when you create a navigation case, to show all rows in the table you navigated to that has a key value corresponding to the
selected key value in the table you navigated from. In this case, it shows all rows in the EMPLOYEES table with DEPARTMENT_ID equal to 60.

You can continue to create more navigation cases from any node in the graph. For instance, if the schema contains a table with job history
information for employees, you can navigate to the history for an employee from the EMPLOYEES node. Or, you can select the DEPARTMENTS
node in the graph to navigate to the EMPLOYEES table for a different department. Just click on the DEPARTMENTS node, select another row in the
data grid and then the same Related Table list entry.

163(261

Figure: Two navigation cases

If you want to create multiple navigation cases from one table to another using the same relationship, you can select columns in multiple rows in the
first table. When you make a selection in the Related Table list, one navigation case per row is created.

Every time you select a node in the graph, the data grid is updated to show the corresponding data. The grid settings for one node are independent
of the settings for another node. For instance, if you define a filter for one node, the filter is only associated with the grid for that node.

Adding Context Information to the Graph

The navigation node always shows the key columns and their values, but sometimes you may want to add other columns to the node to better
describe what it represents. This is called tagging the node. There are two ways to do so: drag and drop cells from the grid to any node, or use the
Tag button in the grid toolbar to tag the currently selected node with the currently selected cells in the grid.

To drag and drop cells to a node, select one or more cells in the grid. With the left mouse button pressed and the mouse positioned over one of the
selected cells, drag the cells over a node in the graph and release the mouse button. The cells are added to the node.

164(261

Figure: A node tagged with additional column values

Alternatively, you can select the cells in the grid and click on the Tag button () to add the cell values to the currently selected node.

Arranging the Graph

As you add navigation cases, you may find that you need to move nodes around, remove selected nodes, zoom and move around in the graph, etc.

You can rearrange the layout of the graph by selecting a node and, with the left mouse button pressed, drag it around. The arrow and its label moves
with the node.

The toolbar for the graph offers a number of tools to help you with other tasks.

Figure: The graph toolbar

All these tasks can also be accessed through the graph popup menu.

Clicking the Reload button removes all navigation cases, leaving just the node for the table you started with.

You use the Show/Hide Controls button to control the display of an Overview control, see below.

The Zoom In button lets you zoom into the graph, one step per click.

165(261

The Zoom Out button zooms the graph out one step with each click.

Clicking the Zoom 100% button zooms the graph so that all items are shown with their standard size.

Toggle the Magnifying Mode. When enabled, the content around the mouse pointer is magnified

Use the Fit button to make all graph items fit in the graph display area.

The Relayout button lays out all graph item with standard positions, distances between items, etc. This can be useful after making manual
changes, such as removing nodes or tagging nodes.

The Remove Node button removes the selected node. It is only enabled when a navigation case node is selected.

Toogle between Navigation and Edit Modes. Whith Navigation Mode enabled, you can move the graph content with the left mouse button
depressed.

The Overview control is useful for large graphs that do not fit into the display area.

Figure: Graph with the Overview Window displayed

The gray area in the Overview control indicates the portion of the graph that is currently shown in the display area. You can drag the gray area
around to study other portions of the graph.

To get a larger graph display area, you can put the Overview control in a separate window. Just uncheck the Docked checkbox.

Exporting and Printing the Graph

You can also export the graph to an image file or print it. Use the corresponding toolbar buttons to do this.

Export the graph to a file in JPG, GIF, PNG, SVG or PDF format.

Print the graph

Show a preview of how the graph will be printed

When you print the graph, you are prompted for information about what to print (the Graph or the View, i.e., just the portion visible in the display area)
and how many rows and columns to split the printing over (one page is used for each row/column). See the Export and Import chapter and the Print
section in the Getting Started chapter for details.

166(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportImport/exportImport.html

Procedure Editor

Introduction

Many databases offer the capability to store custom code in the database, primarily as functions and procedures, where a function has a return value
but a procedure does not (a procedure may instead have output parameters). In addition, some databases offer a package concept, which means
that a collection of functions and/or procedures are grouped together in one unit. A package is the interface describing the functions and procedures,
while the package body contains the implementation. Many databases also support triggers: code that is executed when triggered by an event such
as deleting a row in a table. You can use DbVisualizer actions to create and drop procedural object of these types, and use the procedure editor to
browse, edit and compile these object types. Procedures and functions can also be executed in the SQL Commander, with return values and
parameters bound to DbVisualizer variables.

The examples throughout this document refer to the procedure object type, but all described features can also be applied to the other types of
custom code objects. The screenshots show the interface for the Oracle profile, but it is very similar for other profiles.

Create Procedure

To create a new procedure, simply select the Procedures node in the objects tree and choose Create Procedure from its action menu.

Figure: The actions menu for the Procedures node

Next, a dialog is displayed in which you enter the procedure name and the parameters for the new procedure. This data forms the interface for the
procedure.

167(261

Figure: The create procedure dialog

Use the buttons to the right of the parameter list to insert, remove and move the parameters. For every parameter, you must supply its Name, the
Data Type and the Direction (typically one of IN, OUT or INOUT).

The action uses this information together with a simple sample body to compose a CREATE statement. You can not enter the real code in the action
dialog. The real code is often complex and large, so DbVisualizer provides a more powerful editing environment than what would fit in an action
dialog via the Procedure Editor, described below. What you create with the action should be seen as a template that you then complete and work
with in the editor.

Click Execute in the dialog to create the new procedure.

168(261

Figure: The newly created procedure

Selecting the newly created procedure in the tree will show the source for it in the Procedure Editor.

Edit and Compile

The editor has a toolbar with various actions to save/compile the procedure, save and load the source to/from file and perform common editing
operations. The Status indicator shows whether the procedure is valid or invalid based on last compilation (not available for all databases).

Edit the source code and save/compile the procedure when you are happy with the code, using the Save toolbar button.

169(261

Figure: Compiling procedure with errors

If errors occur during compilation, the error list appears below the editor. It shows the row/column number for the error in the source editor and an
error message. When you click the error in the list, the corresponding row is highlighted in the editor. Note, however, that some databases do not
provide row/column information, only an error message. You then have to locate the incorrect statement yourself based on the description of the
error.

In addition to the Status indicator in the editor, the object icon in the tree shows a little red cross for invalid procedures, for databases that provide
this information. You can see this for the UPDATE_STATUS procedure node in the figure in the previous section.

The figure below shows the result after correcting the errors and recompiling the procedure:

170(261

Figure: Compiling procedure with successful result

The status indicator now shows that the procedure is VALID.

Execute in SQL Commander

You can also test the procedure. First, click the Execute button in the Procedure Editor. DbVisualizer then generates a script for executing the
procedure, using variables for all parameters, and executes it in the SQL Commander as shown in the next screenshot.

171(261

Figure: Running the procedure in SQL Commander

Because the script contains variables, the Variable Prompt dialog pops up. Enter values for all parameters and click Continue to execute the
procedure.

In the example shown in the figure, all parameters are input parameters but DbVisualizer also support execution of procedures with output
parameters and functions returning a value:

@call ${STATUS||(null)||String||noshow dir=out}$ = "HR"."GET_STATUS"(1002);
@echo STATUS: ${STATUS}$;

In this example, the result value from the GET_STATUS function is assigned to a variable named STATUS. Note that is has an option dir=out. This
is a requirement for a variable that is assigned a value at runtime, whether it is used for a return value from a function call or for an output parameter
in a procedure call. It also has the noshow option, to avoid getting prompted for a value for the variable. The value of the STATUS variable is then
written to the log using the @echo command.

You can also use the output from one function or procedure as input to another, or even as a value in a SELECT or other SQL statement:

@call ${STATUS||(null)||String||noshow dir=out}$ = "HR"."GET_STATUS"(1002);
@call "HR"."UPDATE_STATUS"(1000, 2000, ${STATUS||||String||noshow dir=in}$);

Note that dir=in is specified for the STATUS variable when it is used in the UPDATE_STATUS procedure call. When you use a variable first for
output and then as input with another @call command, you must change the direction option like this.

The @call command is described more formally in the Client Side Commands section of the SQL Commander chapter, and the full variable syntax is
described in the Variables section of the same chapter.

172(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId803385
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId322587

Script CALL to Editor

As an alternative to using the Execute button in the Procedure Editor to generate a @call script, you can use the Script Object to SQL Editor right-
click menu choices for a procedure or function object in the Objects Tree.

Figure: Creating a @call script for a procedure

173(261

Tool Properties

Customizing DbVisualizer

DbVisualizer is highly customizable. You can control formatting, layout and the way DbVisualizer interacts with databases. The default settings are
good enough for normal use, but sometimes it is necessary to modify these properties. This chapter guides you through all the properties.

The Tool Properties window divides properties into two groups:

• General Settings
These settings controls DbVisualizer in general, such as fonts, colors, data formats, etc.

• Database Settings
These settings are per supported database type and defines properties that are used in database specific operations. When you set a
database property in Tool Properties, it applies to all database connections defined for that database type. To set a property for one specific
connection, use the Connection Properties, available in the Object Details area when you select a connection.

The user preferences (XML) files

All properties are saved in XML files. The exact location of these files is platform dependent. The location on your system is listed in the first,
General category, in the Tool Properties window. These files contains, in addition to all properties, also the information about drivers, database
connections, bookmarks, etc. We recommend that you do not edit these files manually; even though it is quite easy to do so, even a simple typo of
an element name may cause problems. It's safer to edit all properties from the DbVisualizer GUI.

DbVisualizer automatically creates a backup copy of the XML files when the application is started. The location of these files is the same as for the
standard XML files, but a .bak suffix is appended to the filename. The standard XML file might get broken for various reasons not in control by
DbVisualizer. If you see a warning message that the XML file can not be read when you launch DbVisualizer, simply copy the backup file to the
standard location and restart the application. If you move the XML file from its standard location, or if you remove it, DbVisualizer will automatically
create a new one.

Tip: the -prefsdir command line argument is used to identify an alternative directory for your user settings.

Export Settings

Sometimes it may be necessary to migrate all your settings for DbVisualizer and import them in second setup of DbVisualizer. This is very handy if
you are migrating from one machine to another, or if you want to setup an exact copy on your home computer, etc. Another key reason is for backup
purposes. Loosing all database connection due to various reasons can be really frustrating. The Export Settings feature is available from the File-
>Export Settings main window menu choice.

174(261

Figure: Export User Settings window

The default layout of the Export Settings window is that all settings will be exported. Once you're done press OK and all settings will be saved in the
specified file. The structure of this JAR file is the same as the content in your DbVisualizer settings directory.

The Relative File Paths option will transform all path definitions in the exported file relative to the DbVisualizer installation directory and your
personal settings directory. This is useful if you will import the settings on another machine or share it with other users. Note that the DbVisualizer
version importing relative file paths must be 7.1 or later to work properly (importing in earlier versions than 7.1 will not fail but path information will be
erroneous for things such as drivers, favorites, etc.)

Import Settings

The Import Settings feature is used to import settings as previously exported via the Export Settings feature. Import will examine the content of the

175(261

specified file and present the choices available. Consider the previous screenshot and that we export the settings for the Database Connections only.
Here is how the Import Settings window will look:

Figure: Import User Settings window

Use the Target Location button to set where the imported database connections will appear in the objects tree.

General Settings

The General settings tab collects all categories that are used to control the general aspects of DbVisualizer.

Use the buttons at the bottom of the window when you have made some changes: Click OK to save the changes and close the window, the Apply
button to save the changes but keep the window open, and the Cancel button to revert all changes. To reset the properties to the factory defaults,
use the Defaults button.

Changes are tracked on a per category basis. If you have made changes and click on another category, you are asked whether the changes should
be applied or not. When you click Defaults (for both the General and the Database properties), you can reset either all properties or just the
properties for currently selected category.

This is a screenshot of the General category tree.

176(261

Figure: The Tool Properties window showing the tree with General categories

Appearance

Property Description

Look and Feel Controls which look and feel to use.

Note 1: You must restart DbVisualizer after you have selected a new look and feel.
Note 2: Some look and feels are platform specific and do not appear on all OS'es

Metal (Ocean)

177(261

Windows

Alloy

GTK+

178(261

Mac OS X

Icon Sizes The Menus, Main Tool Bars, Sub Tool Bars settings are used to control the size of the
icons.

Show Tab Icons Specifies whether an icon will appear in the header of all object view tabs.

Fonts

Individual fonts can be defined for SQL Editors, Grids and Text output data. The Application Font settings is used to control the font for all other
components in the user interface, such as labels. Increasing the application font size is useful at demos or presentations. Anti-Aliased Fonts is
supported by some look and feels and when enabled it gives a much smoother appearance of text in the application. Anti-Aliased font is not
supported by the SQL editor.

Key Bindings

You can define key bindings for almost all operations and editor commands in DbVisualizer. Key bindings are grouped in Key Maps. DbVisualizer
includes a set of predefined key maps targeted for the supported operating systems. These key maps cannot be deleted or modified. To customize
key bindings, copy an existing key map and make your changes.

179(261

Figure: The key binding editor

All user defined key maps are stored in your $HOME/.dbvis/config70/keymaps directory. A key map file contain only the differences between the
copied key map and the current.

To create a new key map, select the map you want to copy and click the Make Copy button. Set a name on the new key map and activate it with the
Set Active button. The newly created key map now has the exact same key bindings as the parent key map.

Key maps must be uniquely named.

Figure: User defined key map

The action list is organized in folders. The Editor Commands folder lists all actions available in the SQL Commander editor and their current key
bindings. The Main Menu folder contain sub folders, each representing a main window menu. The other folders group feature specific actions, such
as actions to control the references graph, form editor, etc.

180(261

To modify the key bindings for an action, select the action from the action list. The current key bindings are listed in the Key Bindings list.

Figure: User defined key map

To add an additional key binding, press Add Key Binding or press Edit Key Binding to edit the selection.

Figure: Key stroke dialog

The key stroke dialog controls whether a key binding is already assigned somewhere else. If there is a conflict with another binding, the Conflicts are
shows the names of the actions that are conflicting. The modifier keys Shift, Alt, Ctrl and Command can be used to form the final key binding.

Menu items and tooltips shows the first defined key binding in the list.

Database Connection

Peroperty Description

181(261

Ask When Creating Database Connection If enabled, you will be asked if you want to use the Connection Wizard to create new connections.

Run "Connect All" at Startup
If enabled, the Connect All operation is automatically run when you launch DbVisualizer, connecting
all Database Connections marked as being included in the Connect All operation (see the Database
properties further down for more on this).

Confirm "Disconnect All"
If enabled, a dialog to be displayed before disconnecting all current database connections when using
the Disconnect All operation.

Execution Timeout Value (seconds) Specify here how many seconds after which a database call that locks the GUI will time out

Driver Manager

The Driver Manager searches specified folders for JDBC drivers and helps you make them available for use by DbVisualizer, see the Load JDBC
Driver and Get Connected section for details. In the Driver Manager properties category, you can specify if you want the Driver Manager to run
automatically at start-up, when new files are discovered in the specified driver folders, or when driver related errors are encountered. You can also
specify the folders to search and files to exclude, if any.

