g DbVis Software

DbVisualizer 7.0

Users Guide

Copyright DbVis Software AB

http://www.dbvis.com

Table of Contents

Getting Started and General OVErvIEW.........coooi i 8
L[] (g Te [0 o1 11o] o ISP U PP OUROPRPPPRIN: 8
Installing ...8
QTS ez 11 P=Y o T IS (U o3 (1 | = T 8

Yo Lo =1l U] o= o =TT SRS P PRSP PRROPPRROP 8
Install license key for DbVisualizer Personal.. .9
UNINSTAIIING the ICENSE KEY ...ttt ettt b e bt et e st e bt e £ e £ 2 st e bt e e £t e st e e bt e e bt e e st e bt et e e ae e e bt et e e ss e e bt et e e st e bt enteennes 9
Useful Resources..... .10
Starting DbVisualizer............ .10

Command line arguments..... .10

PUre COMMANG INE INEEITACE ... oottt a e et a e o2t o2 bt et ea bt o1 bt e e bt e a bt e e bt ea bt ea et ea bt ea bt e abeen bt enbeenbeenbeenteeneeenn 10
The Main Window and COmMMON COMPONENTSiiiiieiiiiaitie et e eieeaaeeeaeeeaaaeeaasaeeaaaseeateeaasseeaabeeeameeeaaseeeaaseeeamseeanseeamseeeaneeeamseeeamseeaneeesnneeeanneaannen 1"

Standard Components in the User Interface... .12

Grid, Graph and Chart..........cc.cccovveneen.

Context Sensitive Components...

TOOMIPS. ..

Grids........
IS To (19T PSPPSR UPRRPRNt
(Ao a1 ctod ot 1 1 1=Y o 1F SRRSO URRPRRTRRPRRPR
Aggregation Data for Selection
Column Visibility.........cccccceeene
U o3 LT - SRR
L@ Tt S 1 Y OSSP SPPTUPRUSPRINt

Print ...

Printer Setup........c.cccoeeeee.

Grid, Chart and Plain Text.....

Graph......cocoiiiiiie,

Print Preview............... .
[0 1=l (T g To i {o 0T oTo F=1 (=T TP UPOPRPR
[olo =T g I = TTo] (U (o] o PRSP PUPURRTOTRRNY

Debugging DbVisualizer...........cccccoceeiiinnnnen.

How to satisfy the DbVisualizer support team 22

Load JDBC Driver and Get Connected...........cccciiiiiiiiiiiiiiinnnis s 24
1] g Te [0 o1 11o] o P OO TP UPRTOTSPTPPRN 24
L= LR = TN = T O B4 =Y o TP P RO PPR PP 24
Get the JDBC driver file(s). .24
Connection Wizard............ 25
Driver Manager........... .. 30

JDBC Driver Finder.........cccocovviiiiiiincns ...30

Loading and Configuring Drivers Manually .. .32

S TCT (T o= BB {0 [Y= T PO PSI 33
JDBC drivers that requires several JAR OF ZIP fllES.........oiii ettt ettt 34
The JDBC-ODBC bridge.......ccooveiveiiiiieiieiieieee

Loading JNDI Initial Contexts .34

Errors (Why @re SOME PAthis FEAT)ottt et h et e b e h e e bt et e oo b e et e e et e bt et e e bt e e bt et e e et eeb e et e e te e bt e naeenes 35

Several VErSioNS Of tNE SAME IVeiiiiiii ettt a bt et h e bt e bt oo bt e b e e bt oo bt e bt e bt e eh e e bt e bt e eb e e bt e bt e bt e bt e be e bt e nbeeteas 35
Setup a database connection................ .35

Setup using JDBC driver...
Setup using JNDI lookup...
Connection Properties....

Database Profile...

LI 0T 0= (1Y TSR SSPPSRRE 40

Driver Properties fOr JDBC DIVcoiuiiiiiie ittt ettt ettt e h et e sas e e £ he e e a2 bt e e 8b e e 22t e e 2R b e e 2a b e a2 ea bt e 2 s e e e eab e e e anb e e ease e e embeeanbeeennneeenneeenn 40

Driver Properties for JNDI Lookup..... .41

Always ask for userid and/or password....... .42
Using variables in the Connection details..... 43
Connect to the Database............ccccceevereennne. .44
(07013 o I=Tor ([T TS @ =Y 1o TP PP PPRPROPROPR 46
(D F=1 221 o T= =3 0. o T=T 2 o o Tq o] (o] o - 47
[(oo 18 T3 o] o RN 47
Create a Database Connection...... 48
Database Connection object.... 48
AlaS......coo oo 48

Default database @nd SCREMIA ..ottt a et h e a e a e o1 et e h e eh et e h b e e st eh et e Rt e e bt e eae e e bt e e et e ehe e bt e bt e nneeene e 48
Remove and copy database CONNECHION ODJECLSo.uii ittt e ettt e ettt e e s bt e e te e e eat e e e ne e e saneeeeaeeeanneeesnneeaneeans 49
Database Connection detailed information............ .49
SEArCN...cuiiiiiiiiie 49
Organizing Database Connections in Folders.... 50
Connections OVErVIEW...........ccceecuieveeiueneeenne. 51
Database Objects Tree...... .52
Sy =T o E= T (o o o 1SR PPRUPPR 52
Lo 1= 72 1o TSP SURSURR 53

(0] 00297 AT @] o] 1To1 02N o1 [o -SSR 54
[0TSR F=1 o1 TSSOSO PRSP OPRROPPROOt 54
Create Index.......... .54

Import Table Data.. .54

Export Table..............c........ .54

Script Object to SQL Editor...... ...55

Script Object to New SQL Editor. ..55

(O o) (Te e N E T] Y T T TSP UPR PP 55

ST aTo LT = ol (= oY A o U | RPN 56
Object Tree Icons........... ...56
Database Profiles.................... .57
Database Specific Support... .57
Generic profile..........ccccuee.n.... .57
Catalog/Database object 58

Yol 1Ty 1 b= e o] 1= SO PSSR 59

L 03[o] 1= 1 PSPPSR 60
Procedure object... .61

Object Views........ccceee. .62
Lo SR 62
[o] 1o 1 TP TP PP VSR PPRN 63
Source......cceeueennee .64
Table Row Count.. .. 65
Table Data................ ...66

Right-click menu ..66
Where Filter....... 67
(@ U1 To3 Q) 1 =T OO USROS PSPPSRI 69
1Y o a Tk (o] gl o VYA oto 1 Lo | OO OO TR TP ROPPPPTRRPNY 71
Editing.......ccccevenen. .11

DDL Viewer....

References..... 12
Navigator............... .13
LYot Yo [Ty SN o] (o PSSP PPP PP 73

£ 8 T 0o 4 1 5 7= 15 U (=Y 75
0T [o3 T PSRN 5

Physical Database Connections and Transactions..

EdItOr. o .16
Database Connection, Catalog and Schema.. W17
Limiting Result Set SiZe (IMAX ROWS/CREAIS)..........uii ittt ettt et e bt e e ae e e o2 st e e oh e e e 42 be e e ehb e e e bt e e eh bt e e ke e e e mbeeebbeeenbeeanbeeenneenn 78
Load from @Nd SAVE 0 fIlE ...ttt a e h e b bt h b h e h et e e h e h b e bt bt e bt e bt nh e bt et na et e ees 79

Load Recent................

Quick File Open.
= [(o]l o =Y (=T (=Y g Tt SRRSO SRSRRRRRRROY
LAY L1 0] L= L1 o] PRSPPI
Permissions..............

Charsets and Fonts.. .81
Key Bindings............... .82
Client-Side Comments ...83
Auto Completion.......... .83
ST 1 Ty 1 (= PP U PSPPSR 86
L 115 (] YU OUROTR 87
Bookmarks.. .87
Execution................. .87
SQL->Execute................ .. 88
SQL->Execute Current... ..88
SQL->Execute BUffer...........ccoooiiiiiiiiiiiieceeceee ...88
SQL->Execute Explain Plan (Oracle, SQL Server and DB2)...........coui it sttt e e s s 88
Auto Commit, ComMMIt @NA ROIDACK...........cooiiiiiie e e ettt e e e et e e e ettt e e e e e e e e e e aae e e e e e asa e e e e e essneeeeeansaeseesensneeeeas 91
SQL SCriptS...cccvveiieeiieiiieiieseeseeieee 91
Execute Large SQL Scripts... .92
ANONYMOUS SQIL BIOCKS ...ttt ettt a e a e et e et eh e h e e h e e oot ea e e b4 e h bt e et e e b e oo et e eae e ee e e eat e eat e e aeeeeeeeaeeseeeeeneeaneeine e 93
(e C=To e oToT=To [N T PP PR U PRSP 93
Client Side Commands................... 93
@run - run SQL script from file.......... 94
@cd <directory> - change directory... .94
@export - export result sets to file.................. .94
Example 1: @export with minimum setup..........ccccoooiiiiiiiiiiiii, ..96
Example 2: @export with automatic table name to file NAaME MAaPPINGoiiiiiiiii e 96
Example 3: @export all result sets into @ SINGIE filE ..ottt et 96
Example 4: @export using predefined settings............. 97
@delimiter - Temporarily change the statement delimiter.. 97
@call - Execute a function or stored procedure................. 97
@echo - Echo text........ccoiviiiiiiiiicce 98
@window iconify - Iconify the main window.... .98
@window restore - RaiSe the MaiN WINGOWiiiiiii ettt ettt ettt e bt e bt e bt e bt e bt e bt e bt e te e beeebeenbeeabeebeeneeaneenbeeseans 98
@desc table - Describe the COlUMNS IN ADIEooii ettt ettt ettt b ettt er et 98
@ddI - Generate DDL COMMENG. ..ottt ettt eh e bt et e e bt e bt e bt e b e e bt e bt e eh e e b e e bt e eh e e b e e bt e eh e e b e e bt e nhe e b e e beenheeebeeeseenbeenteenn 98

(@ oToTe W oo TR = VTN [o i (o 1 1 USSR 98

@stop 0N error - StopP EXECULION if @NY EITOI OCCUIS ...ttt ettt ettt ettt ettt e bttt e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e beenteebeebeateanne 99
@stop on warning - Stop execution if any warning occurs. .99
@set autocommit - Sets the auto commit state................... .99

@commit - Commits the current transaction...