Permissions

The Permission functionality is a security mechanism, where you can specify that certain database operations must be confirmed. You configure
permissions per connection mode (Development, Test and Production) for feature areas described in the following sections.

Note: The permission feature is part of DbVisualizer and does not replace the authorization system in the actual database.

SQL Commander Permissions

For the SQL Commander, you can pick the permission type from a drop-down list for each SQL command:

Permission Type Description

Allow This permission type means that you can run the SQL statement without any confirmation

Deny This permission type means that the SQL statement is not executed at all.

Ask
This permission type means that when executing an SQL statement, or a script of statements, the SQL Commander asks you
whether the actual SQL command(s) should be executed.

182(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

Figure: SQL Commander Permissions

Table Data Editing Permissions

The permission types for the inline editor are:

Permission Type Description

Confirm A confirmation window is displayed, and you can accept the operation or cancel it

No Confirm The SQL operation is performed without any confirmation

Figure: Table Data Editor Permissions

Time Zone

In the Time Zone properties category, you can change the time zone for the DbVisualizer process, and thereby how date and time data is interpreted.
DbVisualizer uses the OS time zone by default, which is usually what you want to use.

Changing the time zone is only of interest if you work with a database running with a different time zone than the time zone set on the client where
you run DbVisualizer. One example is when working with a database that uses the UTC/GMT time zone to normalize all date/time data.

File Encoding

In the File Encoding category, you can set which file encoding DbVisualizer uses by default when reading and writing files, e.g., SQL scripts loaded
into the SQL Commander or files with exported data. By default, DbVisualizer uses the default encoding for your operating system, and this is

183(261

typically what you want. You only need to change this setting if you often work with files in another encoding, or if DbVisualizer can not find the
default encoding for your operating system.

Data Formats

Property Description

Date Format
Specifies the date format to use throughout the application (i.e., in grids, forms and during editing). More information
below.

Time Format
Specifies the time format to use throughout the application (i.e., in grids, forms and during editing). More information
below.

Timestamp Format
Specifies the timestamp format to use throughout the application (i.e., in grids, forms and during editing). More
information below.

Numbers Format Specifies how numbers will be formatted.

Decimal Number Format Specifies how decimal numbers will be formatted.

Boolean/BIT Format Specifies the textual representation of boolean values (true/false).

Null String
Specifies the string representation of the null value. This string is the readable form of null and appears in grids, forms,
exports and during editing.

Date, Time and Timestamp formats

The lists for date, time and timestamp format contain collections of standard formats. If these formats are not suitable, you can enter your own format
in the appropriate field. The tokens used to define the format are listed in the right-click menu when the field has focus.

Figure: The date and time right click menu

184(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/toolProps.html#mozTocId854888
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/toolProps.html#mozTocId854888

The complete documentation for these tokens is available at the following web page: SimpleDateFormat.

Number formats

The lists for number and decimal number contain collections of standard formats. If these formats are not suitable, you can enter your own format in
the appropriate field. The tokens used to define the format are listed in the right-click menu when the field has focus, and complete documentation for
these tokens is available at the following web page: DecimalFormat.

Table Data

Property Description

Show Table Row Count
Specifies if the number of rows in a table will be displayed in the header of the table in the Database Objects-
>Data tab. Enabling this property will cause an extra round trip to the database (i.e., a minor performance
penalty)

Highlight Primary Key Columns
Specifies if Primary Key columns will be indicated in the Database Objects->Data tab, Variable Substitution
window, SQL Commander result grids and in the References graph.

Include Variables in SQL

Specifies if the right-click menu operations in the Data tab will create SQL statements that include DbVisualizer
variables or if the generated statements are plain SQL. Letting DbVisualizer generate statements with variables
results in the Variable Substitution window being displayed when these statements are executed in the SQL
Commander.

Max Rows at First Display Set the number of rows that will be fetched for a table in the Data tab when a table is first displayed.

Transaction

Property Description

Pending Transactions at Disconnect Specifies what DbVisualizer does on exit from the application, when the auto commit setting is disabled.

Scripts

Property Description

Default Editor when Double-click Define what target editor should load the file when double-click Bookmark, Monitor or History script files.

Default Editor when Alt+Double-click
Define what target editor should load the file when Alt+double-click Bookmark, Monitor or History script
files.

Monitor

Property Description

Start Monitors Automatically Check to enable start of monitors automatically when database connections are established.

Form Viewer

Property Description

185(261

http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Right Aligned Numbers If enabled, numbers are displayed as right-aligned in the Form Editor/Viewer.

Image Thumbnail Size The number of pixels for the widest side of an image (represented by binary data) when shown in the Data Form Viewer. The value is used to scale the image proportionally. The default is 150.

Grid

Property Description

Auto Resize Column Widths
If Auto Resize is enabled, DbVisualizer automatically sizes each grid column based on the widest cell value.
If Consider Column Header is also enabled, the header widths are also considered when calculating the
column widths.

Show Grid Row Header If enabled, a row header is shown also for read-only result set grids, such as monitoring result set grids.

Max Column Separator Width
This setting is used only when Auto Resize Column Widths is enabled and specifies a maximum visual
column width for grids.

Meaning of setting Max Chars

The Max Chars property in the Database Objects Data tab and in the SQL Commander is used to control
the max number of characters for text values. If the number of characters for a text column is more than this
setting, the column is colored in a light red color and the value is truncated as specified by this property:

• Truncate Values
Truncate the original value to be less then the setting of Max Chars.
Note: This affects any subsequent edits and SQL operations that use the value since it's truncated.
This setting is only useful to save memory when viewing very large text columns.

• Truncate Values Visually
Truncate the visible value only and leave the original value intact. This is the preferred setting since
it will not harm the original value. The disadvantage is that more memory is needed when dealing
with large text columns.

Automatically Show Grid Warnings
When enabled the warning popup in the Grid component is automatically displayed when the Max Rows
setting is exceeded, if columns are truncated or if the loading was interrupted.

Copy

The Copy category groups properties that control the result of using Copy Selection and Copy Selection (With Column Header) via the grid right-
click menu, the corresponding key bindings, and drag and drop.

Property Description

Column Delimiter Specifies the delimiter between columns in a multi column copy

End of Line Delimiter Specifies the new line control characters for multi row copy requests

Colors

The Colors category is used to define alternatnve background, foreground and grid colors for grid components.

Binary/BLOB and CLOB Data

Property Description

186(261

Presentation of Binary/BLOB and CLOB Data
Specifies how binary/BLOB and CLOB data values are represented in grids.
Setting this property to By Value results in performance penalties and the memory
consumption increases dramatically.

Copy/Paste and Drag & Drop of Binary/Blob and CLOB
Data

Specifies what data is transferred for binary/BLOB and CLOB data when copy and
drag.

SQL Editor

The editor category controls various settings specific for the SQL Commander editor.

Property Description

Open SQL
File in
New
DbVisuali
zer
instance

Microsoft Windows only: when enabled and opening a .sql file in Windows it will load into a new SQL Editor in the running
DbVisualizer instance. If disabled and opening a .sql file then it will open in a new DbVisualizer instance.

Recent
Files Limit

Specifies the max number of files listed in the File->Open Recent sub menu.

Confirm
Close of
Unsaved
Editors

If enabled, DbVisualizer asks you whether to save the text in an SQL editor with modified content (any editor; not only editors loaded
from file) when you close the editor.

Set
"Sticky"
for SQL
Editor(s)

If enabled, the Sticky flag is automatically set for all new SQL Editors, which means that the database connection details only can be
changed manually.

Tabs Specifies settings for the tab keyboard key: Tab Size (the number of characters a tab character corresponds to), Whitespace(s) per Tab
(by how many characters to indent when the tab key is pressed), and Expand Tab to Whitespace (if enabled, always insert space
characters when the tab key is pressed).

If Expand Tab to Whitespace is disabled, a tab character is inserted when the tab key has been clicked as many times as it takes to
indent to the value specified by Tab Size, i.e., if Whitespace(s) per Tab is set to 4 and Tab Size is set to 8, clicking the tab key twice
results in a tab character.

Statement Delimiters

Statement delimiters define how a script should be divided into specific SQL statements in the pre-processing phase.

Property Description

SQL Statement Delimiter 1 Defines the character(s) used to delimit one SQL statement from another in a SQL script

SQL Statement Delimiter 2
Defines the additional character(s) used to delimit one SQL statement from another in a
SQL script. If there is no need for more then one SQL statement delimiter, set this one to
the same as delimiter 1.

Allow "go" as Delimiter
Specifies whether go as the first word on a single line should be interpreted as a
statement delimiter.

Begin Identifier Defines the character(s) that identifies the start of an anonymous SQL block.

End Identifier Defines the character(s) that identifies the end of an anonymous SQL block

187(261

SQL Formatting

The SQL formatting category groups properties to control the SQL formatting feature in the SQL Commander. To see the effect of each property,
modify it, press Apply and format the SQL in the SQL Commander.

Auto Completion

These category is used to define the visual appearance of the auto completion popup in SQL Editors.

Property Description

Sort Tables List Enable this to always present tables sorted in the auto completion popup

Sort Columns List Enable this to always present column names sorted in the auto completion popup

Display Automatically Enable this and the auto completion popup is automatically displayed whenever possible

Instant Substitution Enable this and the auto completion feature substitutes directly if there is only one matching entry

Display Delay Specifies the time in milliseconds until the auto completion popup is displayed automatically

Case for Auto Completed Names Specifies whether auto completed names should be inserted in uppercase, lowercase or database default

Comments

Property Description

Single Line Identifier 1 Specifies the character(s) that identifies the beginning of a one line comment

Single Line Identifier 2 Specifies the additional character(s) that identifies the beginning of a one line comment

Block Comment Begin Identifier Specifies the character(s) that identifies the start of a multi line comment block

Block Comment End Identifier Specifies the character(s) that identifies the end of a multi line comment block

Variables

Variables can be used in the SQL executed in the SQL Commander. Before executing an SQL statement or connecting a database connection, a
dialog is displayed, asking for replacement values.

These settings define a character sequence that identifies a variable and another sequence that delimits different parts of a variable.
Example: ${variable}$.

Property Description

Variable Identifier Prefix The start identifier for a variable. Default is ${.

Variable Identifier Suffix The end identifier for a variable. Default is }$.

Variable Delimiter The delimiter used to identify the parts of a variable. Default is ||.

188(261

SQL History

Settings used to control the SQL history feature.

Property Description

Ignore Duplicates and Collect in a Single Entry
When enabled and executing the same SQL in sequence in the SQL Commander then only one
history entry is created. The Count field is increased for each execution.

Ignore Error Entries Enable to skip creating history entries when execution results in error(s)

Ignore SQL (regex) Don't create history entry if the SQL match this regular expression

Proxy Settings

The Check for Updates feature requires HTTP access to the internet. If you access the internet through a proxy, you must specify the proxy settings
in order to use this feature.

Property Description

Proxy Type Specifies the type of proxy you use: HTTP or SOCKS

Proxy Host Specifies the name or the IP address for the proxy host

Proxy Port Specifies the proxy port number

Proxy User If the proxy requires authentication, specifies the proxy user account name. Leave blank for a non-authenticating proxy

Proxy Password
If the proxy requires authentication, specifies the password for the proxy user account name. Leave blank for a non-
authenticating proxy

Database Settings

Database settings extends the General settings with properties that may have different values per supported database type. You specify the
database type for a connection by choosing the appropriate type from the Database Type list in the Connection tab. If there is no matching entry,
use the Generic database type.

The database type specific properties in the Tool Properties apply to all connections of the specific database type. You can also override these
properties in the Connection Properties tab for a specific connection, in case you need to use different values for connections of the same database
type.

189(261

Figure: The Tool Properties window showing the tree with Database categories

The following properties are displayed when selecting a database type in the tree.

Property Description

Connection Mode

Specifies the connection mode for the database connection: Development, Test or Production.
Permissions are based on connection mode. For the Test and Production modes, DbVisualizer displays
a border around areas where database content can be edited, to bring your attention to the fact that you
are connected to a database where others may be affected by your changes.

Show only default Database or Schema Enable this if you only want the default database or schema listed in the database objects tree.

Connect when "Connect All"
The Connect All feature allows you to connect to multiple database connections with a single click.
Enable this property to include database connections of this type when using the Connect All feature.

Authentication

Property Description

Save Password
If enabled, DbVisualizer saves the password for the database connection between invocations. (The password is
saved encrypted)

Clear Password at Disconnect If enabled, the password is cleared at disconnect

Require Userid If enabled, you are asked to enter a userid whenever the database connection is established

Require Password If enabled, you are asked to enter a password whenever the database connection is established

190(261

Delimited Identifiers

Delimited identifiers are identifiers which do not need to follow the rules of regular database object identifiers. Usually, delimited identifiers are used
when you need to use SQL reserved words, spaces and mixed case sequences in an identifier.

Property Description

Begin Identifier Defines the start character for a delimited identifier. Normally, this is a double quote as in "...".

End Identifier Defines the end character for a delimited identifier. Normally, this is a double quote as in "...".

Scripting Enable this to use delimited identifiers in the Scripting features

Auto Completion/Query Builder Enable this to use delimited identifiers in the auto completion and query builder features

Export Enable this to use delimited identifiers in the Export features

Qualifiers

These properties control whether table and column names should be qualified when DbVisualizer generates SQL statement.

Property Description

Qualify with Schema/Database: Scripting
Enable this to qualify object names with the schema/database in the Scripting
features

Qualify with Schema/Database: References/Navigator Graphs
Enable this to qualify object names with the schema/database in the graphs
shown in the References and Navigator tabs.

Qualify with Schema/Database: Auto Completion/Query Builder
Enable this to qualify object names with the schema/database in the auto
completion and query builder features.

Qualify with Schema/Database: Export
Enable this to qualify object names with schema/database in the Export
Schema and Export Table features

Qualify Columns: Auto Completion/Query Builder

Enable this to qualify column names with the table name in the auto
completion and query builder features.
Note: When you specify a table name alias, it is always used as a column
name qualifier, regardless of this property setting.

Physical Connection

The Physical Connection category controls whether DbVisualizer should use only one physical connection with the database server or if physical
connections will be acquired when needed. The Use Single Shared Physical Database Connection is disabled by default. If enabled then briefly it
means that whenever establishing a connection DbVisualizer will assign one physical database connection for the objects tree and one per every
SQL editor in the SQL Commander. The physical connection for a SQL editor is not acquired directly when the editor is created but rather when
doing the first execute in it.

If enabling Use Single Shared Physical Database Connection then only one physical connection will be used for that database. DbVisualizer will
then share the physical connection among all features communicating with the database. If using a single physical connection and auto commit is off
then a confirmation dialog may appear when launching features that require transaction control and if there are uncommitted changes in the
database.

Transaction

Property Description

191(261

Auto Commit
Defines if each executed SQL statement will be auto committed or not. This setting
applies for all SQL statements that are executed in the SQL Commander.

Ask when Auto Commit is Off: When Uncommitted Updates
If auto commit is off then this setting when enabled will show a confirmation dialog
if there are uncommitted changes (updates, inserts, deletes, etc) in the SQL
Commander.

Ask when Auto Commit is Off: Always
If auto commit is off then this setting when enabled will show a confirmation dialog
if statements (not select) has been executed in the SQL Commander without
commit/rollback being invoked.

Transaction Isolation
Attempts to change the transaction isolation level for all database connections.
Note: If this property is changed during a transaction, the result is JDBC driver
specific.

Commit Batch Size
Specifies after how many rows DbVisualizer commits the transaction when saving
a batch of changes in the table data editor and when inserting rows in table data
import.

SQL Statements

This category controls the SQL templates that DbVisualizer uses internally throughout the application. Each SQL template is composed of the
standard SQL and variables. Variables are identified with ${...}$. DbVisualizer relies on a number of predefined variables, listed in the SQL
Templates area right-click menu:

Figure: All predefined variables

A specific predefined variable can be used in one or more of the SQL templates. Using a variable that is not valid for a specific SQL statement will
result in the variable appearing as-is when the statement is executed.

There is normally no reason to modify the SQL templates, nor the variable identifier or delimiter settings. There might however be circumstances
when edits are needed, for instance to modify the appearance of the where clause or the list of columns.

192(261

Property Description

SELECT ALL Command used when selecting all rows for a table

SELECT ALL WHERE Command used when selecting some rows for a table

SELECT COUNT Command used to get the number of rows in a table

INSERT INTO Command used to insert a new row into a table

UPDATE WHERE Command used to update an existing row in a table

DELETE WHERE Command used to delete a specific row in a table

DROP TABLE Command used to drop a specific table

CREATE TABLE Command used to create a new table with an optional primary key

CREATE INDEX Command used to create an index for a specific table

Monitor Row Count Command used to get the number of rows in a table and the current time stamp

Monitor Row Count Change
Command used to get the row count difference in a table compared to the
previous execution. The calculated row count and the current time stamp is
returned

Connection Hooks

Connection hooks defines optional SQL commands that are sent to the database at connect and just before disconnect. They are typically used to
initialize the database session with custom settings and to clean up various resources at disconnect.

Property Description

Run SQL at Connect Defines the SQL to be executed just after the connection has been established

Run SQL at Disconnect Defines the SQL to be executed just before the connection will be disconnected

Objects Tree Labels

Property Description

Custom Object Tree Labels
Here you can define custom tree labels for the data nodes in the database objects tree. The Object Type must match
the corresponding type in the actual database profile, see more below.

The label for a data node (e.g., a table or view node, as opposed to a node that just groups nodes, such as the Tables node) is typically the name of
the database object the node represents, e.g., the table or view name. In some cases, you may want to extend the label to include other information,
such as the name of the schema that the object belongs to. To do this, you can use a custom tree label, defined in the Objects Tree properties
category.

You need two pieces of information to define a custom label: the Object Type name for the data node, and the names of the variables that hold the
information you want to use in the label. You find this information in the <ObjectsTreeDef> element in the database profile XML file (described in
detail in the Database Profile Framework section) for the database type you want to modify. Using the database profile for the JavaDB/Derby
database type as an example, a stripped down version of the <ObjectsTreeDef> element looks like this:

 <ObjectsTreeDef id="derby">

193(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

 <GroupNode type="Schemas" label="Schemas">
 <DataNode type="Schema" label="${derby.getSchemas.Schema}">
 <SetVar name="schema" value="${derby.getSchemas.Schema}"/>
 <SetVar name="schemaId" value="${derby.getSchemas.Schema Id}"/>
 [...]
 <GroupNode type="Tables" label="Tables">
 <DataNode type="Table" label="${derby.getTables.Table Name}" isLeaf="true">
 <SetVar name="objectname" value="${derby.getTables.Table Name}"/>
 <SetVar name="rowcount" value="true"/>
 <SetVar name="acceptInQB" value="true"/>
 [...]
 </DataNode>
 </GroupNode>
 [...]
 </DataNode>
 [...]
 </GroupNode>
 [...]
 </ObjectsTreeDef>

In this example, there is one <DataNode> element with a type attribute set to Schema, with a nested <DataNode> element with a type attribute
set to Table. These two elements represent data nodes, for the schema and table node, respectively, and the type attribute value is the Object
Type name you need to bind the custom label to an object type.

Each <DataNode> element also has a number of nested <SetVar> elements, declaring the variables you can use in the custom label value. All
variables declared for the object type node and those declared for a parent <DataNode> element can be used in the label. So, if you want the label
for table nodes in the tree to show both the schema name and the table name, you add a custom label declaration like this:

Figure: Custom label declaration

SQL Editor

Property Description

Set Current Schema If enabled, changing the schema in the SQL Commander also changes the default schema for the database connection, so
that unqualified table names in any SQL statement are associated with the selected schema. If this property is not enabled,
changing the schema only affects the schemas used for auto-completion.
Note: Only a few databases supports setting the default schema for an opened connection. This property is only shown for

194(261

database types that support it.

Query Builder

Property Description

Query Builder Auto-Join Properties
With auto-join enabled, the Query Builder automatically joins tables as they are included in the query,
based on the specified column matching rule: FK/PK declarations or columns with matching names in
different tables.

Generate JOIN clauses in Query Builder

Specifies whether the Query Builder generates joins as JOIN clauses or WHERE conditions.
JOIN clause:

SELECT *
FROM HR.EMPLOYEES emp
INNER JOIN HR.DEPARTMENTS dept
ON (emp.DEPARTMENT_ID = dept.DEPARTMENT_ID)

WHERE condition:

SELECT *
FROM HR.EMPLOYEES emp,
 HR.DEPARTMENTS dept
WHERE (emp.DEPARTMENT_ID = dept.DEPARTMENT_ID)

Database Specific settings

DbVisualizer provides more support for some databases than for others, and so requires extended configuration capabilities for these databases.

Data Types (Oracle)

With Oracle, the DATE data type should sometimes be handled as TIMESTAMP. Enable Handle DATE as TIMESTAMP and DbVisualizer will
convert DATE into TIMESTAMP objects.

Data Types (DB2 and JavaDB/Derby)

DB2 and JavaDB/Derby supports a data type named CHAR FOR BIT DATA. If you want to see values of this type as text, enable this property.

Explain Plan (Oracle, SQL Server and DB2)

The explain plan feature supported for Oracle, SQL Server and DB2 can be configured to highlight certain threshold levels.

Property Description

Color Critical Nodes If enabled, critical nodes in the explain plan are highlighted.

Critical Threshold Specifies the threshold for when a node should be handled as critical

Warning Threshold Specifies the threshold for when a node should be handled as a warning

195(261

Explain Plan (Oracle)

The explain plan feature for Oracle can be configured to define the management of the underlying plan table in which the explain plan result is
stored.

Explain Plan (DB2)

The explain plan feature for DB2 can be configured to define the management of the underlying plan tables in which the explain plan result is stored.

Objects Tree (Oracle)

Property Description

Show Empty Schemas
If disabled, only schemas that contain database objects are shown in the tree.
Note: Only disable this if you have DBA permissions, otherwise no schemas
as listed,

System View Prefix

Select here whether the database profile for Oracle should retrieve database
information from the DBA or ALL system tables.
Note: If choosing DBA, make sure the appropriate privileges are granted for
the user you are connecting as.

196(261

Export and Import

Introduction

You can export both schema objects and data from DbVisualizer to a file. With the Export Schema feature, you can export the DDL and/or data for all
or selected objects in a database schema. The Export Table feature offers the same options as Export Schema but for a single table.

The Export Data feature writes different types of data presented in DbVisualizer, such as text and graphs, to a file. The Export Data Wizard dialog
looks different depending on whether grid, graph or chart data is being exported.

The following sections describe the options available for each of these cases. There are major differences between DbVisualizer Free and
DbVisualizer Personal when exporting objects and data. This document explains the complete functionality in the Personal edition, some of which is
not available in DbVisualizer Free.

Exporting very large result sets using the standard Export Data feature may fail due to running out of memory, since all data must first be presented
in DbVisualizer. The @export client side command in the SQL Commander solves this problem, since it exports the data on the fly while it is fetched
from the database.

The Import Table Data feature reads data stored in CSV (Character Separated Values) format from files.

Export Schema

Sometimes you may need to copy a schema from one database to another, or compare two similar schema to see how they differ. The Export
Schema feature can help you with tasks like these. This feature writes the DDL and/or the table data for all or selected database objects in a schema
to a file or another destination.

197(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515

Figure: The Export Schema dialog

You launch the Export Schema dialog by selecting the schema you want to export in the object tree and choosing Export Schema either from the
right-click menu or from the Actions menu.

The following sections describe the different options you can use. When you are happy with all the settings, click Export to start the process. Log
messages are displayed during the export process.

Output Format

You can export the schema objects in a number of formats. With the SQL or XML formats you can export the DDL for all supported object types as
well as the data for tables, while the other formats only apply to table data.

If you choose SQL, the objects are exported as DDL statements (CREATE TABLE, CREATE VIEW, etc.) and, if you choose to include table data, as
INSERT statements. This is the format to use if you want to recreate the schema somewhere else.

198(261

If you want to compare one schema to another, you may want to pick the XML format instead. The object declarations are then exported as XML
documents, like this example:

<?xml version="1.0" encoding="MacRoman"?>
<TABLE>
 <SCHEMA>
 HR
 </SCHEMA>
 <NAME>
 JOBS
 </NAME>
 <COLUMNS>
 <COLUMN>
 <NAME>
 JOB_ID
 </NAME>
 <DATA_TYPE>
 VARCHAR(10)
 </DATA_TYPE>
 </COLUMN>
 <COLUMN>
 <NAME>
 JOB_TITLE
 </NAME>
 <DATA_TYPE>
 VARCHAR(35)
 </DATA_TYPE>
 </COLUMN>
 <COLUMN>
 <NAME>
 MIN_SALARY
 </NAME>
 <DATA_TYPE>
 INTEGER
 </DATA_TYPE>
 <NULLABLE/>
 </COLUMN>
 <COLUMN>
 <NAME>
 MAX_SALARY
 </NAME>
 <DATA_TYPE>
 INTEGER
 </DATA_TYPE>
 <NULLABLE/>
 </COLUMN>
 </COLUMNS>
 <CONSTRAINTS>
 <CONSTRAINT>
 <NAME>
 JOB_ID_PK
 </NAME>
 <TYPE>
 PRIMARY KEY
 </TYPE>
 <COLUMNS>
 <COLUMN>
 <NAME>
 JOB_ID
 </NAME>
 </COLUMN>
 </COLUMNS>
 </CONSTRAINT>
 <CONSTRAINT>
 <NAME>

199(261

 JOB_TITLE_NN
 </NAME>
 <TYPE>
 CHECK
 </TYPE>
 <EXPRESSION>
 "JOB_TITLE" IS NOT NULL
 </EXPRESSION>
 </CONSTRAINT>
 </CONSTRAINTS>
</TABLE>

The encoding choice specifies which character encoding to use for the data when you export to a file, and it is also used as the encoding in XML
header when you use the XML format. The default choice is based on your systems default encoding.

The table data is exported in the same format as described for Export Grid Data below.

Output Destination

Destination Description

File This option outputs the data to the named file.

SQL Commander This option writes the export data to an SQL Commander editor. It is primarily useful when exporting with the SQL output format.

Clipboard
Exporting to the (system) clipboard is convenient if you want to use the exported data in another application without the extra
step of exporting to file first.

Object Types

In the Object Types area, you select the object types or individual objects you want to export. Checking the check box for a type, e.g. Tables, selects
all objects of that type. Expand the type node to select individual objects instead, e.g. just a few tables.

Options

The Options area contains different options depending on the selected Output Format. Most options are the same as for Export Grid Data, but for the
SQL format you can also choose to Generate CREATE and DROP Statements and to Include Table Data and Table Indexes for the exported tables.
Similarly, with XML format you can choose to include the DDL, table indexes and table data.

If you choose to include table data, you can also change how the values for different data types are formatted in the output by clicking the Data
Format Settings button.

200(261

Figure: The Data Format Settings dialog

Settings

Clicking the Settings button reveals a a menu with options for saving and loading settings to and from a file.

• Save as Default Settings
Saves all format settings as default. These are then loaded automatically when DbVisualizer is started

• Use Default Settings
Use this choice to initialize the settings with default values

• Load
Use this choice to open the file choose dialog, in which you can select a settings file

• Save As
Use this choice to save the settings to a file

• Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL Commander to define the settings for
the @export editor commands.

Logging

By default, log messages about the export process are shown in the Log tab. If you instead want to write the messages to a file, open the Log tab
and specify the file before clicking Export.

Export Table

When you select a table node in the objects tree, you can open the Export Table dialog from the right-click menu or the Actions menu. It has exactly
the same options as Export Schema, except that it only exports the selected table.

201(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

Figure: The Export Table dialog

Export Grid data

The Export wizard is launched using the Export button in the grid toolbar () or from the grid's right-click menu. If you want to export just some of
the grid rows and columns instead of all data in the grid, select the data to export and launch the wizard with the Export Selection right-click menu
choice.

Settings page

The first wizard page is the Settings page, containing general properties for how the exported data should be formatted. All settings in the settings
page can be saved to a file for later use in the export wizard or in the SQL Commander when exporting result sets using the @export editor
command.

202(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

Figure: The grid export wizard

Read the sections below for detailed information about each field and the settings you can use.

Output Format

Grid data can be exported in the following formats.

Format Description

CSV The CSV format (Character Separated Values) is used to export the grid of data to a file in which each column is separated with one or
more characters. You may also specify the row delimiter (aka newline sequence of characters).

5,Hepp,59248
15,Hopp,41993

203(261

16,Hupp,44115

The above example use a "," as the column delimiter and a "\n" sequence as the row delimiter (invisible above).

HTML The data is exported in HTML format using the <TABLE> and associated tags.

SQL

The SQL format simply creates an SQL INSERT statement for each row in the grid. It also uses the column names from the grid to define
the column list in the SQL statement.

insert into table1 (Column1, Column2, Column3) values (5, 'Hepp', 59248);
insert into table1 (Column1, Column2, Column3) values (15, 'Hopp', 41993);
insert into table1 (Column1, Column2, Column3) values (16, 'Hupp', 44115);

XML

The XML format is handy when importing or using the exported data in an XML enabled application. The default structure of the XML
format is:

<ROWSET>
 <ROW>
 <Column1>5</Column1>
 <Column2>Hepp</Column2>
 <Column3>59248</Column3>
 </ROW>
 <ROW>
 <Column1>15</Column1>
 <Column2>Hopp</Column2>
 <Column3>41993</Column3>
 </ROW>
 <ROW>
 <Column1>15</Column1>
 <Column2>Hupp</Column2>
 <Column3>44115</Column3>
 </ROW>
</ROWSET>

Alternatively, you can choose between the commonly used XmlDataSet and FlatXmlDataSet formats.

XLS Use the XLS format if you want to work with the exported data in Microsoft Excel or a compatible spreadsheet application, such as Open
Office.