@rollback - Rollback the current transaction.............cccooieiiiiiiiieiiie e .99
@set serveroutput - Enable/disable the DBMS output management for Oracle .99

RV 14 =] o] [T PSR P P PPRUPPPN 99
RV 1y = o] (IS o1 = b PP R SRR 99
Pre-defined Variables.............ccccocvvveeeennnn.100
Variable Substitution in SQL statements..100
Parameter Markers...........coccoooiiiiiiieeiinee103
OQutput View........ccccueee..104
(oo TRRNTR ...104
[ol ez 1 (4] L= USROS PPPUURTUTSRN 105
U o 3o == T [o USSR 105
Result Set................. ... 105

Result set menu. 107
10 g PSSR 108
Multiple result sets produced by a single SQL StAtEMENT...........c.coviiiiiii et 108
TOXL. e 110
Chart......ccceoereenns ..
(3] S O TN (o0 (= el 1= PP PP PP
L LT = Y = U] e 1=
LYoo 0T 1o o OO P PP PPOPROPIONE
Current Limitations...
Creating a Query............
Adding Tables....
Joining Tables....................
Manually Joining Tables........
JOINING TabIES AULOMALICAIIY ...ttt ettt e he e et e ettt e e bt oo ab e e e be e e et et e et e e e be e e enne e e sneenanneenne
Lol o] o 1= T4 1TSS PP PP PP UPPPPP
Remove Tables and Joins..
Query Details.....................
Columns......
Conditions...
Grouping.....
S To {1 T PSP PPRTUPPN
ST 1 1SS
Testing the Query..........cccvcvvieiciennns
Loading a Query from the SQL Editor-...
Properties controlling QUETY BUIIAET ...ttt ettt et ettt et ettt et et et e et e et e et e e e eaneeaeean
Express joins as JOIN clause or WHERE CONGITIONoiuiiiiiiiiii ettt b ettt na et e et e bt et e e b e naeenbeenes 121
Table and Column Name qualifiers............cccceeveene ...122
Delimited Identifiers.............c......... .. 122
(DI To IS Y (S R= Ta Tl DI E=To = 10 B T USRS RPROPR 122
Bookmarks and HiStory ... 123
[g (oo 18 T3 o] o 123
Bookmarks
Creating, Editing and Organizing BOOKMAIKSc ..ttt etttk e oot ee e s et e eae e e e ae e e aabeeeeheeeeabeeeambeeamseeeambeeasseeanseeanseeanneaaanen 124
LYoo T = o To] N 4= T SRRSO 124
Adding a Bookmark as a Favorite.... ... 125
Sharing Bookmarks...........cccccceueeenee ... 125
115 S SURRR 125
REUSING @ HISTOIY BNy ..ttt ettt ekt e e ettt e st oottt e o et £t 42kt e 2ot e 44 ohs e e 4o bt e ook b et e be e e en b e e e ab e e e abe e e e st e e ebneeeae 126

Saving a History Entry as a Bookmark..
Quick Load

Monitor and Charts...........co s mn e e e e nnns 128
1 (o 1o 1 () o USSR 128

[ToT gl (ol =Y IS @ IS =1 (=Y o g =T | SO PP PSP 129
Creating, Editing and Organizing Monitored Statements130

Monitor table row count.............cccoveeiiiiiiiccec e
Monitor table row count difference..

Layout...

Introduction........ccccoeeeeeviieeeiinns
Create Table

(070] 170 0T TS ¢= o J PSSR 139
[L0 E= T S CE VA €= o O PRSPPSO P PR PPRPPPRUPPPON 141
Foreign Keys tab..........cccoiiiiiiiceiiee
Unique Constraints tab (database-specific)....
Check Constraints tab (database-specific)..
Indexes tab (MySQL only).........ccccoeeriennnens
SQL Preview.........cccccuc......
EXECOULE......e ettt h et h e H e a bR H e e e e
AR TADIE...... ettt a o4t e h b e e et e e 4t e e a e ea e e o4 e e e H e e e h e £ eh e £ e h e e oMb £kt e e he e a e e e Rt e eh e e e a e e e bt e e he e ae e bt e he et e ehn e et e e e aiee e

o [1= 1 o (=30 .- -

[g1 (geTe [0ex 1] o PP PVPRTOPSRINY
Features that support editing .
Update and Delete must MatCh ONE taDIE FOWooi it e e e ettt e e et e e e e st eeeantae e e e e snsteeeeesnnseeeeeennneeeeas 147
=L LY UL o] L= e PRSP UPRUPRN
Data Type checking..................
New Line and Carriage Return.

Grid Editor.......ooeiiieiieiiieeeceee
Insert row....

Update row.....
(D=1 1=) Lo (oY () TP PRP PSPPI
(D0 o] o= 1 LN {0 OO OO PP PO UROPRRRUROPRO
COPY/PaSte......coveiiiiiiiiicece e
Paste data from Excel and OpenOffice
Insert pre-defined values (Set SEIECIEA CelIS) ...ttt ettt a e bttt b e bttt e bt e bt et e e aeenreete e 151
Lo T T o1 SRS 152
Key Column(s) Chooser. .. 152
Preview Changes...........153
Saving Changes............. ... 153
Transaction Control.. 153
Permissions.............. 154
o TRV UPRPRRPRRPRO 154
oL a T o1 (o AV = Y TP PT PP UUPPRUPPNS 154
Cell Editor/Viewer.... 155
Binary/BLOB 156
Image Viewers... 157
XML Viewer........cccoceveviieneenen. 157
Serialized Java Objects Viewer...158
HEX VIBWET ...ttt ettt ettt ettt e e e o2ttt £ h £t e Sa ke 44 oh s £ 442 be £ £ 4h s £ a4 abe e e oAb e e £aE s e e oAb e e 2Rt e e oAb et £ s bt e ea b et e eab e e e se e e ehbe e e ean e e enbe e e nnneeanee 158
Large texXt dat@/CLOB.........ooiiiie ittt ettt h e a et e e h e h £ ekt e h e R e e £ e e eh e R £ e Rt et e e b £ ekt bt eh e e b e e e e bt e bt nhe e nh e et nae et e eaee s 159
Import from File ... 160
o do Lo i (o N 1= TP PRSPPI 160
Table Data Navigation..........cccceeriiiiiiiiiieirr s n e 161
[g1 Te [0 o1 11o] o PSSO UU PPV PRTOPSPIOY 161
(D= 1= W A=AV T - Lo o HO TP 162
Adding Context Information to the Graph. 164
Arranging the Graph...........cc.ccoooiiienne.165
Exporting and Printing the Graph...166
Procedure Editor ... s s s s s rs e s s s s e s s s se s s s s s e e e e e e nmna s e e e e e s e e nnnnnnn s aeeernennnnnnn 167
[(geTe [0ex 1] o PSSR P UPRTOPSRNY 167
Create Procedure. ...167
Edit and Compile................... ...169
Execute in SQL Commander... L A71
Script CALL to Editor................ .73
LI T LI o o 1= = 174
Customizing DbVisualizer.................... 174
The user preferences (XML) files... 174
Export Settings..... 174
Import Settings...... 175
General Settings... ... 176
F Y o] o =T= = ot S PSPPSR 177
[o101 (PP PTUPRR 179
Key Bindings............ 179
Database Connection.. 181
Driver Manager........ ...182
Permissions........ccccveeveeeeeeeieeeeeee, 182
SQL Commander Permissions....182
Table Data Editing PEIMIUSSIONS........co.iii ittt ettt ettt e ettt eeate e e s e e e eae e e e ae e e aas e e e eae e e e abe e e ek e e e e mbeeeaRbeeebeeeambeeaseeeanseeaanseeanneaaanes 183
B 413074 o] o = RN 183
File Encoding.. 183
Data Formats........cccoooiiiiiiiiiiceeeee 184
Date, Time and TimMeESTAmMIP fOMMIALScciuiiiiiie ettt e et e e sttt e et e e sseeeeaseeeasaeeeaseeeensee e seeeanseeeanseeanseeeanseeenneeanneaenneeeanneeenns 184
N U] oLl o] 44 F= £SO UR PSPPI 185
Table Data................ 185
Transaction. ...185
Loy o) (TSSO PTSUUPOPRRRTRROOt 185

Lo T4 g ATV A= SRR PRSPPI 185

Grid............. 186
Copy..... 186
COlOrS...oieiiieciieeeee e 186
Binary/BLOB and CLOB Data..186

SQL Eitorccvveeeeeeeeeeeeee e ... 187
StAtEMENT DEIIMILEISeiiiieiieie ettt e e e e e e e easeeeeaseeeaaeeeeaseeeaseeeesbeeeasseeesbe e e st e e aasseanseeeasseeensaeanseeeenseaeenseeenneaesnneeannen 187
ST @ o T4 4= 1] Vo T TP PPRRUPPN 187
Auto Completion... 187
Comments.........

Variables............

Proxy Settings...

Database Settings....

YU =Y g (o= i o) o DSOS O PP UPRRTOPPPR

[LY T (= To I [0 [T Y] 1T SRR

Qualifiers..................

Physical Connection
L= 0 ET=Tex o o PSSR

S OIS =1 (=100 1T ST UR RO PRRRPPRRRPPRIOY

Connection Hooks....
Objects Tree Labels.
SQL Editor......

Query Builder...........cc......194
Database Specific settings ..194
(D e R Yo LT (@ = T 1= PSSP PRSI 194
Data Types (DB2 and JAVADB/DEIDY)..........eiiiiieiiieaeiiie ettt ettt ettt e et e e aee e st et e aaeeeeaae e e eas e e e be e e easee 2 beeeambeeamseeeambe e e naeeemseeeanseesnneeenneeean 194
Explain Plan (Oracle, SQL Server and DB2).. ..194
Explain Plan (Oracle).........ccccoovieiiinieneeinne. ...195
Explain Plan (DB2)...... ...195
Objects Tree (Oracle).....195
=54 o T Tt A= g Lo I 15 0 X o T o 0 ...196
Introduction...........cccceeenine196
Export Schema........196
Output Format...... .. 197
Output Destination
Object Types
(@] 0] 11o7a PSPPSR PRSPPI
T] oL T ST P TSR U RSO PRSPPI
Logging....
Export Table.......
(o To g A Gy T o - = OSSO TSRO P PO P UPROPO 201
ST aTe T o= T [TSRS PPRURRTRPRNE 201
Output Format 202
Encoding......... .203
Data Format... 203
Quote Text Data. 203
Options.............. 204
L OO T PP PRSPPI 204
L L OSSOSO PO TP RO PSP 204
SQL.. 204
XML.. 205
XLS.... 205
Settings....205
Data page........cccccevuveennn ... 205
GENETAE TEST DALA. ...ttt h e a e h b oo h e h e e e h e e e he e h e e e b e e ek b e e h e e b e e ekt e e et ekt e e ie e ea 206
Test data GENETrator EXAMIPIE..........oui ettt et ettt a et e bt e et e e as e et e et e et et e ettt e a ettt e ne et 207
Preview.........ccooviiiiiiii
Output Destination
EXPOIT TEXE AAEA ...ttt a e et a e a e e et e et eh e ea et e et e ea et eh e e e h st e et e ehe e e et ea et et e et eh et et e ettt e et eeee
L qoTo T u T =T o) T =1 c- SO SSSSRPR
Export Chart data.....