Encoding

The encoding choice specifies which character encoding to use for the data. It is also used to set the encoding in the HTML and XML headers. The
default choice is based on your systems default encoding.

Data Format

The data format settings define how the data for each of the data types will be formatted.

Quote Text Data

Defines whether text data should appear between quotes. Use the Duplicate Embedded option to properly deal with text that contains the quote
character when you export as SQL or CSV.

204(261

Options

The options section is used to define settings that are specific for the selected output format.

CSV

Figure: CSV specific export options

HTML

Figure: HTML specific export options

SQL

Figure: SQL specific export options

205(261

XML

Figure: XML specific export options

XLS

Settings

Clicking the Settings button reveals a a menu with options for saving and loading settings to and from a file:

• Save as Default Settings
Saves all settings as default. These are then loaded automatically when DbVisualizer is started

• Use Default Settings
Use this choice to initialize the settings with default values. Some of the settings will be fetched from the general tool properties dialog.

• Load
Use this choice to open the file chooser dialog, in which you can select a settings file

• Save As
Use this choice to save the settings to a file

• Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL Commander to define the settings for
the @export editor commands.

Data page

Clicking the Next button in the wizards moves you to the Data page. Use the columns list to control which columns to export and how to format the
data for each columns. The list is exactly the same as the column headers in the original grid, i.e., if a column was manually removed from the grid
before launching the Export wizard, then it will not appear in this list.

206(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

Figure: The grid export wizard

The Table Rows fields show you how many rows are available and let you specify the number of rows to export. This setting along with the Add
Row button is especially useful when you use the test data generation feature described in the next section.

Here follows information about the columns in the list.

Field Description

Export Defines whether the column will be exported or not. Uncheck it to ignore the column in the exported output.

Name
The name of the column. This is used if exporting in HTML, XML, XLS or SQL format. Column headers are
optional in the CSV output format.

Type
The internal DbVisualizer type for the column. This type is used to determine if the column is a text column
(i.e., if the data should be enclosed by quotes or not).

Text
Specifies if the column is considered to be a text column (this is determined based on the type) and so if the
value should be enclosed in quotes.

Value
The default $$value$$ variable is simply be substituted with the column value in the exported output. You
can enter additional static text in the value field. This is also the place where any test data generators are
defined.

Generate Test Data

The test data generator is useful when you need to add random column data to the exported output.

207(261

The Value field specifies the data to be in the exported output. By default, it contains the ${value}$ variable, which is simply replaced with the real
column value during the export process. You can also add static values before and after the ${value}$ field, to be exported as entered.

Alternatively, you can use test data generator variables in the Value field. The choices are available in the right-click menu when you edit the Value
field.

Figure: Right-click menu with the test data generator functions

Function Name Function Call Example

Generate random number ${var||randomnumber(1, 2147483647)}$ Generates a random number between 1 and
2147483647

Generate random string of random size ${var||randomtext(1, 10)}$ Generates random text with a length
between 1 an 10 characters

Generate random value from a list of values ${var||randomenum(v1, v2, v3, v4, v5)}$ Picks one of the listed values in random
order

Generate sequential number ${var||number(1, 2147483647, 1)}$

Generates a sequential number starting from
1. The generator re-starts at 1 when
2147483647 is reached. The number is
increased with 1 every time a new value is
generated.

Test data generator example

Here is an example of how to use the test data generators to try out planned changes to the data. Consider this initial data:

208(261

Figure: Sample of grid data

After the changes, the JOB column should not appear in the output and the new JOB_FUNCTION should contain abbreviated job function codes. To
test this, we simply uncheck the Export field for JOB entry and set the Value for the JOB_FUNCTION to use the Generate random value from a
list of values function.

Figure: Customized columns list with a generator function

Previewing the data (or exporting it) in CSV format results in this:

209(261

Figure: Result of generated test data

Preview

The third wizard page is the Preview page, showing the first 100 rows of the data as it will appear when it is finally exported. This is useful to verify
the data before performing the export process. If the previewed data is not what you expected, just use the back button to modify the settings.

Output Destination

The final wizard page is the Output Destination page. The destination field specifies the target destination for the exported data.

Figure: The output destination and final page for grid export

210(261

Destination Description

File This option outputs the data to a named file.

SQL Commander This option writes the export data to an SQL Commander editor. It is primarily useful when exporting with the SQL output format.

Clipboard
Exporting to the (system) clipboard is convenient if you want to use the exported data in another application without the extra
step of exporting to file first. CSV formatted data can even be pasted into a spreadsheet application such as Excel or StarOffice,
and the cells in the grid will appear as cells in the spreadsheet. Read more about the CSV format in the Format section.

Export Text data

The wizard for exporting result sets in Text format is very simple, as it is only possible to specify a file for the exported output. The dialog looks
slightly different on different platforms.

Figure: Export window for text format result sets

Export Graph data

When you export a References or Navigator graph, it is exported with the same zoom level as it appears on the screen. The Export wizard pages
when exporting a graph looks like this:

211(261

Figure: Export window for graphs

The graph can be exported to a File in the JPEG, GIF, PNG, SVG or PDF formats.

Export Chart data

The options when exporting charts are similar to those for graphs, but in addition you can set the size and orientation to use for the chart in the file.

Figure: Export window for charts

A chart can be exported to a File in the JPEG and PNG formats. The optional Layout settings are used to control orientation and size of the image.
The default width and height are the same as the size of the chart as it appear on the screen. The Size list when clicked shows a list of well known
paper formats. The Width and Height are changed to match the selected size. Whether setting the width and height manually or selecting a
predefined size, the exported image is scaled accordingly.

Import Table Data

The Import Table Data feature is used to import files containing data organized as rows of columns with separator characters between them, such as
CSV files.

Note: The first row in the source file can be used to name the columns.

212(261

The destination for the imported data can be a database table or a grid in DbVisualizer. The grid option is convenient for smaller files, as the features
available for a DbVisualizer grid can then be used to do various things with the data. An example is that a CSV file can easily be converted into an
XML file or a HTML document by importing the data to a grid and then use the Export Wizard in the grid to output the grid data in the desired format.

The Import Wizard can be used in two ways. To import data into an existing table, select the table node in the objects tree and launch the wizard via
the right-click menu or via the Actions menu.

Figure: Import Table Data action in the right-click menu for a table object

If you instead want to create a new table for the imported data, select the Tables node in the objects tree and then launch the wizard.

Figure: Import Table Data action in the right-click menu for the Tables object

Source File

In the first wizard page, select the source file to import and then click the Next button.

213(261

Figure: The Source File import wizard page

Settings

In the Settings page, you specify how the data in the file is organized. The Data section at the bottom of the page shows a preview of the parsed
data in the Grid tab and the original source file in the File tab. If a row in the Grid tab is red, it indicates that the row will be ignored during the import
process. This happens if setting any of the Options settings results in rows not being qualified.

In the Delimiters section, define the character that separates the columns in the file. If you enable Auto Detect, DbVisualizer tries the following
characters:

• comma ","
• tab "TAB"
• semicolon ";"
• percent "%"

Use the Options section to further define how the data should be read.

214(261

Figure: The Settings wizard page

The following shows the preview grid with some rows in red. The reason is that the Skip First Row(s) and Skip Rows Starting With are set, i.e.,
the first two rows and the rows starting with 103 will not be imported.

215(261

Figure: The Settings wizard page

Data Formats

The Data Formats page is used to define formats for some data types. The first row in the preview grid contains a data type drop-down lists.
DbVisualizer tries to determine the data type for each column by looking at the value for the number of rows specified as Preview Rows. If this data
type is incorrect, use the drop-down lists to select the appropriate type.

216(261

Figure: The Data Formats wizard page

The following is displayed when selecting the drop-down box in the preview grid.

Figure: The data type drop down

217(261

Import Destination

The Import Destination page provides two options: Grid and Database Table. The Grid choice is used to import the data into a grid that will be
presented in its own window in DbVisualizer.

When the Database Table choice is selected, the page shows information about the table in which the data will be imported.

If you are importing into an existing table, the Map Table Columns with File Columns grid shows the columns in the selected database table and the
columns in the source file.

DbVisualizer automatically associates the columns in the source file with the columns in the target table in the order they appear. If the columns
appear in a different order in the file than in the table, but they are named the same, you can use the auto-mapping menu in the upper right corner of
the Map Table Columns with File Columns grid to automatically map the columns by name.

Figure: The auto-mapping menu for import into an existing table

If the column names are different between the file and the table and also appear in different order, you can manually map them using the drop-down
lists in the File Column Name field. Choose the empty choice in the columns drop-down to ignore the column during import.

218(261

Figure: The column mapping drop down

When you import into a new table, you are presented with a field for the table name and a number of tabs for column and constraint declarations.
The Columns tab is filled out based on the source data and the data types from the Data Formats page.

219(261

Figure: The table declaration form for importing into a new table

Note that it is not always possible to find a database specific type for the data format specified on the Data Format page. You must then pick the
correct type from the Data Type drop-down menu. The size for string column types may also need to be adjusted. By default, the size is set to the
maximum number of characters found for the column in the number of rows specified as Preview Rows. You can ignore certain columns by removing
them in the Columns tab. Keys and other constraints can be created using the other tabs.

You can go back to the Data Format page and increase the Preview Rows value if you believe that it will help DbVisualizer to pick better defaults. If
you do so, you need to click the Reload button when you come back to this page to rescan the source data and get new default values.

Import Process

The last wizard page is used to start and monitor the import process. Here you can select whether all rows in the source file should be imported or
only a portion. You can also specify that you want to log to the GUI or to a file, and that you want keep the window open when the import is
completed, so that you can see the log messages when logging to the GUI. If you want to stop the processing on the first error, check the Stop on
Error check box.

If any errors occur during the import process, error messages are presented in the log and the window stays open regardless of the Keep Window
after Import setting.

220(261

Figure: The import process page

Exporting and Importing Binary/BLOB and CLOB Data

Columns declared as Binary/BLOB and CLOB can be exported and imported using DbVisualizer as SQL or CSV files. The data for each such cell is
stored in a separate file, referenced from the SQL or CSV file as a DbVisualizer variable. Here's an example of an SQL INSERT statement with a
Binary/BLOB variable:

insert into "BLOB_TEST" ("COL1") values (${data1-0||||BinaryData||noshow vl=file}$);

Exporting Binary/BLOB and CLOB Data

All of the export dialogs described earlier in this section (Export Schema, Export Table, and Export Grid) can be used to export Binary/BLOB and
CLOB data. You enable this by choosing File as the data format for Binary/BLOB and/or CLOB data. Optionally, you can specify the directory for
the data files. If you do not specify a directory, the operating system's default directory for temporary files (e.g. C:\TEMP or /tmp) is used.

221(261

Figure: Data format File for export of Binary/BLOB and CLOB data

Importing Binary/BLOB and CLOB Data

If you have exported Binary/BLOB and CLOB data as an SQL script, you just run the script in the SQL Commander to import it. When the SQL
Commander encounters a variable that refers to a file, it reads the file and inserts the content as the column value.

If you exported to a CSV file, use the Import Table Data feature to import it. On the Data Format page, ensure that the format for the source file
column is set to BLOB or CLOB.

Figure: Data format BLOB for import of Binary/BLOB data

Using Variables and Exporting to Multiple Files

You can use some of the pre-defined DbVisualizer variables (${dbvis-date}$, ${dbvis-time}$, ${dbvis-timestamp}$ and ${dbvis-object}$) in all
fields that holds free text (e.g. title and description fields) and as part of the file name in all export dialogs.

Use the ${dbvis-object}$ variable as part of the file name in Export Schema if you want to export the DDL and/or data to a separate file for each
object. The variable is replaced with the object type and object name, e.g. ${dbvis_object}$.sql becomes table_COUNTRIES.sql for a table named
COUNTRIES.

222(261

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId622224

Database Profile Framework

Introduction

This document and the Database Profile Framework in general is appropriate only when using the licensed DbVisualizer Personal edition.

This document explains the database profile framework which is the base for how DbVisualizer presents information in the Database Objects tree
and in the Object View. In addition, it is also used to define object actions, such as drop, rename, compile, create, comment, alter, etc.

What features in DbVisualizer relies on the database profile?

One of the most important and central features in DbVisualizer is the database objects tree, used to navigate databases, and the object view,
showing details about specific objects. The general problem exploring any database is that they are all different with respect to the information
describing what's in the database (also called system tables or database meta data). This basically means that it's rather complex to implement a
multi-database support product, such as DbVisualizer, since each database must be handled specifically. All databases also support different object
types, apart from the most common ones, such as table, view, index, etc.

The database profile framework is used to simplify the process of defining what information DbVisualizer will display and operate on for a specific
database. Technically, a database profile is an XML document with all of the logic, structure and actions easily mapped to the visual components in
DbVisualizer. Another great benefit of separating the database specific logic from the implementation of DbVisualizer is that anyone with some
degree of domain knowledge can create a database profile. All that is needed is a text editor (preferably with XML support) and some ideas of what
should be the final result.

A great source for inspiration (except for this document) is all the existing database profiles that comes with DbVisualizer. All database profiles are
(and must be) stored in the DBVIS-HOME/resources/profiles directory (this path is OS dependent).

The following figure illustrates which features in DbVisualizer are controlled by the database profile.

223(261

Figure: What the database profile controls in DbVisualizer

The red box at the left shows the database objects tree. This tree is used to navigate the objects in the database. Selecting an object in the
tree shows the object view (blue box) for the selected object type. An object view may have several data views (green), showing object information.
DbVisualizer shows these as labeled tabs. The green box in the screenshot shows the content of the data view labeled Columns. The type of
viewer that is presenting the data in the screenshot is the grid viewer. Read more about all data viewers in the Viewers section.

Common to both the database objects tree and the object view are the SQL commands that are used to fetch the information from the database.
The associated SQL is executed by DbVisualizer whenever a node in the tree is expanded (to expose any child objects) or when a node is selected
(to fill the object data views).

Right-clicking the mouse on an object in the tree or clicking the Actions button in the object view shows a menu with all valid actions for the selected
object. These are also defined per database profile and object type. Read more about the capabilities of actions in the Definition of user actions
section.

How does DbVisualizer know what database profile to use?

DbVisualizer automatically load the appropriate database profile (XML file) based on the following:

224(261

1. The Database Type for the database connection is matched with the information in the DBVIS-HOME/resources/database-
mappings.xml file to find out if there is a database profile available. If it finds one, it is used.

2. If there is no matching profile, the generic profile is used. This is very basic profile and shows only rudimentary information about the
objects in the database. This is also the profile used in the DbVisualizer Free edition for all databases.

A specific database profile can be selected manually for a database connection. This is done in the database connection properties. Manually
choosing a profile requires that the profile supports the actual database. If it doesn't, various errors will be reported once the database objects tree is
explored. (Whenever the profile is changed, you must reconnect the database connection).

The name of the loaded profile is listed in the Connection tab status bar when the connection has been established.You can click the profile link to
display the Database Profile list.

Figure: The status bar in the Connection tab when connected

XML structure

The mapping from the visual components in the user interface described earlier and the element definitions in the XML file is, briefly, as follows:

• The database objects tree (green box) is described by the ObjectsTreeDef root element. (The Database Connections node is mandatory
and its appearance cannot be controlled by the profile).