Import Table Data.
Source File..

Settings..........

Data Formats........

Import Destination

[T oTo] i o (e ToT=]S PP PRSPPSOt
Exporting and Importing Binary/BLOB and CLOB Data.. ...220

Exporting Binary/BLOB and CLOB Data.................. ...220

Importing Binary/BLOB and CLOB Data..... ..221
Using Variables and Exporting to Multiple Files....... B 221

Database Profile Framework............ooo s . 222

L1 (g Te [0ex 1T] o DS UPRROPSRNY 222
What features in DbVisualizer relies on the database profile?..... ... 222

How does DbVisualizer know what database profile t0 USE?............ooiuiiiiiii ettt e e et e e e e s e e e b e e snaeeeeseeeennes 223

DY I (U Tox (N YRR SSURRRRRONY 224

DY 1T = 11 (o o PSP PRRSUPRPRTNS 225
<DatabaseProfile> ... 226
<InitCommands> - Initialization commands..................cccvee..... ...227

<Commands> - The SQLs used to interact with the database.....

SCOMMEANG> ...t ..228
Result set.......ccccocvvveeviiiiiiiieeeees ...228
<INput> - Setting COMMEANT INPUL ...ttt ettt h e ekt et e bt e bt e bt e bt ekt e bt e h e e bt e bt e e bt e bt e beeebe e bt e bt e naeeebeenns 229
<Output> - Redefine COMMEANA OUEPULottt ettt e ettt e e s et e ettt e e at e e e st e e embe e e eae e e e be e e emse e e abeeeambeeenbeeaneeeeanneeanneean 230

<ObjectsTreeDef> - Definition of the Database Objects Tree.. .. 231
<GroupNode> - Static objects used for grouping............... ...232

<DataNode> - Dynamic objects created via SQL..... .. 232
<COMMANA>....oooiiieiieeeeeeeeeeeeeeeeeeeen233

<Filter>..... ... 233

ST A= LR R PP 234

<ObjectsViewDef> - Definition Of the ODJECE VIBWS.......cooviiiiiie ettt e st e et e e st eesse e e e st e e aseeeeseeeanseeeaneeeanseeennseeenneaennseeanneeenns 235
<ObjectView>

<DataView>....
VIBWELS. ...ttt e e ettt e e e oottt e e e ettt e e e e aatee e e e eaaee e e e e ateeeeeeaateeeeeaateeeeeeetteeeeeaeateeeeeeatteeeeeaeaeaeeeeaatateeeeaanteeeeeataneeeeenrreeens

Lo L T TSP P TP UPPRPPN

text.....

form..........

node-form.... .

table-refs..... 242

tables-refs.... ...243

L2210 L=RT e = = F PP PP PP UPRPURON 244

L= o] L= T 1 U o | SO RR USROS 245
<Command>......... 246
<Message>........... 246

Extending ObjectView.
<ObjectsActionDef> - Definition of user actions

Variables........ooooiiiiii
R ave1 (o] L] (o T o bR S PSPPI
B A1 o S PRSUER
<Input>......ccovverens
text (single line)
LES =T L1 (o (0 0T LN 11 T TSP SSSUSPSR 253
L1 0] o= S USSP PTROPRRPPRO 253
PaSSWOIdccevuveeaiieeiiieeien.253
list (large number of choices).......253
radio (limited number of choices).............ccc...... ... 254
check (true/false, on/off, selected/unselected)254
separator (visual divider between input controls) . 254
grid (configurable MUILE FOW INPULS).......ciueiiii ittt a et h e h e h e bt ekt eh etk e e Rt e h e e bt e eh e e eae e e bt e ebeeebe e e bt e eneeeneeabeenes 255
ST A= LT PR 257
<Confirm>... 257
<Result>...... 257
<Command>... 258
Conditional processing.........ccceeveeverieeieeiieneeene258
When are conditional expressions processed?...........ccccvvveevveeeiieeennenns258
Conditional processing when database connection is establiShEdoi e 258
Conditional processing during COMMEANT EXECULIONt ittt ettt ettt ettt e ae e ae e et e e eae e eaaeeseeese e eaeeaseeeseeeaeeaaeeenneeaneaaeeens 259
[Ny =YL [T g T =TT PSPPSR PP 260

7(260)

Getting Started and General Overview

Introduction

DbVisualizer is a feature rich, intuitive multi-database tool for developers and database administrators, providing a single powerful interface across a
wide variety of operating systems. With its easy-to-use and clean interface, DbVisualizer has proven to be one of the most cost effective database
tools available, yet to mention that it runs on all major operating systems and supports all major RDBMS that are available. Users only need to learn
and master one application. DbVisualizer integrates transparently with the operating system being used.

This document gives a overview, installation tips and general information about the product.

The screenshots throughout the users guide are produced on Windows XP using the Windows Look and Feel, but DbVisualizer lets you choose
among other Look and Feels as well.

All documents in the Users Guide are primarily focusing on the DbVisualizer Personal edition. Some of the described features are not available in the

Free edition.

Installing

Installing DbVisualizer is no different then installing other modern products. The standard installation procedure is performed using a graphical
application, and you just need to click through the questions that are displayed. Follow the instructions at the DbVisualizer web site if you need
information on how to start the installation procedure specifically for your platform.

Installation structure

The installer and launcher for DbVisualizer is based on the install4jTM product (http://www.install4j.com). The structure of the installation directory
(referred as DBVIS-HOME throughout the users guide) contains the following. (The exact content may differ between platforms):

.install4j/
doc/

jdbc/

1lib/

resources/
wrapper/
dbvis.vmoptions
dbvis.exe
README . txt
uninstall.exe

The dbvis.exe file is used to start DbVisualizer. The remaining files and directories are only of interest if you need to do nonstandard customization.
For information on how to increase the memory for the Java process that runs DbVisualizer, and also on how to modify the Java version being used,
please read the online FAQ for the latest information.

Special Properties

DbVisualizer utilizes a few special properties that you can use to modify characteristics of the application. These properties are available in the
DBVIS-HOME/resources/dbvis-custom.prefs file.

lYou rarely need to modify these properties, as the default values are sufficient for most usage.

The following are the properties handled by DbVisualizer:

Property Description

8(260)

http://www.dbvis.com/products/dbvis/install/install.jsp
http://www.dbvis.com/products/dbvis/faq.html
http://www.install4j.com/

dbvis.disabledataedit=false

dbvis.driver.ignore.dir=lib:resources:.install4j

dbvis.grid.encode=false

dbvis.grid.fromEncode=1S08859_1

dbvis.grid.toEncode=GBK

dbvis.removepartialresultsets=false

dbvis.savedatacolumns=false

dbvis.showactionresult=false

dbvis.sqlwarning.maxrows=5000

dbvis.usegetobject=false

dbvis.usestandardgridfit=false

dbvis.-ConnectionTestTimeout=20

dbvis.<database>.-RemoveNewLineChars=false

locale=en,us

Specifies if table data editing should be completely disabled, i.e. the form and inline editors.
Note: This has an effect only when used with a licensed edition.

Specify directories from DBVIS-HOME that should not be listed in the Driver Manager "System
Classpath" list. Directories are separated with ":".
Accepted values: one or several directory names starting from DBVIS-HOME.

Specifies if encoding of data in result set grids will be performed or not. If set to true then make
sure the dbvis.grid.fromEncode and/or dbvis.grid.toEncode are also set.

Encoding used when translating text data that is fetched from the database

Encoding used when translating data that will appear in the result set grid

Defines whether the result set(s) should be removed when interrupting an ongoing execution in
the SQL Commander.

Column layout changes such as reordering and/or visibility are saved for all grids in the Objects
Views *except* for the "Data" grid. This property can be used to also include the layout in the
"Data" grid. Note: This will result in DbVisualizer saving the layout for each table that is
displayed in the Data grid = huge XML file...

This defines whether the result for all actions should be displayed or only failures (default).

Defines the number of SQL Warning rows that should be processed before truncating.

Specifies if the generic ResultSet.getObject() method in JDBC will be used in favor of the data
type specific get methods or not. Default is false.

Enable this property and DbVisualizer will use an accurate but slow method to automatically
resize grid columns. "Accurate" since it does a real calculation of the columns width. If leaving
this property disabled then column widths are determined much faster but depending on what
grid font is used some columns may be truncated with "...". This property has an effect only if
Tool Properties->Grid->Auto Resize Column Widths is enabled

The timeout in seconds for the "Ping Connection" feature.

Backward compatibility setting used to specify that the SQL command will be trimmed of all
whitespaces, tabs and newlines just before it is executed by the DB server.

Use this to specify an alternate Locale.

These properties may change in future versions of DbVisualizer. Some are also experimental and may be removed or instead introduced in the

DbVisualizer GUI.

Install license key for DbVisualizer Personal

If you have a license key file for DbVisualizer Personal, then start DbVisualizer and open the Help->License Key window. Enter the name of the
license file in the License Key File field, or launch the file chooser by pressing the "..." button to the right of the license file field. Once the file is

loaded, press the Install License button.

Uninstalling the license key

If you ever need to uninstall the license key, you can do so by removing (or renaming) the following file:

9(260)

Operating System File Name

Windows C:\Documents and Settings\<user>\.dbvis\dbvis.license
UNIX/Linux /home/<user>/.dbvis/dbvis.license
Mac OS X /Users/<user>/.dbvis/dbvis.license

Useful Resources

Resources related to DbVisualizer that are useful:

The home of DbVisualizer

The FAQ which is regularly updated with frequently asked questions and known problems

The User Guide

The Databases and JDBC Drivers online page. This page gives information about supported databases and JDBC drivers
The DbVisualizer forums

The online problem report form. This is the recommended channel for product support and general questions

Sahob

Starting DbVisualizer

How to start DbVisualizer depends on the operating system you are using.

* Windows

Locate the DbVisualizer submenu in the Start menu. Select the DbVisualizer entry in that menu
* Linux/Unix

Open a shell and change directory to the DbVisualizer installation directory. Execute the dbvis program
e MacOSX

Double click on the DbVisualizer application or the DbVisualizer.app application bundle.

Command line arguments

You can also start DbVisualizer from a shell on all operating systems. On Windows and Linux/Unix, change the directory to the DbVisualizer
installation directory and run the dbvisgui command. On Mac OS X, you can use the open command like this:

open -a DbVisualizer-<Version>.app --args <Arguments>

The command supports a number of command line arguments. These are listed in the Help->About menu choice, under the Command Line tab, in
DbVisualizer.

Usage: dbvisgui [<filename>] [-encoding<encoding>]
[-prefsdir <directory>] [-help] [-version]

General Options:

<filename> SQL script file to load into editor
-encoding <encoding> Encoding for the SQL script file

-prefsdir <directory> Use an alternate user preferences directory
-help Display this help

-version Show version info

Pure command line interface

In addition to the DbVisualizer GUI tool, there is also a pure command line tool. We recommend that you use this tool for tasks that you schedule via
the operating system's scheduling tool, or when you need to include database tasks in a command script for a larger job. It is also the right tool for
execution of large scripts, such as a script generated by the DbVisualizer Export Schema feature.

10(260)

http://www.dbvis.com/support/supportform.jsp?product=DbVisualizer
http://www.dbvis.com/forum/index.jspa
http://www.dbvis.com/products/dbvis/doc/drivers.jsp
http://www.dbvis.com/products/dbvis/doc/databases.jsp
http://www.dbvis.com/products/dbvis/doc/main/doc/index.html
http://www.dbvis.com/products/dbvis/doc/faq/faq.jsp
http://www.dbvis.com/products/dbvis

On Windows and Linux/Unix, you find this command as a BAT file (dbviscmd.bat) or a shell script (dbviscmd.sh) in the DbVisualizer installation
directory. For Mac OS X, the shell script is located in /Application/DbVisualizer-<Version>.app/Contents/Resources/app .

Usage: dbviscmd -connection <name> [-userid <userid>] [-password <password>]
-sql <statements> | -sqlfile <filename> [-encoding <encoding>]
[-catalog <catalog>] [-schema <schema>]
[-maxrows <max>] [-maxchars <max>]
[-stoponerror] [-stoponwarning]
[-output all | none | log | result] [-outputfile <filename>]
[-1listconnections]
[-debug [-debugfile <filename>]
[-prefsdir <directory>] [-help] [-version]

Options:
-connection <name> Database connection name (created with the GUI)
-userid <userid> Userid to connect as
-password <password> Password for userid
-sql <statements> One or more delimited SQL statements
-sqlfile <filename> SQL script file to execute
-encoding <encoding> Encoding for the SQL script file
-catalog <catalog> Catalog to use for unqualified identifiers
-schema <schema> Schema to use for unqualified identifiers
-MAXrows <max> Maximum number of rows to display for a result set
-maxchars <max> Maximum number of characters to display for a column
-stoponerror Stop execution when getting an error
-stoponwarning Stop execution when getting a warning
-output "all" (default), output both log msgs and result sets

"none", suppress both log messages and result sets
"log", output only log messages
"result", output only result sets
-outputfile <filename> Script execution output file. Default is stdout
-listconnections Lists all database connections
-debug Write debug messages
-debugfile <filename> File for debug messages. Default is stderr
-prefsdir <directory> Use an alternate user preferences directory
-help Display this help
-version Show version info

Before you can use the pure command line tool, you need to create at least one database connection using the GUI tool. You need to specify the
connection to use with the -connection option when you run dbviscmd. If you have forgot the connection name, use the -listconnections option to
get a list of all connection names

The Main Window and Common Components

As you can see in the in the screenshot below, the DbVisualizer interface has a navigation area with two tabs (Databases and Scripts) to the left and
two tabs (Object View and SQL Commander) to the right.

Databases
This tab holds the Database Object Tree. It keeps (at the top level) all the Database Connection objects (or folder objects, used to organize
Database Connections). Use this tree to navigate and explore the database. Clicking on an object will change the view in the Object View
tab to show details about the selected object.

Scripts
This tab holds Bookmarks and Monitors, providing easy access to SQL scripts that you use frequently for different purposes.

Object View
This tab shows detailed information about the object represented by the selected node in the Database Object Tree. The content of the
Object View tab depends on the type of the selected object.

SQL Commander
The SQL Commander lets you execute any SQL statements and scripts.

11(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

.

IE DbVisualizer Personal - Untitled

File Edit View Database Scripts 5QL Tools Window Help

S HBa® 80 dk®

b ¢ | <Drop your favorite objects here>

Databases g Scripts

q [g] object view | [sqL commander

20 P 29N

License Details

“ Connections Product: DbVisualizer Personal
...... Orade Licensed to: World Inc.
...... DE2 LUW License id: 2009-12-09 [#1
------ MySQL Upgrade Expiration: 2010-12-11
------ JavaDEB Derby
Blﬁ',‘ Oradle servers

Orade test
COrade stage
QOrade prod

I
o
I

Getting Started

Latest news, documentation and FAQs are available at http:/fwvww, dbvis.com

Select Tools-=Connection Wizard menu choice to create a database connection,

Figure: The DbVisualizer main window

Standard Components in the User Interface

The following sections introduce generic features and components that you find in many parts of DbVisualizer.

Grid, Graph and Chart

Grid, graph and chart are three terms that are often used in the application and in the documentation. The following screenshots show what they

represent.

12(260)

49 EMF'LOYEE_IDIFIRST_NAMEILAST_NAMEI EMAIL

1 193 Donald OCaonnell DOCOMMEL

2 199 Douglas Grant DGRANT

3 200 Jennifer Whalen JWHALEM

4 201 Michael Hartstem MHARTSTE
oid s T R

ﬁ 203 Susan Mavrls SMM’RIS

T 204 Hermann Baer HBAER

8 205 Shelley Higgins SHIGGINGS

9 206 William Gietz WGIETZ

10 100 Steven King SKING

S8 _HETORY

4 DWPLOYEE D WLWEER 0]
& GTART_DATE DATE

[Serarmem. owssemo]
=

G000

500

400

Chart 300
200

100

0

Figure: The grid, graph and chart terms

The documentation uses the term grid for the user interface component that represents tabular data, rather than table, to avoid confusion with a

database table.

Context Sensitive Components

All components in the user interface (e.g., buttons and menu items) are context sensitive. They are enabled only if they can be used in the current
scope.

Tooltips

Tooltips are used to provide more details about a component. They are also used to express status information. An example is the grid column
header tooltip that shows information about the column. To see a tooltip, let the mouse hover over an area of the user interface, e.g., a button or grid
header. If there is a tooltip for the area, it will pop up in about a second.

13(260)

|-» EMPLOYEES (EMPLOYEE_ID)

NS (LOCATION ID)
MPLOYEES (DEPARTMENT_ID)

Figure: Tooltip example

Grids

Grids are used heavily in DbVisualizer and require a brief introduction.

Keyﬁcd!umnﬂmmi -Snrt{indicatnrsir.-snrt1multig]g*cdlumnsslwithaetrl |E|_ressed ,LED'lumnp\visihiiityﬁnntrdl
& EMPLOYEE_ID ~ 1 [FIRST_NAME + 2 LAST_NAME HIRE_DATE PHOTO RESUME |ﬁ|

1 205W|I|lam GleTz 199+ﬂﬁ—ﬂ? * BINARY, 5 851 Bytes [null} -

2 205 Shellay Higgins 1994-06-07 ... (null) {nuiny

3 204 Hermann Baer 1094-06-07 .. & BINARY, 8719 Bytes (null) E

4 203 Susan Mavris 1994-06-07 ... & BINARY, 8 620 Bytes &% CLOB, 4 068 Bytes

5 202 Pat Fay 1997-08-17 ... (null) (i)

i 200 Jennifer Whalen 1987-09-17 ... (null) (nu -

7 Donald |OConnell |1999-0621 _| _ BINARY, 10 630 Bytes |(nui(€iels) CEIE Effausel

2 143 Randall Matos 1998-03-15 . (n {null)

] 142 Curtis Davies 1997-01-29 . {null {null)

10 141 Trenna Rajs 1995-10-17 ... l[Bmar};{dataqmbolj {null)

11 140 Joshua Patel 1998-04-06 ... (null) {null)

12 139 John Seo 1998-02-12 ... ((null) (i}

12 138 Stephen Stiles 1997-10-26 ... (null) {null) -
EHP h il |

Wisiblerows|range)

\limitjnumberiafirows|inigridjanditextjcolumnsywidth) |Execute/Fetchjelapseditime

ax Rows: Max Chars: |0 \ﬂm.nm seC m

Figure: Grid overview

The screenshot shows the grid and controls that are available for the grid in the Data tab, but the differences are minor compared to grids used in
other places.

Sorting

You can sort the grid based on the values in one or more columns. When you click on a column header, the grid is sorted in ascending order on the
values in that column, indicated by an up-arrow in the column header. If you click the same column header again, the grid is sorted in descending
order, indicated by a down-arrow in the column header. If you click a third time, the data is shown in the order it was received from the database and
the sort indicator disappears.

To sort on more than one column, Ctrl-click (keep the Ctrl key pressed when clicking) on additional columns. The grid is then sorted on the values in

the first column you clicked on (indicated with a 1 next to the arrow), and then all rows with the same value in the first column are sorted on the
values in the second sort column (indicated with a 2 next to the arrow), and so on.

14(260)

Right-click menu

The generic right-click grid menu contains the following operations:

& (@

mEg AT EeRFNIED

Select All Ctri+A
Select Row(s) Ctrl+5Skift+)
Co|l Selection Ctrl+C |
Cﬂﬂ Copy all selected cells to system clipboard trI+H
Export... Ctrl+Alt+E
Export Selection...

Print...

Print Selection...

Print Preview...