• The object views (green and blue boxes) are described by the ObjectsViewDef root element.
• The commands used to execute the SQL to get the information for ObjectsTreeDef, ObjectsViewDef and optionally ObjectsActionDef

definitions are defined by the Commands root element.
• All Actions for an object are defined in the ObjectsActionDef root element. (Actions are optional).

The XML for a database profile is quite simple, but there are a few things that need to be highlighted. All database connections loads a database
profile from an XML file. If there is no matching database profile, the generic profile is used. This profile uses the standard JDBC metadata calls in
order to obtain information about the structure and objects in the database. The generic profile is not one XML file, as the database specific profiles
are, but instead four files:

225(261

• generic-commands.xml
• generic-actions.xml
• generic-tree.xml
• generic-view.xml

All these files a referred in the generic.xml file via include statements, i.e., each of the above files are included in the generic.xml file when it is
loaded. The reason for this file organization is that the four files above can also be included and extended in a specialized profile. See later for more
information.

The XML structure used to represent the database profile is as follows (click on the link to read more about each specific section):

• Commands
Defines the SQLs for the ObjectsTreeDef, ObjectsViewDef and optionally ObjectsActionDef.

• ObjectsActionDef (optional)
Defines actions for object types.

• ObjectsTreeDef
Defines the structure and what objects should be visible in the objects tree.

• ObjectsViewDef
Defines the object views for a specific object type.

XML skeleton

The following is a minimal database profile XML file, showing its structure.

<?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd" [
 <!ENTITY generic-commands SYSTEM "generic-commands.xml">
 <!ENTITY generic-view SYSTEM "generic-view.xml">
]>
<DatabaseProfile desc="Profile for Sybase ASE"
 version="$Revision: 12068 $"
 date="$Date: 2010-04-21 13:59:29 +0200 (Ons, 21 Apr 2010) $"
 minver="6.5.7">
<!-- === -->
<!-- Definition of the commands -->
<!-- === -->
 <Commands>
 &generic-commands;
 ...
 </Commands>
<!-- === -->
<!-- Definition of the object actions that are used by the tree -->
<!-- === -->
 <ObjectsActionDef>
 ...
 </ObjectsActionDef>
<!-- === -->
<!-- Definition of the database objects tree structure -->
<!-- === -->
 <ObjectsTreeDef id="sybase-ase">
 ...
 </ObjectsTreeDef>
<!-- === -->
<!-- Definition of the database objects views -->
<!-- === -->
 <!-- Include the generic-view -->
 &generic-view;
 <ObjectsViewDef id="sybase-ase" extends="generic">
 ...
 </ObjectsViewDef>
</DatabaseProfile>

The name of the XML file (sybase-ase) and the values for the id attribute for the ObjectsTreeDef and ObjectsViewDef elements must be the same.

226(261

The first rows in the XML defines external dependencies and their URIs. The DOCTYPE identifier defines the DTD that is used to validate the XML.
The ENTITY identifiers lists URIs for external references. In this case they identify the generic-commands.xml and generic-view.xml files. They
can then be referenced in the XML as &generic-commands; and &generic-view;, which simply means that the related XML files are included in the
final document when the profile is loaded.

The root of the database profile is the DatabaseProfile element. Continue to the next sections for information about the elements forming the
database profile.

Tip: If you are using an XML editor to edit the profile it is very convenient to load the DTD in the editor, as you will then get color and error
highlighting.

<DatabaseProfile>

The DatabaseProfile is the root element in the XML file. It is required and have the following attributes.

<DatabaseProfile desc="Profile for Sybase ASE"
 version="$Revision: 12068 $"
 date="$Date: 2010-04-21 13:59:29 +0200 (Ons, 21 Apr 2010) $"
 minver="6.5.7">
 ...
</DatabaseProfile>

The attributes specified for the DatabaseProfile element appear in the Database Profile list when selecting the connection properties for a
database connection:

Figure: The list of available database profiles

227(261

<InitCommands> - Initialization commands

The InitCommands section define commands that are executed when the database profile is first loaded. These commands are typically used to
determine characteristics of the target database. The result is stored in variables that can be used in conditions that are evaluated when the rest of
the profile is loaded. A common use case is to find out the authorization level of the current user as defined by the database. If the user have limited
privileges then make sure the supported object types, views and available actions in DbVisualizer matches the authorization.

Multiple commands may be defined in the InitCommands element and these are executed in serie from top. Conditional processing is also
supported.

The following sample is from the HP Neoview database profile. The main purpose with its InitCommands is to first determine the database version by
quering a system table (this information is not properly available by the Neoview JDBC driver). Based on the database version a condition controls
which of two queries will be executed to find out a property from the database. The result of the executed query is stored in a the METACAT variable.

<InitCommands>
 <Command id="neoview.getDbVersion" method="runBeforeConditionsEval">
 <SQL>
 <![CDATA[
SELECT SUBSTRING(SYSTEM_VERSION FROM 10)
FROM (GET VERSION OF SYSTEM) V(SYSTEM_VERSION)
]]>
 </SQL>
 <Output id="DBVERSION" index="1"/>
 </Command>
 <Command id="neoview.getMaster">
 <If test="#DBVERSION gte 2400">
 <SQL>
 <![CDATA[
SELECT MIN(SYSTEM_CATALOGS) AS MASTER_CAT
FROM (GET SYSTEM CATALOGS) V(SYSTEM_CATALOGS)
WHERE SYSTEM_CATALOGS LIKE _ISO88591'NONSTOP_SQLMX_%'
]]>
 </SQL>
 </If>
 <Else>
 <SQL>
 <![CDATA[
SELECT 'NONSTOP_SQLMX_${#dp.METACAT}'
FROM (VALUES(1)) AS T1
]]>
 </SQL>
 </Else>
 <Output id="METACAT" index="1"/>
 </Command>
</InitCommands>

Commands in InitCommands are processed in two phases, the first phase execute commands that have the method="runBeforeConditionsEval"
attribute set. After the first execution phase are all conditions evaluated and processed, the last execution phase will take care of all commands with
no method="runBeforeConditionsEval" attribute set.

Here is an example how the METACAT variable is used in the rest of the database profile:

<Command id="neoview.getCatalogs">
 <SQL>
 <![CDATA[
SELECT
 TRIM(CAT_NAME) AS CATALOG_NAME
FROM
${METACAT}.SYSTEM_SCHEMA.CATSYS C
WHERE
 CAT_NAME NOT LIKE _ISO88591'NONSTOP_SQLMX_%'
 AND CAT_NAME NOT IN (_ISO88591'NSMWEB', _ISO88591'NVSCRIPT', _ISO88591'METRIC',
 _ISO88591'MATRIX', _ISO88591'GENUSCAT', _ISO88591'MANAGEABILITY')
ORDER BY
 CATALOG_NAME
FOR READ UNCOMMITTED ACCESS

228(261

]]>
 </SQL>
</Command>

<Commands> - The SQLs used to interact with the database

This element contains all Command elements with SQL sub element. A Command element is identified by a unique id attribute, which is then
referred in ObjectsTreeDef, ObjectsViewDef and (optionally) ObjectsActionDef definitions.

<Commands>
 &generic-commands;
 <Command>
 ...
 </Command>
</Commands>

The first statement in the <Commands> element is:

 &generic-commands;

This means that the generic-commands entity defined at the top of the XML file is included in the XML i.e., all its definitions are accessible from
the ObjectsTreeDef, ObjectsViewDef and ObjectsActionDef. If you don't plan to use any of the generic command, simply ignore this include
statement.

<Command>

The Command element specifies the SQL associated with the command. In most cases, the SQL should return a result set with 0 or several rows.
(The exception is actions which not necessarily need to return a result set, e.g., a "drop" action). The following command queries for login information
in Sybase ASE.

<Command id="sybase-ase.getLogins">
 <SQL>
 <![CDATA[
select name "Name", suid "SUID", dbname "Default Database", fullname "Full Name",
language "Default Language", totcpu "CPU Time", totio "I/O Time", pwdate "Password Set"
from master.dbo.syslogins order by 1
]]>
 </SQL>
</Command>

The id for this command is sybase-ase.getLogins. The reason for prefixing the id with the name of the profile is for maintainability. Since the
generic-commands.xml file is included in most profiles, it is good to use unique prefixes for all commands so that they do not conflict with the
commands in the generic-commands.xml file.

Result set

The result set for the previous query looks as follows:

name suid dbname fullname language totcpu totio pwdate

jstask 3 master (null) (null) 0 10 2009-12-22 09:53:50

probe 2 subsystemdb (null) (null) 0 0 2009-12-22 08:37:35

sa 1 master (null) (null) 182 168723 2009-12-22 08:36:54

229(261

The way DbVisualizer handles the result set depends on whether the command is executed as a request in the database objects tree
(ObjectsTreeDef) or in the object view (ObjectsViewDef). If executed in the database objects tree, each row in the result set will be represented by
a new node in the tree. If executed in the object view, it is the viewer component that decides how the result will be presented. For more information
on how a result set is used in the ObjectsTreeDef or ObjectsViewDef, read the specific sections.

Another important difference between the database objects tree and the object view is that the tree is a hierarchical structure of objects while the
object view presents information about a specific object. An object that is inserted in the database objects tree is a 1..1 mapping to a row from the
actual result set. The end user will see these objects (nodes) by some descriptive label, as defined in the ObjectsTreeDef. However, all data for the
row from the original result set is stored with the object in the tree and may be used in the label, variables, conditions, etc. This is not the case in the
ObjectViewDef.

The following example put some light on this. Consider the previous result set and that it's used to create objects in the database objects tree. The
end user will see the following in DbVisualizer. The visible name for each row is the name column in the result set.

Figure: Sample of the Logins node having two child nodes

Each of the sa and probe nodes have all their respective data from the result set associated with the nodes. The data is referenced as
commandId.columnName, i.e., sybase-ase.getLogins.name, sybase-ase.getLogins.dbname, etc. All associated data for the sa node in the
example is listed next:

sybase-ase.getLogins.Name = sa
sybase-ase.getLogins.suid = 1
sybase-ase.getLogins.Default Database = master
sybase-ase.getLogins.Full Name = (null)
sybase-ase.getLogins.Default Language = (null)
sybase-ase.getLogins.CPU Time = 182
sybase-ase.getLogins.I/O Time = 168716
sybase-ase.getLogins.Password Set = 2009-12-22 08:36:54.576

The DataNode definition presenting sa and probe in the previous screenshot example use the associated data for the label as follows:

label="${sybase-ase.getLogins.name}"

<Input> - Setting command input

There are two types of Commands: with and without dynamic input. The difference is that dynamic input Commands accepts input data that is
typically used to form the WHERE clause in SELECT SQLs. The previous example illustrates a static SQL (without dynamic data).

To allow for dynamic input, just add variables at the positions in the statement that should get dynamic values. The following is an extension of the
previous example that allows for dynamic input.

<Command id="sybase-ase.getLogins">
 <SQL>
 <![CDATA[

230(261

select name "Name", suid "SUID", dbname "Default Database", fullname "Full Name",
language "Default Language", totcpu "CPU Time", totio "I/O Time", pwdate "Password Set"
from master.dbo.syslogins where name = '${name}' and suid = '${suid}' order by 1
]]>
 </SQL>
</Command>

The example above adds two input variables: ${name} and ${suid}. Values for these variables should then be supplied wherever the command is
referred for execution via the Input element.

The following is an example from the ObjectsTreeDef and its use of the sybase-ase.getLogins command:

<GroupNode type="Logins" label="Logins">
 <DataNode type="Login" label="${sybase-ase.getLogins.Name} isLeaf="true">
 <SetVar name="objectname" value="${sybase-ase.getLogins.Name}">
 <Command idref="sybase-ase.getLogins">
 <Input name="name" value="sa">
 <Input name="suid" value="${sybase-ase.getProcesses.suid}">
 </Command>
 </DataNode>
</GroupNode>

(Note that the Command element refers the command via the idref attribute which will be matched with the corresponding id for the Command).

There is no magic with this definition, since the ${name} variable in the final SQL will be replaced with string "sa".

The value for the ${suid} definition will in this case get the value of the sybase-ase.getProcesses.suid when the SQL is executed. So where is this
variable defined? As explained in the Result Set section, all the data for a row in the result set is associated with the objects in the database objects
tree. In addition, it is possible to use all the data kept by the current object and all its parent objects (as presented in the objects tree) in the input to
commands. So to evaluate the ${sybase-ase.getProcesses.suid} variable, DbVisualizer first looks for the variable in the current object. If it doesn't
exist, it continues to look through the parent objects until it reaches the root, which is the Connections object in the objects tree. If the variable is not
found, it will be set to the string representation for null, which is (null) by default. Whenever a matching variable is found, DbVisualizer uses its value
and stops searching.

<Output> - Redefine command output

As mentioned earlier, a specific column value in a result set row is referenced by the name of the column prefixed by the command id. Sometimes
this is not desirable and the Output definition can be used to change this behavior. The following identifies a column in the result set by its index
number, starting from 1, and then force its name to be set to the value of the id attribute.

<Output id="sybase-ase.getLogins.Name" index="1">
<Output id="sybase-ase.getLogins.suid" index="2">

The Output element can also be used to alter the structure of columns in the result set by adding, renaming or removing columns.

<Output modelaction="add" index="THIS_IS_A_NEW_COLUMN" value="Rattle and Hum">
<Output modelaction="rename" index="2" name="PHONE">
<Output modelaction="drop" index="MOBILE_PHONE">
<Output modelaction="removeisnullrows" index="4">
<Output modelaction="removerowsifequalto" index="ORDINAL_POSITION" value="0"/>

(All model actions except add accepts either the name of the column or index number starting from the left at index 1).

• The add model action adds a new column to all rows. The value attribute accepts variables using the ${...} syntax.
• The rename model action simply renames a column.
• The drop model action drops the specified column.
• The removeisnullrows model action removes the row if the value in the specified column is null.
• The removerowsifequalto model action removes the row if the data in the specified column is equal to the value.

The rename operation is primarily used when building a custom command that is supposed to be used by a viewer that requires predefined input by
specific column names. Read more in the ObjectsViewDef section.