Save Selected Cell... Ctrl+Skift+5
Reload Ctrl+R
Find... Ctrl+F
Browse Row in Window...

Browse Cell in Window...

Describe Data...

Aggregation Data for Selection.., Ctrl+Skift+C

Figure: Grid right click menu

Menu Choice

Select All

Select Row(s)

Copy Selection

Copy Selection (With Column Header)

Export

Export Selection

Print

Print Selection

Print Preview

Save Selected Cell

Reload

Find

Browse Row in Window

Description

Select all cells (i.e., all rows and columns) in the grid

Select all cells in the selected row(s)

Copy all selected cells onto the system clipboard

Copy all selected cells including column header onto the system clipboard

Copy the export dialog

Export the selection using the standard export feature

Open the print dialog for printing the compete grid

Open the print dialog for printing just the selected rows/columns

Open the print preview dialog

Save the value of the selected cell to a file, selected with a file chooser dialog

Reload the grid with data from the database

Open the find dialog

Display all data for the selected row in a separate window.

15(260)

Browse Cell in Window

Describe Data

Aggregation Data for Selection

The menu may contain additional entries based on the current scope, e.g., entries for editing cell values for a read/write grid.

Note: for a read/write grid, this entry is named Edit Row in Window.

Display the cell value in a separate window. This is especially useful for BLOB/CLOB data.
Note: for a read/write grid, this entry is named Edit Cell in Window.

Show detailed information about the columns in the grid

Displays some metrics about the current selection. Read more in Aggregation Data for Selection below.

Aggregation Data for Selection

The Aggregation Data for Selection feature performs calculations on the current selection. It provides information about cells holding numbers,

text, date/time information and more. The following is an example of what it shows.

-

l_ﬂ Aggregation Data for Selection

Bt

=]

Selected Cells Count 50
@ Rows 50
@ Columns 13
S Nulls 140

Text Count 250
& Shortest 2
Q Avg Length T
€2 Longest 12
¢, Total Length 1894

Humber Count 250
& Min 10
€ Avg 1470,04
£ Median 120
€2 Max 17 000
%, sum 204 009
X 5td Deviation 2997 28
S Nulls 50

Timestamp Count 50
& First 1987-098-17 00:00:00
€ Avg 1996-10-09 05:16:48
£ Median 1997-08-18 12:00:00
€2 Last 2000-03-08 00:00:00

Binary/BLOB Count 50
S Nulls 44

CLOB Count 50
S Nulls 46

Auto Update
[Update] [Close]

Figure: The Aggregation Data for Selection dialog

With Auto Update checked, the data is updated automatically when you change the selection. For very large selections, you may prefer to disable
this feature and instead click Update when you want to refresh the data. Click a link (blue underlined text) in the aggregation table to locate and
highligh the actual value in the source data grid.

16(260)

Column Visibility

The Column Visibility dialog controls which columns you want to appear in a grid. You open the column visibility dialog by clicking the button above
the vertical scrollbar in the grid.

l_ﬂ Grid Calumn Chooser @
Original Visible Key Column r's
Index ICUIumnI MName

1 £ EMPLOYEE_ID E
2 FIRST MAME
3 LAST_NAME
6 [# HIRE_DATE

13 RESUME
5 PHONE_NUMBER
4 EMAIL
7 JOB_ID
8 SALARY
9 COMMISSION_PCT
10 MAMNAGER_ID
11 DEPARTMENT_ID
Close

Figure: The Column Visibility dialog

The Column Visibility dialog shows all columns that are available in the grid.

The checkmark in front of a column name indicates that the column is visible in the grid, while an unchecked box indicates that it is excluded from the
grid. Click the checkmark to change the visibility of a column. You can change the visibility for all columns at once using the two visibility buttons in
the dialog.

The order of the columns can also be adjusted in this dialog. Just select a row and use the Up and Down buttons to move it up (left in grid) or down
(right in grid).

If you want to revert your changes, you can click on the Default Layout button to reset the grid, i.e., making all column visible and put them in their
default locations.

Note 1: Modifications of column visibility, size and order are saved between invocations of DbVisualizer for all grids in the various Object View tabs
except for the Data tab.

Note 2: If you modify the column visibility in the Data tab, the changes persists throughout the session. For instance, if you remove the Name
column in the Data tab for the table EMPLOYEE, the Name column remains excluded when you reload the table or come back to the Data tab for

that table later in the same session. You must manually make it visible again to bring it back. The changes are, however, reset when you restart the
application.

Auto Resize

The column header right-click menu contains a number of options for automatic resizing of column widths.

| Auto Resize * | | All Columns (consider Header) |
u Saort Column Ascending All Columns (ignore Header) '
% Sort Column Descending Current Column (consider Header)
[I:l Select Column Ctrl+) Current Celumn (ignore Header)
@ Copy Mame Default Column Widths

Figure: Auto Resize menu

17(260)

Menu Choice

Description

All Columns (consider Header)

Resize all columns to fit the widest cell value, or the column header if it is wider than any cell value

All Columns (ignore Header)

Resize all columns to fit the widest cell value

Current Column (consider Header) | Resize the current column to fit the widest cell value, or the column header if it is wider than any cell value

Current Column (ignore Header) | Resize the current column to fit the widest cell value

Default Column Widths

Set all column widths to their default width

Quick Filter

All areas that hold a grid in DbVisualizer also provide a Quick Filter field.

RO 35 P -

G EEEE e -n|»

1997-09-28 .. (null
1998-03-07 ... (null
1998-02-12 __. (null
1998-04-06 ... (null

£ EMF‘LDYEE_IDI FIRST_MAME ILAST_NAMEI HIRE_DATE .
1 110 John Chen
2 112 Jose Manuel Urman
3 1328 John Seo
4 140 Joshua Patel

[+]

[+]

All

EMPLOYEE_ID
FIRST_MAME
LAST_MAME
EPALIL
PHOMNE_MUMEBER
HIRE_DATE
JOB_ID

SALARY
COMMISSION_PCT
MANAGER_ID
DEPARTMEMNT_ID
PHOTO

RESUME

Case sensitive
Case insensitive
Use wild cards
Match from start
Match exactly
Match anywhere

Figure: Grid with Quick Filter

When you type in the Quick Filter field, DbVisualizer matches the value with cell values in the grid and filters out all rows that do not have a match in
at least one cell. The Quick Filter pull-down menu (click on the down arrow next to the magnifying glass) lets you choose if the filter should match

cells in all columns or just one selected column, case or case insensitive matching, and where in the cell the value must match.

18(260)

Print

DbVisualizer supports printing of grids, graphs, charts and plain text, such as the content of an SQL Editor. The print dialog looks somewhat different
depending on what is printed. In all cases, you launch the print dialog by clicking on the Print button in the toolbar for the object you want to print, or
by choosing Print from the right-click menu. The right-click menu also contains a Print Preview choice, if you want to see what the printout will look
like before you actually print.

Printer Setup

If you want to set the page orientation (e.g., portrait or landscape) and paper size, you must launch the Printer Setup dialog, using the File->Printer
Setup main menu option, before you print. Printing varies widely between platforms, so even though the Print dialog (as opposed to the Printer
Setup dialog) on some platforms also lets you choose a page orientation and other options, they may be ignored if specified in that dialog. The only
supported way to specify the page orientation and other options is via the Printer Setup dialog.

Grid, Chart and Plain Text

For a grid, chart and plain text, DbVisualizer launches the platform's native Print dialog, so it looks different on different platforms. The two options
available on all platforms are a choice of printer and the page range. On some platforms, the dialog may offer additional options, but they may be
ignored by DbVisualizer. Use the Printer Setup dialog to set other options besides which printer to use and the page range, as described above.

(& Skriv ut =]
Skerivare
Namn: |HP Color Laserlet 2800 Series PS | | Egenskaper... |
Status: Klar
Typ: HP Color LaserJet 2800 Series PS5
Plats: LPT1:
Kommentar: Sherive till fl
Sleriv ut Excernplar
@ Alla Antal exemplar; 1T B
O Sidor frén: 1 tll: 4 e
Markerng _ﬂﬂ _2|ﬂ _3|E -
Lok J[Abo |

Figure: Standard print dialog

The figure above shows how the Print dialog looks on the Windows platform (the appearance and printing capabilities are platform specific so the
printing dialog look different in Windows, Linux/UNIX and Mac OS X).

When you print a grid in DbVisualizer, the grid is printed as it is shown on the screen, i.e., with the table headers, sort and primary key indicator, etc.
It is printed as a screenshot that may span several pages, depending on the number of rows and columns that are printed. For a grid, the right-click
menu contains a Print Selection choice that you can use if you just want to print selected rows and columns.

An alternative to printing a grid as a screenshot is to export the grid to HTML and then use a web browser to print it.

Printing a chart scales the chart to the size of the paper. Plain text is printed as-is and may span multiple pages, both in height and width.

Graph

Printing a graph adds a custom dialog before the native Print dialog is displayed.

19(260)

Print Options @

Poster Rows 1
Poster Columns 1
Add Poster Coords [

Clip Area .Graph |

[Ok H Reset H Canicel

Figure: Print options when printing graphs

You can specify the number of rows (pages) and columns (pages) that the complete image will be split into. You can also select whether the view as
it appears on the screen or the complete graph should be printed. When you click Ok, the native Print dialog is displayed, where you can select the
printer.

Print Preview

Use the File->Print Preview feature to preview what the printout will look like before you actually print it.

Grid Graph

s s =

|8l Print Preview [=2] || |8 Print Preview (=]

[Page...][Print...][Zoom In][Zoom Out l

m

] 1 | »

[Print][Close] 5% -

Figure: Grid and graph print previews

20(260)

Checking for Updates

We frequently release new versions of DbVisualizer to introduce new features and improvements, and to fix problems. To make you aware of new
versions, DbVisualizer periodically checks if a newer version than the one you are using is available when you start DbVisualizer. If there is a newer
version available, you are presented with a dialog with links to pages on our site where you can read more about it and download the new version.

" =

[E Available Updates @

The following new versions are available. Click on Release Notes or Download to read about or download a version
using your web browser,

Version Is Early Access Free Upgrade Download Release Motes
6.5.11 ¢ Download Release Motes
700.1465 ¢ ¢ Download Release Motes

——

Figure: Available Updates dialog

The Early Access field tells you if it is an Early Access version (i.e., a preview of an upcoming major version we are currently working on) and the
Free Upgrade field is checked if you can upgrade to this version with your current license. The list may also have a Comments field with more
information about the version. Click on the links in the Download and Release Notes fields to open a browser with the corresponding page from our
web site.