231(261

<ObjectsTreeDef> - Definition of the Database Objects Tree

The ObjectsTreeDef element section controls how the database objects tree should be presented and which commands should be executed to form
its content (nodes). The mapping between the graphical representation in DbVisualizer and its ObejctsTreeDef XML is as straight forward as it can
be:

<ObjectsTreeDef id="sybase-ase">
 <GroupNode type="Databases">
 <DataNode type="Catalog">
 <GroupNode type="Tables">
 <DataNode type="Table"/>
 </GroupNode>
 <GroupNode type="SystemTables">
 <DataNode type="SystemTable"/>
 </GroupNode>
 <GroupNode type="Views">
 <DataNode type="View"/>
 </GroupNode>
 <GroupNode type="Users"/>
 <GroupNode type="Groups">
 <DataNode type="Group"/>
 </GroupNode>
 <GroupNode type="Types"/>
 <GroupNode type="Triggers">
 <DataNode type="Trigger"/>
 </GroupNode>
 <GroupNode type="Procedures">
 <DataNode type="Procedure"/>
 </GroupNode>
 </DataNode>
 </GroupNode>
 <GroupNode type="DBA">
 <GroupNode type="ServerInfo"/>
 <GroupNode type="Logins">
 <DataNode type="Login"/>
 </GroupNode>
 <GroupNode type="Devices">
 <DataNode type="Device"/>
 </GroupNode>
 <GroupNode type="RemoteServers"/>
 <GroupNode type="Processes"/>
 <GroupNode type="ServerRoles">
 <DataNode type="ServerRole"/>
 </GroupNode>
 <GroupNode type="Transactions"/>
 <GroupNode type="Locks"/>
 </GroupNode>
</ObjectsTreeDef>

Figure: The visual database objects tree and its XML definition

The screenshot shows all nodes representing the GroupNode definitions in the ObjectsTreeDef. One exception is the Logins object, which has
been expanded (jstask, probe and sa child objects) to illustrate what DataNode objects look like. The ObjectsTreeDef in the example has been
simplified to show only the type attribute. (The label of the nodes as they appear in the visual tree is not listed in the ObjectsTreeDef example). The
type attribute is primarily used internally in the profile as an identifier between the ObjectsTreeDef and the ObjectsViewDef. The type is also visible
in the DbVisualizer GUI, in the tooltip for a tree node and in the object view header. The type is also used to identify the icon used to represent the
object type.

There are no limitation on the number of levels in the ObjectsTreeDef. A good rule of thumb is, however, to keep it simple, clean and intuitive.

The DataNode definitions are the most important objects in the ObjectTreeDef. They also define which object tree filters are available for each
object type, if overlayed icons should appear (and the criteria), etc. Read the next sections for details.

232(261

<GroupNode> - Static objects used for grouping

The GroupNode element is represents a static object in the tree. These don't have any associated SQL and appear only once where they are
defined. A GroupNode is primarily used for structural and grouping purposes. The GroupNode element have the following attributes.

<GroupNode type="SystemTables" label="System Tables" isLeaf="false">
 ...
</GroupNode>

The isLeaf attribute is optional and controls whether the GroupNode may have any child objects or not. It can always be set to true, but the effect in
the visual database objects tree is then that the expand icon to the left of the group node icon will always be displayed, even if it can never have any
child objects. The default setting for isLeaf is false.

If isLeaf is set to false and there are child Group and/or Data -nodes, these will not appear. The result may cause some frustration during the
design...

<DataNode> - Dynamic objects created via SQL

The DataNode element feeds the tree with nodes produced by a Command. The example in the Command section querying for all logins in Sybase
ASE look as follow in the ObjectsTreeDef:

<GroupNode type="Logins" label="Logins">
 <DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">
 <Command idref="sybase-ase.getLogins"/>
 </DataNode>
</GroupNode>

First, there is a GroupNode element with the purpose to group all child objects in a Logins node. The DataNode has, in this example, the same
attributes as the GroupNode, the type is however "Login" instead of "Logins" (as it is for the GroupNode). This difference is important when the
user selects one of the objects, since the the Object View shows the appropriate views based on the object type.

The DataNode definition can be seen as a template, as the associated command fetches rows of data from the database and DbVisualizer uses
the DataNode definition to create one node per row in the result set.

The label attribute for the data node is somewhat different, as it introduces the use of a variable (or several). The real value for the label will, in this
example, be the value in the Name column produced by the sybase-ase.getLogins command, as you can see in the Command definition (variable
names are automatically prefixed with the command id).

The Command element uses the idref attribute to identify the command that should be executed. The command in this case and in the Result set
section produces a result set with 2 rows and 8 columns. The result will be two nodes each, with the label of the Name column in the result set.

Figure: Sample of the Logins node having two child nodes

233(261

The label can be changed by setting it to any other valid variable or a combination of several variables. (It's even possible to specify static text in the
label):

label="${sybase-ase.getLogins.Name} (${sybase-ase.getLogins.Default Database})"

The example above results in the following labels:

jstask (master)
probe (subsystemdb)
sa (master)

The complete set of attributes for the DataNode element is:

 type="value" - The type of node (required)
 actiontype="value" - Object type used for object actions (optional)
 label="value" - The visual label (required)
 isLeaf="true/false" - Specifies if the node can have child objects (default true)
 sort="col1,col2" - A comma separated list of names/variables used for sorting
drop-label-not-equal="value" - Do not add the node if the label is not equal to this value
 or variable
 warnstate="condition" - If condition is true, show an overlay icon for the node
 errorstate="condition" - If condition is true, show an overlay icon for the node
stop-label-hot-equal="value" - The node will be a leaf if the label doesn't match this value
 or variable
 is-empty-output="continue/stop" - If result set is empty, use this to control whether child
 GroupNode/DataNodes should be added anyway or ignored

The Command definition in the example above is simple, since it doesn't use any variables in the SQL. Continue reading the next section for details
about passing input data to commands.

<Command>

Commands are referenced in the DataNode definition by the idref attribute. Sometimes it is required that a specific DataNode must supply input to a
command. This is done by adding Input elements as children to the Command.

<DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">
 <Command idref="sybase-ase.getLogins">
 <Input name="name" value="sa">
 <Input name="suid" value="${sybase-ase.getProcesses.suid}">
 </Command>
</DataNode>

The value for a variable specified in an Input element is evaluated using the strategy outlined in the Result set section.

<Filter>

The Filter element is specific for Command elements that appear in the ObjectsTreeDef section. A filter define which data for a DataNode that is
allowed to use in filters. This filter functionality is commonly referred as the Database Objects Tree Filtering in DbVisualizer. The filtering setup
appears below the database objects tree, and the following example shows that filtering may be specified for these object types:

• Catalog
• Table
• System Table
• View
• User
• Group
• Trigger
• Procedure

For each of the Filter definitions, one or several columns can be as part of the filtering criteria.

234(261

Figure: Screen shot showing the filter pane

<DataNode type="Views" label="${sybase-ase.getViews.Name}" isLeaf="true">
 <Command idref="sybase-ase.getViews">
 <Filter type="View" name="View Table">
 <Column index="TABLE_NAME" name="Name"/>
 </Filter>
 </Command>
</DataNode>

The previous filter definition specifies a filter for the View object type. The name specifies the name of the filter as it appears in the object type drop-
down list. The nested Column element defines the index, which should be either a column name in the result set or an index number for the column.
The name attribute specifies the name of the column as it appears in the filter pane.

Several Column elements may be specified for a Filter element.

<SetVar>

The SetVar element is needed in the ObjectsTreeDef for DataNode's. Some object types have special meaning in DbVisualizer. Two examples are
the Catalog and Schema object types. For DataNode objects, you must use SetVar elements to identify them, with name attributes set to "catalog"

235(261

and "schema", respectively.

<DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}" isLeaf="false">
 <SetVar name="catalog" value="${getCatalogs.TABLE_CAT}">
</DataNode>

All non Catalog or Schema DataNode's must use SetVar to set the "objectname" variable:

<DataNode type="Views" label="${sybase-ase.getViews.Name}" isLeaf="true">
 <SetVar name="objectname" value="${sybase-ase.getViews.Name}">
 <SetVar name="rowcount" value="true/false">
</DataNode>

The objectname variable is used to identify the object represented by the data node, so that it can be uniformly referenced in object views and
object actions. Its value should be the identifier for the object as it is identified in the database, e.g., a table name or view name.

The rowcount variable is optional and controls whether the object supports showing row count information when Show/Hide Table Row Count
right-click menu choice is enabled for the database connection.

Another optional variable (not shown in the example above) is named acceptInQB. If set to true, nodes of this type can be used in the Query
Builder. It should only be set to true for object types representing tabular data that can be queried with an SQL SELECT statement, such as tables,
views, materialized views, etc.

<SetVar> variables are by default invisible in for example the NodeFormViewer. If you want to override this behavior then add the action attribute
and set its value to show. If you want to drop a variable completely from the node simply set the action attribute to drop.

<ObjectsViewDef> - Definition of the Object Views

The ObjectsViewDef element defines all views for the object types in the objects tree. These views are displayed in the Object View area for the
selected object. Which views should appear when selecting a node in the tree is based on the object type for the tree node and the corresponding
object view definition.

When an object is selected in the tree (sa in the screenshot below), its complete information is passed to the object view handler (right in the
sample). This handler determines, based on the object type, which object view should be used to present the information. When the object view is
found, all data views are created as tabs in the user interface. The selected object and its information is passed to each of the data views for
processing and presentation. The following shows how the Object View look in DbVisualizer and its accompanying ObjectView definitions.

<ObjectView type="Logins">
 <DataView type="Logins" label="Logins"
 viewer="grid">
 <Command idref="sybase-ase.getLogins"/>
 </DataView>
</ObjectView>
<ObjectView type="Login">
 <DataView type="Info" label="Info"
 viewer="node-form"/>
 <DataView type="Databases" label="Databases"
 viewer="grid">
 <Command idref="sybase-ase.getLoginDatabases"/>
 </DataView>
 <DataView type="Roles" label="Roles"
 viewer="grid">
 <Command idref="sybase-ase.getLoginRoles"/>
 </DataView>
</ObjectView>

Figure: The visual database objects tree, object view and the XML definition

The screenshot shows both the Logins node and its child nodes, jstask, probe and sa. From the GroupNode and DataNode declaration examples
in the previous sections, we know that these nodes are instances of the object types Logins (the Login node) and Login (the two sub nodes, sa and
probe).

The ObjectView XML definitions shows the data views for these two types, Logins and Login. Clicking on the node labeled Logins in the tree will

236(261

show the object view for the <ObjectView type="Logins"> definition while clicking on the node labeled jstask, probe or sa will show the object
view for the <ObjectView type="Login"> .

The example shows sa being selected. Its DataView definitions are (by label):

• Info
• Databases
• Roles

These views are presented in DbVisualizer as tabs. The label of each tab is the label defined in the DataView and the icons are defined by the
respective object type.

The ObjectsViewDef root element has the following attributes:

<!-- Include the generic-view -->
&generic-view;
<ObjectsViewDef id="sybase-ase" extends="generic" >
 ...
</ObjectsViewDef>

The first statement for the ObjectsViewDef elements is:

 &generic-view;

This simply means that the generic-view entity defined at the top of the XML file is included in the XML, i.e., all its definitions are accessible as is.
One example is the ObjectView definition in the generic-view.xml file for the Table object type. It contains a lot of DataView elements that identify all
viewers for the Table. If you now want to use the generic Table DataView's but add a new Abbreviations data view, then simply extend the generic
Table DataView. This is done by adding a extends="generic" attribute in the ObjectsViewDef element. By using the exact same object type in the
extended ObjectView, you will then get this behavior. Read more about extending ObjectView's in the Extending ObjectView section.

<ObjectView>

The ObjectView element is associated with an object type and groups all DataView elements that appear when the object type is selected in the
database objects tree. Here follows the ObjectView definition for the Login object type.

<ObjectView type="Login">
 ...
</ObjectView>

This element is simple as its only attribute is the type attribute. The type attribute value is used when a node is clicked in the database objects tree
to map the object of the type clicked and its ObjectView.

<DataView>

The DataView element is as important as the DataNode is in the ObjectsTreeDef. It defines how the viewer should be labeled in DbVisualizer,
which viewer (presentation form) it should use, commands and other things. The following is the DataView definitions for the Login object type.
(The ObjectView element is part of the sample just for clarification).

<ObjectView type="Login">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Databases" label="Databases" viewer="grid">
 <Command idref="sybase-ase.getLoginDatabases"/>
 </DataView>
 <DataView type="Roles" label="Roles" viewer="grid">
 <Command idref="sybase-ase.getLoginRoles"/>
 </DataView>
</ObjectView>

The elements are used to define how the object is presented in DbVisualizer, as described in the introduction of the ObjectsViewDef section. All
three data view elements have a viewer attribute, which identifies how the data in the view should be be presented, e.g., as a grid or a form. See the
next section for a list of viewers.

237(261

Viewers

The viewer attribute for a DataView specifies how the data for the view should be presented. The following sections walk through the supported
viewers.

The following sample illustrates the viewer attribute.

<ObjectView type="Login">
 <DataView type="Info" label="Info" viewer="node-form"/>
</ObjectView>

DataView definitions may be nested and the viewers are then presented with the nested DataView in the lower part of the screen.

grid

The grid viewer presents a result set in a grid, with standard grid features such as search, copy, fit, export, etc. The result set is presented exactly as
it is produced by the Command and any optional Output processing.

Here is a sample of the XML for the grid viewer:

<DataView type="Columns" label="Columns" viewer="grid">
 <Command idref="oracle.getColumns">
 <Input name="owner" value="${schema}"/>
 <Input name="table" value="${objectname}"/>
 </Command>
</DataView>

And here is a screenshot of the standard grid viewer created from the previous definition.

Figure: The grid viewer

The nesting capability for grid viewers is really powerful, as it can be used to create a drill-down view of the data. Consider the scenario with a grid
viewer showing all Trigger objects. Wouldn't it be nice to offer the user the capability to display the trigger source when selecting a row in the list?
This is easily accomplished with the following:

<DataView type="Trigger" label="Triggers" viewer="grid">
 <Command idref="oracle.getTriggers">
 <Input name="owner" value="${schema}"/>
 <Input name="table" value="${objectname}"/>
 </Command>

238(261

 <DataView type="Source" label="Source" viewer="text">
 <Input name="dataColumn" value="text"/>
 <Input name="formatSQL" value="true"/>
 <Command idref="oracle.getTriggerSource">
 <Input name="owner" value="${OWNER}"/>
 <Input name="name" value="${TRIGGER_NAME}"/>
 </Command>
 </DataView>
 <DataView type="Info" label="Info" viewer="node-form"/>
</DataView>

• The first DataView definition defines the top grid viewer and the command to get the result set for it.
• The next DataView is the nested text viewer, specifying various input parameter for the viewer along with the command to get the source

for the trigger. The difference here is that the input parameters for this command reference column names in the top grid. Since this viewer
is nested, it will automatically be notified whenever an entry in the top grid is selected.

• The third nested DataView is presented as a tab next to the Source viewer, and presents additional information about the selected trigger.

The following screenshot illustrates the above sample:

Figure: Example use of nested DataViews

Adding custom menu items in the grid

The menuItem parameter specifies entries that should appear in the right-click menu in the grid. The value for the menuItem is the label for the
item, while the child Input element specifies the SQL command that should be produced for all selected rows when the menu item is selected. The
result of a custom menu item is that the grid viewer creates a statement that it copies to the SQL Commander; it will never execute the produced
SQL in the scope of the viewer.

The following is an example with two menu items:

• Script: SELECT ALL
• Script: DROP TABLE

The variables in the SQL statement should identify column names in the result set. The user may select any columns in the visual grid and choose a
custom menu item. It is only the actual rows that are picked from the selection as the columns are predefined by the menuItem declaration.