DbVisualizer checks for new versions at start-up on a weekly basis by default. You can change the interval or check manually at any time by
launching the Check for Update dialog from the Help menu.

g ™

[a Check For Updates @

DbVisualizer can automatically chedk for new versions at start-up
using your Internet connection.

Chedk for updates: [Weeldy -] [Check Mow

Current version: DbVisualizer Personal
Last check for updates: 2009-12-10 23:05:42

Proxy Settings] [oK] [Cancel

Figure: Check For Updates dialog

You can set the interval to one of Every Start-Up, Weekly, Monthly or Never, or click the Check Now button to see if there are any new versions
available right now. If new versions are available, the same dialog as shown above appears, otherwise a message tells you that you are running the
latest version.

The dialog also informs you about which version you are currently running and when the last check for updates took place.

Click OK to save the new interval or Cancel to leave it as it was.

If you are accessing the Internet through a proxy, you must enter information about the proxy in the dialog before you check for

updates.

Problem resolution

Even though we make our very best to ensure the quality of DbVisualizer, you may run into problems of different kinds. The runtime environment for
DbVisualizer is rather complicated when it comes to tracking the source of a problem, since it's not only DbVisualizer that may cause the problem but
also the JDBC driver, or even the database engine.

21(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId495258

There are a few things that you can try before reporting a problem, depending on the nature of the problem:

Make sure you are using the latest version of Java available for your platform (Java 6 or later)

Make sure you are using a version of the JDBC driver that we've tested DbVisualizer with, or a later, production quality version
Read the DbVisualizer FAQ

Check the online Forums

Read the DbVisualizer Users Guide

... the last resort is to post a question via the problem report form or send an email to support@dbvis.com. (Note that we generally love
detailed reports as well as screenshots when possible)

oUuhWN=S

Debugging DbVisualizer

The Tools->Debug Window is useful to see what is going on in DbVisualizer and the JDBC driver(s). The checks at the top control what parts of
DbVisualizer should be debugged. The Debug JDBC Drivers option will enable debug of the current JDBC driver. Note that the amount of output is
determined by the JDBC driver.

g -

[ﬂ Debug Window @

Debug DbVisualizer || Debug JDBC Drivers

=0 R] 22M of 254M &

o= 0 [CEOoT ITOICod T TToZ L Py =r o=y TO LI LI IIe T | GoI s = T e T e

18:57:55 [DEBUG Thread-19 ProfileManager.processIfElements] match: If "#dm.getDatabas: i
18:57:55 [DEBUG Thread-19 ProfileManager.processIlfElements] match: If "#dm.getDatabas:
18:57:55 [LDEBUG Thread-19 Database.getProfileManager] Using profile: oracle

18:57:55 [DEBUG Thread-19 CommandExecutor.execute] CommandId: getSchemaNames

18:57:55 [DEBUG Thread-21 TreeExpanderExecutor.createliodes] elementName: '"GroupNode' labs
18:57:55 [DEBUG Thread-21 TreeExpanderExecutor.createlNodes] elementName: 'GroupNode' labs
18:57:55 [LEBUG Thread-21 TreeExpanderExecutor.createNodes] elementName: 'GrouplMode' lab«
18:57:55 [DEBUG Thread-19 JDBCExecutor.run&etSchemas] DbConnection: Oracle test

18:57:55 [DEBUG pool-4-thread-1 JDBCMetaDataHandler.doInvoke] RootConnection: OracleDatat
18:57:55 [DEBUG Thread-19 CommandExecutcr.execute] Total rows/columns: 37/1. Rows after 1—

18:57:55 [LDEBUG AWI-EventQueue-1 Command.cloneCommand] Beturning cloned generic Command {7
4| i | 3

Log Destination: i@ Debug (this) Window Auto Popup
() File
(7) Consale

Close

Figure: The DbVisualizer Debug Window

The Save and Copy buttons will prepare the log with information about the DbVisualizer version you are using and the connected database
connections.

The log is automatically truncated to preserve memory when the log destination is set to Debug Window. The Console and File destinations have
no such limitation.

How to satisfy the DbVisualizer support team

Quite often we get incomplete problem reports and need to follow up for additional information. If you encounter a problem, please follow these steps
to include the details we need to help you:

1. Select the Connection tab

2. In the Connection Message area, select the right-click menu

3. In the menu, select Copy

4. This copies the system details to the clipboard. Then paste the details into an email or in the problem report form.

22(260)

mailto:support@dbvis.com
http://www.dbvis.com/support/supportform.jsp?product=DbVisualizer
http://www.dbvis.com/products/dbvis/doc/main/doc/index.html
http://www.dbvis.com/forum
http://www.dbvis.com/products/dbvis/doc/faq/faq.jsp
http://www.dbvis.com/products/dbvis/doc/drivers.jsp
http://www.java.com/

5. In addition, we really appreciate it if you provide us with screenshots. An image says more than ... you know.

Connection Message

Orade

Oracle Database 11g Release 1
Oracle IDBC driver

10.2.0.2.0

I:”DevelomEﬂt”Proﬁle: m'@ Connected - 00:02:33

Connection | Properties

Figure: The connection message right click menu

23(260)

Load JDBC Driver and Get Connected

Introduction

This document describes the way JDBC drivers are managed in DbVisualizer and all aspects about getting connected to your database(s).

If you are impatient, please go ahead and read the section. It is the recommended way to create database connections in

DbVisualizer.

What is a JDBC Driver?

DbVisualizer is, as you know, a generic tool for administration and exploration of databases. DbVisualizer is in fact quite simple, since it does not
deal directly with how to communicate with each database type. The hard job is done by a JDBC driver, which is a set of Java classes that are either
organized in a directory structure or collected into a JAR or ZIP file. The magic of these JDBC drivers is that they all match the JDBC specification
and the standardized Java interfaces. This is what DbVisualizer relies on. A JDBC driver implements all details for how to communicate with a
specific database and database version, and there are a range of drivers from the database vendors themselves and 3:rd party authors. To establish
a connection with a database, DbVisualizer loads the driver and then get connected to the database through the driver.

It is also possible to obtain a database connection using the Java Naming and Directory Interface (JNDI). This technique is widely used in enterprise
infrastructures, such as application server systems. It does not replace JDBC drivers but rather adds an alternative way to get a handle to an already
established database connection. To enable database "lookup's" using JNDI, an Initial Context implementation must be loaded into the Driver
Manager. This context is then used to lookup a database connection. The following sections describe the steps for getting connected using a JDBC
Driver, and also how to use JNDI to obtain a database connection.

A complete JDBC driver typically consists of a number of Java classes, located in a JAR, ZIP or a folder, that need to be loaded into the DbVisualizer
driver manager. DbVisualizer automatically recognizes the classes that are used to initiate the connection with the database and presents them in
the Driver Class list. You must select the correct class in this list to make sure DbVisualizer successfully can initiate the connection. Consult the
driver documentation for information of which class to select, or if the number of classes found are low, figure it out by trying each of them. More
about this in the following sections.

Get the JDBC driver file(s)

DbVisualizer comes bundled with all commonly used JDBC drivers that have a license that allows for distribution with a third party product. Currently,
drivers for DB2, JavaDB/Derby, Mimer, MySQL, and PostgreSQL, as well the jTDS driver for SQL Server and Sybase, are included with
DbVisualizer. If you only need to connect to databases of these types, you can skip the rest of this section and jump straight to the Connection
Wizard section, because by default, DbVisualizer configures all these drivers automatically the first time you start DbVisualizer.

If you need to connect to a database that is not supported by a bundled JDBC driver, you must get a JDBC driver that works with your database type
and version. The following online web page contains an up-to-date listing of the database/driver combinations we have tested:

http://www.dbvis.com/products/dbvis/drivers.html

Information about almost all drivers that are available is maintained by Sun Microsystems on this page:

http://industry.java.sun.com/products/jdbc/drivers

Download the driver to an appropriate directory. Make sure to read the installation instructions provided with the driver. Some drivers are delivered in
ZIP or JAR format but need to be unpacked to make the driver files visible to the Driver Manager. The Databases and JDBC Drivers web page
describes where you can download each driver and also what additional steps may be needed to install and load the driver in DbVisualizer.

(Drivers are categorized into 4 types. We're not going to explain the differences here, just give you the hint that the "type 4," aka "thin," drivers are
the easiest to maintain, since they are pure Java drivers and do not depend on any external DLL's or dynamic libraries. Even though DbVisualizer
works with any type of driver, we recommend that you get a type 4 driver if there is one for your database).

When you have downloaded the JDBC driver into a local folder (and unpacked it, if needed), you can go ahead and create a connect with the
Connection Wizard, as described in the next section. You will then asked to load the driver files when the wizard needs them. Alternatively, you can
move (or copy) the JDBC driver files to the DBVIS_HOME/jdbc folder, where they will be picked up and loaded automatically by the JDBC Driver
Finder the next time you start DbVisualizer. You can read more about this option in the JDBC Driver Finder section.

24(260)

http://www.dbvis.com/products/dbvis/drivers.html
http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers
http://www.dbvis.com/products/dbvis/drivers.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/getConnected.html#mozTocId465153
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/getConnected.html#mozTocId465153

Connection Wizard

The Connection Wizard greatly simplifies the steps needed to load the JDBC driver and create a new database connection. You just enter
information about the driver file(s) and the connection data on a few wizard pages, and the wizard handles all the details. Once the new database
connection has been created, it appear in the database objects tree.

The wizard cannot be used to define database connections via JNDI data sources.

The first wizard screen look like this.

g -

I_ﬂ Mew Connection Wizard @

New Connection Wizard

This Connection Wizard will guide you through the steps to setup a
database connection. Make sure you have access to the required JDBC
driver file(s) for the database you are going to access.

Information about supported databases and links to download sites for JDBC
drivers are available at http:/fwww.dbvis.com,

\CRM Ahoa

Enter the connection alias for the new database connection. This is the
name you will use to refer this database connection throughout the application.

< Back Mext =] [Cancel

Figure: Connection Wizard - Page 1

In the connection alias field, enter the name of the new database connection. This is the name that will be used for the connection in DbVisualizer,
e.g., in the object tree.

Press Next to go to the next page.

On this page, select the driver you are going to use from the list. A red icon in front of the driver name indicates that the driver is not yet ready to use,
while a green icon indicates that it has been properly configured (simply press Next to continue).

If the driver you select is not yet configured, a Load Driver File(s) button is displayed. When you click the Load Driver File(s) button, a file chooser
is opened. You should select the JAR or ZIP file(s) that contain the driver implementation.

25(260)

.

[& Mew Connection Wizard

Select Database Driver

ﬂ Oracle Thin

Select the appropriate database driver from the list above.

The selected driver has not been properly configured yet. Press Load Driver
Files button to open a file chooser in which you should select the driver file(s).

If multiple files must be loaded then hold CTRL and select all of them at once.

Driver files are normally packaged as JAR or ZIP files, In addition you can load

a directory with driver classes.

['-'Eﬂ Load Driver File(s)

Cancel

Figure: Connection Wizard - Page 2

In the file chooser, locate the files containing the JDBC driver files. (Select multiple files by pressing the SHIFT key while clicking).

26(260)

.

|8 Oppna

.'1_' r

o

Tidigare

|

Skrivbord

E

Mina dokument

w

Matverk

Letai: [| orade

| ojdbe.jar

|| orail&n.jar
|5 xdb.jar

=) ¥mlparser.jar

=]

Hidden Files:
Show

Filmamn: |ojdbc.jar

;

Filformat: [Jaua Archive File (.jar)

-]

Avbryt

Figure: Connection Wizard - Page 3

Once the driver has been properly loaded, a green icon appears in front of the driver name. Press Next to continue to the last page.

27(260)

s 1

Iﬂ Mew Connection Wizard @

Select Database Driver

ﬁ Oracle Thin -

Select the appropriate database driver from the list above.

< Back H Mext =][Cancel

Figure: Connection Wizard - Page 4

On the last wizard pane, enter details for the new database connection. The information that must be provided varies depending on the database
type. Please consult the database documentation if you are unsure about how to find the requested information.

28(260)

F ™

I_ﬂ Mew Connection Wizard @
CRM Ahoa
(Cracle Thin)
URL Type: Service -

Server: ‘192.‘168.1.155

Port: | 1521

Userid: | system

|
|
Service: | ORCL |
|
|

Password: |......

Press the Finish button to create and connect this database connection.

<Back || Finsh | | Cancel

Figure: Connection Wizard - Page 5

Press Ping Server to verify that a network connection can be established to the specified host and port. If the test passes, press Finish to create the
new database connection and connect to the database.

Some databases support different types of URLs. For instance, Oracle supports URLs that contain the host, port and service name or SID, but also a

TNS URL type where you just include a TNS alias and get all the details from a tnsnames.ora file. For cases like this, the last wizard page has a URL
Type list at the top where you select the type of URL to use.

29(260)

S

CRM Ahoa
(Cracle Thin)

URL Type: | TNS -

THS Alias: | DWSUNS2

: dwlin165.us. oracle.com
Userid:
DWSLMN42

Password: [slillgEe

Press the Fimish button to create and connect this database connection.

<Back || Finsh | | Ccancel

Figure: Connection Wizard - Page 5 for a database with multiple URL types

The other fields then depend on the selected URL type. For the Oracle TNS format, for example, you can pick the TNS alias from a list. If you like to
use TNS URLs with an Oracle database, the tnsnames.ora file must be located either in the ORACLE_HOME/network/admin directory or in a
directory identified by the TNS_ADMIN environment variable. For more about TNS, see the "Local Naming Parameters (tnsnames.ora)" chapter in
Oracle Database Net Services Reference.

We recommend that you skip the rest of this document, unless you:

* want to learn how the driver manager in DbVisualizer works

¢ need to have several versions of the same JDBC driver loaded simultaneously

¢ need to establish a connection via the JNDI interfaces (Java Naming and Directory Interface)
* need to add a Driver that do not exist in the wizard list of drivers

Driver Manager

The Driver Manager in DbVisualizer is used to define the drivers that will be used to communicate with the databases. You can manually locate the
JDBC driver files and configure the driver, or you can use the JDBC Driver Finder to do most of the work for you, either on demand or automatically.

JDBC Driver Finder

The JDBC Driver Finder is a very powerful part of the Driver Manager that automates most of the driver management work. Given the folders where
JDBC drivers are located, it loads and configures new drivers (if any) every time you start DbVisualizer. You can configure the JDBC Driver Finder in
Tools Properties, in the General->Driver Manager category.

30(260)

.

Tool Properties

m General [E Database
m General

=@ =]

IDBC Driver Finder Settings

' Controls whether the JDEC driver finder should run automaticaliy at start of DbVisualizer. If
L:_ld .lilpearance disabled, use the Tools->Driver Manager to sstup JDEC drivers,
=% Fonts
@ Key Bindings Run JDBC Driver Finder at Startup:

--| # Database Connection

Driver Manager

Permissions
-4 Time Zone

Display When Mew Files:
Display on Error: [

-y Transaction

4= File Encoding
Data Formats Driver Finder Paths
H Table Data This list defines directory paths that the driver manager will use to automaticaly find JDBC

drivers, Each listed directory will be ssarched recursively for JAR files, For optimal resuit,

organize related JAR files in one directory per driver,
Search Path

| Scripts
-} Monitar
Form Viewer

=-{] Grid

H{divis.prefs.homelfjdbc

Bk

S{dovis.home}jdbc

o [~
Colors it
Binary/BLOB and CLOE Data
= 5QL Editor

Statement Delimiters
=5

${dbvis.home} = Z:\Users\rogge\work\svn\trunklpureit) apps\dbvis
${dbvis.prefs.home} = Z:\Users\rogge\myprefs

=

S0L Formatting
=/ Align and Indent
=| Line Breaks

Exduded File Name Patterns

White:
n E ! SJ,:IBCE List of file name patterns that should be excluded by the IDBC driver finder feature. A pattern
) - Auto Completion can list an explicit JAR file name or a regular expressicn,
| Comments -
Variables File Mame or Paltern

E Proxy Setting

Fmysqgl *bin-g\ jar

)

<>

) (e

Figure: JDBC Driver Finder properties
Use the following properties to specify the finder behavior:

Property Description

Run JDBC Driver Finder at Startup If enabled, the finder will run automatically every time you start DbVisualizer. If it finds any new driver files, it will
automatically load and configure them.

Display When New Files If enabled, the finder window pops-up if it finds any new files when you start DbVisualizer. Otherwise, the finder

runs invisibly in the background.

Display on Error If enabled, the finder window pops-up if it encounters any errors loading and configuring new drivers. Otherwise,

it is silent about errors and you have to launch the Driver Manager to see which drivers are not loaded
successfully. Enabling this property is only meaningful if you have disabled Display When New Files.

You can also specify the folders the JDBC Driver Finder will search. By default, it will search folders named jdbc in the DbVisualizer installation

directory (${dbvis.home}) and the DbVisualizer preferences folder (${dbvis.prefs.home}). These folder paths are shown under the list of Driver Finder
Paths.

Finally, you can specify regular expression patterns for filenames that the finder should ignore. This can be useful if you need to store other files

31(260)

besides driver files in the designated folders.

If you let the JDBC Driver Finder load all drivers for you, all you need to do to install a new driver is to put the driver files in one of the folders
specified for the finder in Tool Properties and then restart DbVisualizer.

Loading and Configuring Drivers Manually

You can also load and configure JDBC drivers manually using the Driver Manager. If you use JNDI to provide access to the database, you must use
this option, since the JDBC Driver Finder does not handle JNDI. Start the Driver Manager dialog using the Tools->Driver Manager menu choice.

The left part of the driver manager dialog contains a list of driver names with a symbol indicating whether the driver has been configured or not. The
right part displays the driver configuration for the selected driver in terms of the following:

¢ Name
A driver name in the scope of DbVisualizer is a logical name for either a JDBC driver or an Initial Context in JNDI. This is the name shown
in the Connection tab setup when selecting which driver to use for a database connection

¢ URL Format
The URL format specifies the pattern for the JDBC URL or a JNDI Lookup name. Its purpose is to assist the user in the Connection tab
when entering the URL or lookup name

¢ Driver Class
Defines the main class for the JDBC driver, used for connecting to the database.

* Web Site
Link to the DbVisualizer web site, where you can get up-to-date information about how to download the driver.

¢ Driver File Paths
Defines all paths to search for JDBC drivers or Initial Contexts when connecting to the database. The Driver File Paths area is composed
of two tabs: the paths in the User Specified tab are used for dynamically loaded JDBC drivers or Initial Context classes, and the System
Classpath tab lists all paths that are part of the Java system classpath.

The System Classpath tab is only of interest for the driver.

" ™

@ Driver Manager EI@

Driver Edit View

MER UG AV G

Drriver Mame A Driver Settings
= d }
ledl Imtormix L -
a Informix (Datalirect) Name: |Drade Thin |
Q JavaDB/Derby server URL Format: |jdbc:nrade:ﬂ’1in: @<server = <port1521=: <sid> |
o J3vaDB/Derby embedded Driver Class: [i' orade.jdbc. OradeDriver -]
() IDatastore . _
o IDBC/ODBC Bridge Driver Version: 11.1 .
Q MaxDB Web Site: http:/fwww.dbvis.com
(3 Mckoi] i - 10BC Driver 4 - INDI Lookup
Q Mimer
2 mysoL Driver File Paths
etezza User Specified | System Classpath
+ Orade Thin
Orade OCI ”-EE,‘ 7 \optionseven'jdbcioradel 11, 1.0. 7. 0%ajdbeS. jar fﬂ
. ? oracle.jdbe.driver.OracleDriver

€3 Orade (DataDirect) = --]® oracle jdbc.OracleDriver @
Q Pervasive A
Q Pointbase embedded

) b
Q Pointbase server
(2 PostgresqL [
g Progress .

g SQL Server (Datalirect)
() SQL Server (TDS) B
Q SQL Server (Microsoft JDBC Driver)

o SQL Server 2005 (Microsoft JDBC Driver)
% Cotmme mOE foTmc 5 Show Full Path |

= Custom Driver

32(260)

Figure: Driver Manager dialog

Initially, the driver list contains a collection of default drivers. They are not fully configured, as the paths to search for the classes need to be
identified. You can edit the list, i.e., create, copy, remove and rename drivers. A driver is ready to use once a driver class has been identified, which is
indicated with a green check icon in the list. Drivers that are not ready for use are indicated with a red cross icon.