The variables specified in these examples starts with ${schema=...} and ${object=...}. These defines that the first variable represents a schema
variable while the second defines an object. This is needed for DbVisualizer to determine whether delimited identifiers should be used and if
identifiers should be qualified, as defined in the connection properties for the database.

<Input name="menuItem" value="Script: SELECT ALL">
 <Input name="command" value="select * from ${schema=OWNER}${object=TABLE_NAME}"/>
</Input>

239(261

<Input name="menuItem" value="Script: DROP TABLE">
 <Input name="command" value="drop table ${schema=OWNER}${object=TABLE_NAME}"/>
</Input>

Here is a sample:

Figure: Custom menu items in grid viewer

The result of selecting a menu item defined as a menuItem input parameter is that the specified command is copied to the current SQL editor.

Setting initial max column width

Some result sets may contain columns with very wide data. The following parameter sets an initial maximum column width for all columns in the grid.

<Input name="columnWidth" value=""/>

text

The text viewer presents data from one column in a result set in a text browser (read only editor). This viewer is typically used to present large
chunks of data, such as source code, SQL statements, etc. If the result set contains several rows, the text viewer reads the data in the column for
each row and present the combined data.

Here is a sample of the XML for the text viewer:

<DataView type="Source" label="Source" viewer="text">
 <Input name="dataColumn" value="text"/>
 <Input name="formatSQL" value="true"/>
 <Input name="newline" value=""/>
 <Command idref="oracle.getTriggerSource">
 <Input name="owner" value="${schema}"/>

240(261

 <Input name="name" value="${objectname}"/>
 </Command>
</DataView>

And here is a screenshot of the Source tab based on the previous definition.

Figure: The text viewer

Specify what column to browse

By default, the text viewer uses the data in first column. This behavior can be controlled by using the dataColumn input parameter. Simply specify
the name of the column in the result set or its index (starting at 1 from the left).

<Input name="dataColumn" value=""/>

Enable SQL formatting of the data

The text viewer includes the SQL Formatting toolbar button, which when pressed formats the content in the viewer. The formatSQL input
parameter is used to control whether formatting should be enabled by default. If formatSQL is not specified, no initial formatting is made.

<Input name="formatSQL" value=""/>

Adding newline to each row

Defines the static text that should separate every row in the grid. A "\n" somewhere in the value will be converted to a true newline in the final output.
The default behavior is not to add a newline sequence for each row.

<Input name="newline" value="\n"/>

form

The form viewer presents row(s) from a result set in a form. If several rows are in the result, they are presented in a list. Selecting one row from the
list presents all columns and data for that row in a form.

Here is a sample of the XML for the form viewer:

<DataView type="Info" label="Info" viewer="form">
 <Command idref="oracle.getTable">
 <Input name="owner" value="${schema}"/>
 <Input name="table" value="${objectname}"/>

241(261

 </Command>
</DataView>

And here is a screenshot of the Info tab based on the previous definition.

Figure: The form viewer

node-form

The node-form viewer presents all data associated with the selected object (variables).

Here is a sample of the XML for the node-form viewer:

<DataView type="Constraint" label="Constraint" viewer="node-form">
 <Input name="hidecolumn" value="oracle.getKeys.TABLE_OWNER"/>
</DataView>

And here is a screenshot of the Constraint tab based on the previous definition.

242(261

Figure: The node-form viewer

Hiding columns

There may be data associated with the object that you don't want to present in the node form for the user. The hidecolumn input parameter control
what data for the object that should be invisible and you may repeat the this option as many times you like to handle multiple hidden variables.

<Input name="hidecolumn" value="oracle.getKeys.TABLE_OWNER"/>

table-refs

The table-refs viewer shows the references graph for the current object (this must be an object supporting referential integrity constraints, such as a
Table),

Here is a sample of the XML for the table-refs viewer:

<DataView type="References" label="References" viewer="table-refs"/>

And here is a screenshot of the References tab based on the previous definition.

243(261

Figure: The table-refs viewer

tables-refs

The tables-refs viewer shows the references graph for several tables in the result set (the result set must contain objects supporting referential
integrity constraints, such as a Table).

Here is a sample of the XML for the tables-refs viewer:

<DataView type="References" label="References" viewer="tables-refs">
 <Command idref="getTables">
 <Input name="catalog" value="${catalog}"/>
 <Input name="schema" value="${schema}"/>
 <Input name="table" value="${objectname}"/>
 <Input name="type" value="${tableType}"/>
 </Command>
</DataView>

And here is a screenshot of the References tab based on the previous definition.

244(261

Figure: The tables-refs viewer

table-data

The table-data viewer shows the data for a table in a grid with editing features.

Information presented in the grid is obtained automatically by the viewer via a traditional SELECT * FROM table statement, i.e., the object type
having this viewer defined must be able to support getting a result set via this SQL statement.

Here is a sample of the XML for the table-data viewer:

<DataView type="Data" label="Data" viewer="table-data">
 <Input name="disableEdit" value="<true/false>"/>
</DataView>

And here is a screenshot of the Data tab based on the previous definition.

245(261

Figure: The table-data viewer

Disable data editing

The default strategy for the table-data viewer is to automatically check whether the data can be edited or not. If editing is allowed a few related
buttons will appear in the toolbar. However, sometimes you may want to disable editing completely for the table-data viewer. Do this with the
following input element:

<Input name="disableEdit" value=""/>

table-rowcount

The table-rowcount viewer shows the row count for a (table) object.

The row count is obtained automatically by the viewer via a traditional SELECT COUNT(*) FROM table statement, i.e., the object type having this
viewer defined must be able to support getting a result set via this SQL statement.

Here is a sample of the XML for the table-rowcount viewer:

<DataView type="RowCount" label="Row Count" viewer="table-rowcount"/>

And here is a screenshot of the Row Count tab based on the previous definition.

246(261

Figure: The table-rowcount viewer

<Command>

Please read the Command section above, as the capabilities of this element are the same when used with a data view.

<Message>

The Message element is very simple: it defines a message that should appear at the top of the viewer. The Message element is used to define the
text for a description of the data presented in the viewer. The text in the message may contain common HTML tags such as (bold), <i> (italic),

 (line break), etc.

Here is a sample of the XML for using the Message element in a grid viewer:

<ObjectView type="RecycleBin">
 <DataView type="RecycleBin" label="Recycle Bin" viewer="grid">
 <Command idref="oracle.getRecycleBin">
 <Input name="schema" value="${schema}"/>
 <Input name="login_schema" value="${dbvis-defaultCatalogOrSchema}"/>
 </Command>
 <Message>
 <![CDATA[
<html>
These are the tables currently in the recycle bin for this schema. Right click on a bin
table in objects tree to restore or permanently purge it.

Note: The recycle bin is always empty if not looking at the bin for your
login schema (default).
</html>
]]>
 </Message>
 </DataView>
</ObjectView>

And here is a screenshot of the Recycle Bin tab based on the previous definition.

Figure: The appearance of a Message in a viewer

Extending ObjectView

An existing ObjectView definition in, for example, the generic-view.xml file can be extended in a database profile by using a few action attributes for
each of the DataView elements. To extend a definition, the object type specified in the ObjectView type attribute must match the type in the parent
profile. You have the following options when extending a definition:

247(261

• Adding a DataView
Simply add the DataView definition and it will be added to the current list of DataView definitions

• Dropping an existing DataView
Add the <DataView type="xxx" action="drop"> to drop the dataview type named "xxx"

• Replacing a DataView
Just add the DataView with the exact same type as in the parent DataView. All the settings of the new DataView will replace the old one

<ObjectsActionDef> - Definition of user actions

The previous sections describe how to define which objects should appear in the objects tree, and which views should be displayed when selecting
an object in the tree. The ObjectsActionDef section in the profile defines which operations are available for the object types defined in the
ObjectTreeDef. Object actions are very powerful, as they offer an extensive number of features to define actions for almost any type of object
operation.

In DbVisualizer, the object type actions menu is accessed via the right-click menu in the objects tree or via the Actions button in the object view:

Figure: The Actions menu for the selected object

All of the operations for the selected Table object in the figure above are expressed in the ObjectsActionDef section. The implementation for these
actions are either declared completely with XML elements via standard object actions, or via specialized action handlers. (The API for action
handlers is not yet documented). The following screenshot shows the dialog appearing when executing an action via the default action handler:

248(261

Figure: The default action handler

The first field in the dialog, Database Connection, is always present and shows the alias of the database connection the selected object is
associated with. At the bottom, there is a Show SQL control that, when enabled, displays the final SQL for the action. The bottom right buttons are
used to run the action (the label of the button may be Execute or Script based on the action mode), or to Cancel the action completely.

Variables

Variables are used to reference data for the object for which the action was launched, and the data for all its parent objects in the objects tree.
Variables are also used to reference input data specified by the user in the actions dialog. Variables are typically used in the Command, Confirm,
Result and SetVar elements.

Variables are specified in the following format:

${variableName}

The following is an example for a Rename Table action. It first shows the name of the database connection (which is always present) along with
information about the table being renamed. The last two input fields should be entered by the user and identify the new name of the table. The New
Database control is a list from which the user should select the name of the new database. The new table name should be entered in the New Table
Name field.

If the Show SQL control is enabled, you will see any edits in the dialog being reflected directly in the final SQL Preview.

249(261

Figure: The default action handler

The complete action definition for the previous Rename Table action is as follows:

<Action id="mysql-table-rename" label="Rename Table" reload="true" icon="rename">
 <Input label="Database" style="text" editable="false">
 <Default>${catalog}</Default>
 </Input>
 <Input label="Table" style="text" editable="false">
 <Default>${objectname}</Default>
 </Input>
 <Input label="New Database" name="newCatalog" style="list">
 <Values>
 <Command><SQL><![CDATA[show databases]]></SQL></Command>
 </Values>
 <Default>${catalog}</Default>
 </Input>
 <Input label="New Table Name" name="newTable" style="text"/>
 <Command>
 <SQL>
 <![CDATA[
rename table `${catalog}`.`${objectname}`
to `${newCatalog}`.`${newTable}`
]]>
 </SQL>
 </Command>
 <Confirm>
 <![CDATA[
Confirm rename of ${catalog}.${objectname} to ${newCatalog}.${newTable}?
]]>
 </Confirm>
 <Result>
 <![CDATA[
Table ${catalog}.${objectname} renamed to ${newCatalog}.${newTable}!
]]>
 </Result>
</Action>

First, there is the Action element with some attributes specifying the label of the action, icon and whether the objects tree (and the current object
view) should be reloaded after the action has been executed.

250(261

The next block of elements are Input fields defining the data for the action. As you can see in the example, there is a ${catalog} variable in the
Default element for the Database input and an ${objectname} variable in the Default element for the Table input. The values for these variables
are fetched from the selected object in the objects tree. Variables are evaluated by first checking if the variable is in the scope of the action dialog
(i.e., another input field), then if the variable is defined for the object for which the action was launched, and then if it is defined for any of the parent
objects until the root object in the tree (Connections node) is reached. If a variable is not found, its value is set to (null).

In the previous XML sample, the value of the ${catalog} variable is the name of the database in which the table object is stored. The ${objectname}
is the current name of the table (these variables are described in the ObjectsTreeDef section).

The New Database input field is a list component which shows a list of databases based on the result set of the specified SQL command. The
Default setting for the database will be the database in which the table is currently stored based on the ${catalog} variable.

The New Table Name input field is a simple text field in which the user may enter any text.

Both the New Database and New Table Name fields are editable and should be specified by the user. This data is then accessible via the variables
specified in the name attribute, i.e., newCatalog and newTable.

The Command element declares the SQL statement that should be executed by the action. In this example, the SQL combines static text with
variables.

<ActionGroup>

The ActionGroup element is a container and groups ActionGroup, Action and Separator elements. It is used to define what actions should be
present for a particular object type. It also defines in what order the actions should appear in the menu and where any separators should
be. ActionGroup elements can be nested to create sub menus.

<ActionGroup type="Table">

The attributes for an ActionGroup are:

• type
this defines what object type the ActionGroup represents. This attribute is valid only for top level action groups. An example is the object of
type Table, the corresponding ActionGroup will only be displayed when the selected object is a Table.

• label
this attribute is required for nested action groups. This label is displayed as the sub menu label for the nested action group. (The label
attribute have no effect on top level action groups).

<Action>

The action element defines the action.

<Action id = "oracle-table-drop"
 icon = "remove"
 label = "Drop Table..."
 reload = "false"
 mode = "execute"
 processmarkers = "false"
 resulttype = "resultset"
 resultaction = "ask"
hideif = "<condition>">

The attributes for an action are:

• id
the id for the action. The recommended syntax for the id is " profileName-objectType-someGoodActionName"

• icon
specifies an optional icon that should be displayed next to the label in the menu

• label
the label for the action as it should appear in the menu in the action dialog

• reload
specifies if the parent node (in the objects tree) should be reloaded after successful execution. This is recommended for actions that
change the visual appearance of the object, such as remove, add or name change

• mode attribute, can be set to any of these:
• execute (default)

show the action dialog, process user input and execute the final SQL within the scope of the action window

251(261

• script
show the action dialog, process user input and send the final SQL to the SQL Commander

• script-immediate
will not show the action dialog but instead pass the final SQL directly to the SQL Commander

• processmarkers
• true

IN parameter markers in the SQL are processed with the JDBC driver. Not all drivers supports this
• false (default)

parameter markers are not be processed
• resulttype specifies what kind of result is produced by the action.

• resultset (default)
this is the default and indicates that the result is a standard result set produced by a SQL SELECT statement or stored
procedure

• dbmsoutput
this is specific for Oracle databases only and specifies that the output is produced by the DBMS_OUTPUT stored procedure

• resultaction attribute, is only valid in combination with mode="execute". It can be set to any of:
• ask (default)

if the action produced a result according to the setting of resulttype, ask the user whether the result should be displayed in a
window or copied as text to the SQL Commander

• show
if the action produced a result according to the setting of resulttype, show it in a window

• script
if the action produced a result according to the resulttype, copy it to the SQL Commander.

• hideif
there may be situations when an action should not appear in the list of actions. The hideif attribute is used to express a condition which is
evaluated when the list of object actions is created. Example: hideif="#dataMap.get('actionlevel') neq 'toplevel'"

<Input>

An Input element specifies the characteristics of a visible field component for the actions dialog. The label attribute is recommended and is
presented to the left of input field. If a label is not specified, the input field will occupy the complete width of the action dialog. All input fields are
editable by default. The name attribute is required for editable fields and should specify the identity of the variable in which the user input is stored.

This is a minimal definition of an input field. It will show a read-only text field control labeled Size.

<Input label="Size" editable="false"/>

If the input field is changed to be editable, the name attribute must be used to specify the identifier for the variable name.

<Input label=Size" editable="true" name="theSize"/>

Any input element may contain the tip attribute. It is used to briefly document the purpose of the input field and is displayed as a tooltip when the
user hovers the mouse pointer over it.

<Input label=Size" editable="true" name="theSize" tip="Please enter the size of the new xxx"/>

The hideif attribute is useful to limit what <Input> fields should appear for an action. The condition specified in the hideif attribute have the same
syntax as described in the <SetVar> section. Example:

<Input label="Unit" hideif="#dataMap.get('actionlevel') neq 'toplevel'">

Input fields can be aligned on a single row with the linebreak attribute. The default behavior is that every input field is displayed on a single row. Use
the linebreak="false" attribute to define that the next input field will be arranged on the same line. To re-start the automatic line breaking feature
you must use the linebreak="true" attribute.

<Input name="size" label="Size" style="number" linebreak="false">
 <Default>10</Default>
</Input>
<Input name="unit" style="list" linebreak="true">
 <Labels>KB|MB</Labels>
 <Values>K|M</Values>
 <Default>M</Default>
</Input>

252(261

The previous example shows the use of the linebreak attribute. The size number field and the unit list will appear on the same line.

Specifying the default value as a result from an SQL statement is a trivial task:

<Input label=Size" editable="true" name="theSize">
 <Default>
 <Command>
 <SQL>
select size from systables where tablename = '${objectname}'
 </SQL>
 </Command>
 </Default>
</Input>

Since Default here will execute an SQL statement, it will automatically pick the value in the first row's first column and present it as the default. SQL
may be specified in the Default element when used for all styles while SQL in Values and the Labels elements are valid only for list and radio
styles). In some rare situations it may not be possible to express a SQL statement that will return a single column that will be displayed for Values,
Labels and Default. An example is when data is collected via a stored procedure. To solve this problem specify the column attribute that takes the
value either by the actual column name or column index:

<Input label=Size" editable="true" name="theSize">
 <Default column="2">
 <Command idref="getSize">
 <Input name"objectname" value="${objectname}"/>
 </Command>
 </Default>
</Input>

or by column name:

<Input label=Size" editable="true" name="theSize">
 <Default column="THE_SIZE>
 <Command idref="getSize">
 <Input name"objectname" value="${objectname}"/>
 </Command>
 </Default>
</Input>

An alternative to embedding the SQL in the element body, as in the previous example, is to refer to a command via the standard idref attribute:

<Input label=Size" editable="true" name="theSize">
 <Default>
 <Command idref="getSize">
 <Input name"objectname" value="${objectname}"/>
 </Command>
 </Default>
</Input>

Instead of having duplicated SQLs in multiple actions, consider replacing these with Command elements referred via the idref attribute.

Referring commands in actions via the idref attribute is recommended when the same SQL is used in several actions. Use Input elements to pass
parameters to the command.

The following sections presents the supported styles that can be used in the Input element.

text (single line)

The text style is used to present single-line data in a text field.

<Input label="Enter your userid" name="userid" style="text">
 <Default>agneta</Default>
</Input>

253(261

• The optional Default element is used to define a default value for the field. Variables, static text and Command elements can be used to
define the default value.

• A text input is editable by default. To make it read only just specify editable="false"

text-editor (multi line)

A text-editor field is the same as the text style except that it presents a multi-line field.

<Input label="Description" name="desc" style="text-editor" editable="true" args="height=50"/>

The args="height=50" attribute defines the height (in DLU) for the text-editor. The default height is 30 DLU's.

number

A number style is the same as text except that it only accept number values.

<Input label="Size" name="size" style="number" editable="true"/>

password

A password field is the same as text except that it masks the value as "***".

<Input label="Password" name="pw" style="password" editable="true"/>

Note that the password in visible in plain text in the SQL Preview.

list (large number of choices)

The list style displays a list of choices in a drop-down component. The list can be editable, meaning that the field showing the selection may be
editable by the user. Here is a sample XML for the list style.

<Input label="Select index type" name="type" style="list">
 <Values>Pizza|Pasta|Burger</Values>
 <Default>Pasta</Default>
</Input>

The Values element should, for static entries, list all choices separated by a vertical bar (|) character. A Default value can either list the name of the
default choice or the index number (first choice starts at 0). In the example above, setting Default to {2} would set Burger to the default selection.

It is also possible to use the Labels element. If present, this should list all choices as they will appear in the actions dialog. Consider these as being
the labels shown to the user, while Values in this case should list the choices that will go into the final SQL via the variable. Here is an example:

<Input label="Select index type" name="type" style="list">
 <Values>Pizza|Pasta|Burger</Values>
 <Labels>Pizza the French style|Pasta Bolognese|Texas Burger</Labels>
 <Default>Pasta</Default>
</Input>

If the users selects Texas Burger then the value for variable type will be Burger.

The following shows how to use SQL to feed the list of values:

<Input label="New Database" name="newCatalog" style="list">
 <Values>
 <Command>
 <SQL>

254(261

 <![CDATA[
show databases
]]>
 </SQL>
 </Command>
 </Values>
 <Default>${catalog}</Default>
</Input>

Here a Command element is specified as a sub element to Values. The result of the show databases SQL will be presented in the list component.

To make the list editable, specify the attribute editable="true".

radio (limited number of choices)

The radio style displays a list of choices organized as button components. The only difference between the radio and list styles are:

• All choices for a radio style are displayed on the screen (better overview of choices but suitable only for a limited number of choices)
• The args="vertical" attribute can be specified for radio style to present the radio choices vertically

See the list style for complete capabilities of the radio style.

check (true/false, on/off, selected/unselected)

The check style is suitable for yes/no, true/false, here/there types of input. Its enabled state indicates that the Value for the input will be set in the
final variable. If the check box is disabled, the variable value is blank

<Input label="Cascade Constraints" name="cascade" style="check">
 <Values>compact</Values>
</Input>

• This will create a check component with the label Cascade Constraints
• Enabling the check box will set the value of the variable identified by name (cascade) to the value of Value, which is compact.
• If the check box is unchecked, the variable value will be blank

separator (visual divider between input controls)

The separator style is not really an input element but is instead used to visually divide the fields in the in the actions dialog. If the label attribute is
specified, it will be presented to the left of the separator line. If no label is specified, only the separator is displayed.

<Input label="Parameters" style="separator"/>

The separator is a useful substitute for the standard label presented to the left of every input field. Here is a sample:

255(261

Figure: Sample showing separators and wide fields

The previous figure shows the use of separators and two fields that extend to the full width of the action dialog. The separators for Parameters and
Source are here used as alternatives to labels for the fields below them.

grid (configurable multi row inputs)

The grid input style is presented as a grid with user controls to add, remove and move rows. The columns that should appear in the grid are defined
by using any of the primitive styles: text, number, password, check, list and radio. The grid style is useful for data that allows the user to define
multiple entries. Examples are, defining columns that should appear in a table index, setup data files for a tablespace or databank.

This example shows a grid style definition that will ask the user for parameters that will be part of a create procedure action.

<Input name="parameters" style="grid">
 <Arg name="output" value="${direction} ${name} ${type}${_default}"/>
 <Arg name="newline" value=", "/>
 <Input name="name" label="Name" style="text">
 <Default>parm</Default>
 </Input>
 <Input name="direction" label="Direction" style="list">
 <Values>IN|INOUT|OUT</Values>
 <Default>IN</Default>
 </Input>
 <Input name="type" label="Type" style="text">
 <Default>nvarchar(20)</Default>
 </Input>
</Input>

256(261

Here is how it looks:

The sub elements for the grid style is different from the other input styles as it accepts sub <Input> elements. These input styles defines what
columns should appear in the grid and the first input style will appear to the leftmost and the last in the rightmost column.

This example doesn't specify the label attribute as we want the grid to extend the full width of the actions dialog. The grid style use the <Arg>
elements to customize the appearance and function of the field. The following arguments are handled by the grid style:

• output
Defines the output format for each row in the grid. The value may contain variables and static text. To create conditional output check the
<SetVar> element below

• newline
Defines the static text that should separate every row in the grid. A "\n" somewhere in the value will be converted to a true newline in the
final output

• rowprefix
Specifies any prefix for every row in the grid

• rowsuffix
Specifies any suffix for every row in the grid

The resulting parameter list is created automatically by the control and is available in the variable name specified in the example to be parameters.

The <SetVar> element in the context of a grid style is used to process the data that will appear as defined by the <Arg name="output"> element. It
is used to process the data for every row in the grid. Let's say that the output must contain the word "default" if the value in a column named
"Default" is entered. <SetVar> is used to handle this:

<SetVar name="_default" value='#default.equals("") ? "" : " default " + #default'/>

The #default input value is here evaluated and if it is not empty the " default " text s prefixed to the value of the #default value. The result is stored in
the "_default" variable which is also refered in the output argument above.

257(261

<SetVar>

The SetVar element is very powerful, as it is used to do conditional processing and create new variables based on the content of other variables.

Consider an SQL statement for creating new users in the database:

create user 'user' identified by 'password'

In this case it is quite easy to map the user field to an Input element for the action since it is a required field. The question arise for password which
is optional. The identified by clause should only be part of the final SQL if the password is entered by the user. The solution for this scenario is to
use the SetVar element. Here is the complete action definition:

<Action id="mydb-user-create" label="Create User" reload="true" icon="add">
 <Input label="Userid" name="userid" style="text"/>
 <Input label="Password" name="password" style="password"/>
 <SetVar name="_password" value='#password.equals("") ? "" : " identified by \"" + #password + "\""'/>
 <Command>
 <SQL>
 <![CDATA[
create user ${userid} ${_password}
]]>
 </SQL>
 </Command>
</Action>

The SetVar element accepts two attributes:

• name
should specify the name of the new variable

• value
this should contain the expression that will be evaluated. The expression is based on the OGNL toolkit provided by www.ognl.org. This is
an expression library that mimics most of what is being supported by Java. Variables are referenced as #variableName.

The expression in the example above checks whether the password variable is empty. If it is empty, a blank value is being assigned to the
_password variable. If it is not empty, the value for _password will be set to identified by "theEnteredPassword".

The SQL in the Command element now refer the new ${_password} variable instead of the original ${password}.

It is recommended that variables produced via SetVar elements are prefixed with an underline (_) to highlight were they come from.

<Confirm>

The Confirm element is displayed to the user when a request to Execute the action is made. If there are only read-only input fields in the action, this
message is displayed in the body of the action dialog. The message is displayed in a confirmation dialog if there are editable fields.

<Confirm>Really drop table ${table}?</Confirm>

Note that the message text can be composed of HTML tags such as , <i>,
, etc.

<Result>

The Result element is optional and if specified, it is shown in a dialog after successful execution.

NOTE: Result elements are currently not displayed in DbVisualizer. It is however recommend that you specify these as they will most likely appear in
some way or another in a future version. If you want to test the appearance of Result elements then open the DBVIS-HOME/resources/dbvis-
custom.xml file in a text editor and make sure dbvis.showactionresult is set to true.

<Result>Table ${table} has been dropped!</Result>

258(261

http://www.ognl.org/

• The Result message will be displayed in a dialog after successful execution.
• If the execution fails, a generic error dialog is displayed and the Result is not displayed.

<Command>

The Command element specifies the SQL code that is executed by the action.

<Command>
 <SQL>
 <![CDATA[
drop table ${table} mode ${mode} including constraints ${includeconstraints}
]]>
 </SQL>
</Command>

Conditional processing

Conditional processing means that a profile can adjust its content based on certain conditions. A few examples:

• Which version of the database it is
• The format of the database URL
• The client environment i.e Java versions, vendor, etc.
• User properties
• Database connection properties

Conditional processing is especially useful for adapting the profile for different versions of the database (and/or JDBC driver). Another use for the
conditional processing is to replace generic error messages with more user friendly messages.

Programmers familiar with if, else if and else will easily learn the conditional elements.

Depending on in which of the two phases the conditions should be processed, some restrictions and rules apply. Please read the following sections
for more information.

When are conditional expressions processed?

There are two phases when conditions are processed:

1. Conditional processing when database connection is established
<If>, <ElseIf> and <Else> elements can be specified almost everywhere in the profile.

2. Conditional processing during command execution
The <OnError> element is used to define a message that will appear in DbVisualizer if a command fails. Conditions are used to control
what message should appear.

DbVisualizer uses the type attribute to determine which If elements should be executed in which phase. If this attribute has the value runtime, it will
be processed in the second phase. If it is not specified or set to load, it will be processed in the first phase.

Conditional processing when database connection is established

The following example shows the use of conditions that are processed during connect of the database connection.

<Command id="sybase-ase.getLogins">
 <If test="#DatabaseMetaData.getDatabaseMajorVersion() lte 8">
 <SQL>
 <![CDATA[
select name from master.dbo.syslogins
]]>
 </SQL>

259(261

 </If>
 <ElseIf test="#DatabaseMetaData.getDatabaseMajorVersion() eq 9">
 <SQL>
 <![CDATA[
select name, suid from master.dbo.syslogins
]]>
 </SQL>
 </ElseIf>
 <Else>
 <SQL>
 <![CDATA[
select name, suid, dbname from master.dbo.syslogins
]]>
 </SQL>
 </Else>
</Command>

The above means that if the major version of the database being accessed is less then or equal to 8, the first SQL is used. If the version is equal to
9, the second SQL is used, and the last SQL is be used for all other version. The test attribute may contain conditions that are ANDed or ORed.
Conditions can contain multiple evaluations, combined using parenthesis. The If, ElseIf and Else elements may be placed anywhere in the XML file.

Here is another example that controls whether certain nodes will appear in the database objects tree or not.

<!-- Getting Table Engines was added in MySQL 4.1 -->
<If test="(#dm.getDatabaseMajorVersion() eq 4 and #dm.getDatabaseMinorVersion() gte 1)
 or #dm.getDatabaseMajorVersion() gte 5">
 <GroupNode type="TableEngines" label="Table Engines" isLeaf="true"/>
 <!-- "Errors" was added in MySQL 5 -->
 <If test="#dm.getDatabaseMajorVersion() gte 5">
 <GroupNode type="Errors" label="Errors" isLeaf="true"/>
 </If>
</If>

As you can see, this example contains nested uses of If.

Conditional processing during command execution

Using conditional processing to evaluate any errors from a Command may be useful to rephrase error messages to be more user friendly.

<Commands>
 <OnError>
 <!-- The ORA-942 error means "the table or view doesn't exist" -->
 <!-- It is catched here since these errors typically indicates -->
 <!-- that the user don't have privileges to access the SYS and/or -->
 <!-- V$ tables. -->
 <If test="#result.getErrorCode() eq 942" context="runtime">
 <Message>
 <![CDATA[
You don't have the required privileges to view this object.
]]>
 </Message>
 </If>
 <ElseIf test="#result.getErrorCode() eq 17008" context="runtime">
 <Message>
 <![CDATA[
Your connection with the database server has been interrupted!
Please reconnect to re-establish the connection.
]]>
 </Message>
 </ElseIf>
 </OnError>
 ...
</Commands>

260(261

The OnError element can be used in Commands and Command elements. If used in Commands element, its conditions are processed for all
commands. If it is part of a specific Command, it is processed only for that command.

Current limitations

• The SQL statements in the profile must be statements that DbVisualizer can execute with JDBC. It can not contain any executables,
scripts or OS specific calls

• It is not possible to specify conditions or compound commands, i.e., everything needed to execute a command must be expressed in a
single SQL statement.

261(261