Only ready (configured) drivers appear in the Connection tab driver list.

The figure shows seven drivers that are ready: DB2 UDB, Informix, JDBC/ODBC Bridge, Mimer, MySQL, Oracle Thin and PostgreSQL.

Setup a JDBC driver

The recommended way to setup a driver is to pick a matching driver name from the list and then simply load the JAR, ZIP or directory that keeps
the driver class(es). For instances, if you are going to load the JDBC driver for Oracle, select the Oracle driver in the list . You can also create a new
driver or copy an existing one.

Check the following online web page with the most current information about the tested databases and drivers:

http://www.dbvis.com/products/dbvis/drivers.html

* |tlists which databases and drivers we have tested

¢ Download links to JDBC drivers

* Information of which files to load in the driver manager for each JDBC driver
¢ Information of which Driver Class to choose

When you have selected the driver to configure, you need to load the driver files. Click the Load button to the right of the User Specified paths tree
to show the file chooser and load the driver JAR, ZIP or individual files.

~

Oppna @
Leta i [. orade ~] D
@ || ojdbes.jar Hidden Files:
.:;-ﬁ IE:l xdb.jar Show
Tidigare | wmlparserv2. jar
l
Sﬁrd
F
Minia dol;:ument
A
Datt.:r Filnamn: |ojdbc5.jar | ’ Gppna]
ﬁ Filformat: [Ja.u.a Archive File (.jar) -] Avbryt

Figure: File Chooser dialog

A JDBC Driver implementation typically consists of several Java classes. If they are packaged in a JAR or a ZIP file, you don't have to worry about
the details; just select and load the JAR or ZIP file. For instance, in the example above, use the ojdbc5.jar file.

If the driver classes are not packaged, it is important to select and load the root folder for the JDBC Driver. Java classes are typically organized using
a package name structure. Example:

oracle.jdbc.driver.OracleDriver
Each package part in the name above (separated by ".") is represented by a folder in the file system. The root folder for the driver is the folder named
by the first part, i.e., the oracle directory in this example. The class files are stored in the oracle/jdbc/driver sub folder. When the driver classes are

located in a folder structure like this, you must select and load the root folder, so that the Driver Manager gets the complete package structure.

When a connection is established in the Connection tab, DbVisualizer searches the selected drivers path tree's in the following order:

33(260)

http://www.dbvis.com/products/dbvis/drivers.html

1. User Specified
2. System Classpath

The paths are searched from the top of the tree, i.e., if there are several identical classes in, for example, the dynamic tree, the topmost class will be
used. Loading several paths containing different versions of the same driver in one driver definition is not recommended, even though it works (if you
do this, you must move the driver you are going to use to the top of the tree). The preferred method for handling multiple versions of a driver is to
create several driver definitions.

When you load files in the User Specified paths list, DbVisualizer analyzes each file to find the classes that represent main driver classes. Each such
class is listed under the path where it was found in the User Specified paths lists, and it is also added to the Driver Class list in the Driver Settings
area above. If there is more than one class in the list, make sure you select the correct Driver Class from the list. Consult the driver documentation
(or the Databases and JDBC Drivers page) for information about which class to select.

JDBC drivers that requires several JAR or ZIP files

Some drivers depend on several ZIP or JAR files, or directories. An example is if you want XML support for an Oracle database. In addition to the
standard JAR file for the driver, you then also need to load two additional JAR files. These are not JDBC driver files but adds functionality the driver
needs to fully support XML.

Simply select all JARs at once and press Open in the file chooser dialog. The Driver Manager will then automatically analyze each of the loaded files
and present any JDBC driver classes or JNDI initial context classes it finds.

Oppna =

~

Leta i [. orade "] D
@= || ojdbes.jar Hidden Files:
e b &) xdb.jar Show
Tidigare 4] wrlparserv2.jar
Skrivbord

g

Mina dokument

Dator Filnamn: |‘ojdbc5.jar‘ "wdb.jar” "xmiparserv2.jar” | Oppna

m Filformat: [Java Archive File (jar)

4

-]
g
=

Figure: File Chooser dialog

The JDBC-ODBC bridge

The JDBC-ODBC driver is bundled with most Java installations, but not all (e.g., it is not included with Java for Max OS X). The JdbcOdbcDriver
class is included in a JAR file that is commonly named rt.jar, stored somewhere in the Java directory structure. DbVisualizer automatically identifies
this JAR file in the System Classpath tree. To locate the JdbcOdbcDriver, simply press the Find Drivers button to the right of the System Classpath
tree. When it is found, make sure the sun.jdbc.odbc.JdbcOdbcDriver is selected as the Driver Class in the Driver Settings area.

Loading JNDI Initial Contexts

Initial Context classes are needed to get a handle to a database connection that is registered with a JNDI lookup service. In DbVisualizer, these
context classes are similar to JDBC driver classes in that an Initial Context implementation for a specific environment is required.

Remember that the appropriate JDBC driver classes must be loaded into the Driver Manager even if the database connection is obtained using

JUNDI.

34(260)

http://www.dbvis.com/products/dbvis/drivers.html

To load Initial Context classes into the Driver Manager, simply follow the steps outlined for loading JDBC drivers. The difference is that you will
instead load paths containing Initial Context classes instead of JDBC drivers. When you load a path, DbVisualizer locates all Initial Context classes in
the path and lists them in the User Specified paths list.

L '

@ Driver Manager EI@

Driver Edit View

MERB UG AV G

Driver Mame A Driver Settings
- .
@ IDatastore - Name: |M}'SQL |
{3 1DBC/ODBC Bridge _
@ e MName Format: |]dbc:mysql:ﬂ<server}:«:port&ﬂﬂﬁ:>f«:da13base> |
) Mckoi Driver Class: [* com. sun.jndi. fecontext. RefFSContextFactory -]
@ Mimer Driver Version:
¥ MySQL Web Site: http:/fwww.dbvis.com
g Metezza
@ orade Thin ¥ - J0BC Driver o - INDI Lookup
(&3 orade OCI 2 S———
g Crade (DataDirect) river e Faths
() Pervasive User Specified | System Classpath
@ Pointhase embedded '-:_“_j‘ Z:\Usersrogge work\svn\trunk\pureittjdbc\drivers \mysqlimysal.jar
9 Pointbase server 'F com.mysql.jdbc.Driver
9 PostgreSQL 'ﬂ Z\eptionseven'jdbcimysgljndilfscontext-1_2-beta3VibYfscontext.jar

a Progress & Jcom.sun.jndifscontext.RefFSContextFactory

a SOL Server (Databirect) .4 com.sun.jndifscontext.FSContextFactory

(3 sQL Server (TDS)
@ SQL Server (Microsoft JDBC Driver)
@ SQL Server 2005 (Microsoft JDBC Driver)
() Sybase ASE (fTDS)
@ Sybase ASE (JConnect)
@ Sybase SQL Anywhere (1Connect)
a Sybase (DataDirect)
a = Custom Driver

m

A< >OD

4

Show Full Path |

Figure: Driver Manager List with Initial Context classes

Visually, the difference between the identified JDBC drivers and Initial Context classes is the icon in the tree.

The figure shows the JAR files required to first obtain the JNDI handle, and then also the JDBC driver for the database. Check with the application
server vendor or similar for more information about what files you need to load to get connected via JNDI.

Errors (why are some paths red?)

A path in red color indicates that the path is invalid. This may happen if the path has been removed or moved after it was loaded into the driver
manager. Simply remove the erroneous path and locate the correct one.

Several versions of the same driver

The Driver Manager supports loading and using several versions of the same driver concurrently. We recommend that you create a unique driver
definition per version of the driver and name the driver definitions properly, e.g., Oracle 9.2.0.1, Oracle 10.2.1.0.1, etc.

Setup a database connection

This section explains how to setup a Database Connection in the Connection tab.

35(260)

Setup using JDBC driver

A Database Connection in DbVisualizer is the root of all communication with a specific database. It requires at a minimum that a driver is selected
and that a Database URL is specified. A new Database Connection is created using the Database->Add Database Connection menu choice in the

main window:

File Edit View Database

aSHBae

S Databases g'sg-m

Scripts S5QL Tools Window Help

BAOK@

'a‘_‘)f | <Drop your favorite objects herex

Object View | p sq_mm|

20 P 83N

-

-. Database Connection: CRM Ahoa

bg““ezﬁ“'ﬁ CRM Ahoa
= Orade servers
Crade test Q Connection _'Database Infa | . Data Types | &3 Seard1|
Orade stage - .
- [Orade prod annecton
Alias: \CRM Ahoa |
""" DBZLUW Database Type: [{Jrade -] 9
----- MySQL
----- JavaDB/Derby Driver (JDBC): | £ Oradle Thin +| 'K

Database URL: |jdbc:orade:ﬂ'1in:@192.168.1.156:1521:DF‘.CL

- [€[

URL Format: jdbc:oracle:thin: @<server=: <portl521l

Edit URL...

Authentication Launch URL Builder...

|system T

Userid:

PaEswnn | e |

Connect H Disconnect

Connection Message

|:||DEVEIOmEr1t”PmﬁIE:M”§ Disconnected

| Connection | Properties

Figure: New Database Connection using JDBC driver

The Connection tab is the only tab that is enabled if you are not connected to the database. Database connection objects appear throughout the
application and are by default listed by their URL. A URL can be, and often is, quite complex and long. You can use the Database Alias to set a
more readable name for the database connection.

The Database Type list shows all database types that have a set of separate properties, which you can adjust in the Tool Properties dialog. Select
the database type you are creating a connection for, or select Generic if you cannot find a matching type.

The Driver list shows all defined drivers that have been defined properly in the Driver Manager. Just open the list and select the appropriate driver.
Clicking the button to the right of the field opens the Driver Manager dialog with the settings for the selected driver.

Enter the JDBC URL for the connection in the Database URL field. The drop-down menu to the right of the field provides two options for entering or
editing the URL. Edit URL opens a multirow editor, in case your URL is extremely long. Launch URL Builder opens a dialog where you fill out a
form with information about the connection, used to generate the URL for you when you close the dialog.

There is also a URL Format field under the URL field that shows the URL format that the driver supports. You can click on the format string to copy

the format template into the URL field. Terms between < and > characters are placeholders that need to be replaced with appropriate values, e.g.:

jdbc:oracle:thin:@proddb:1521:bookstore
jdbc:sybase:Tds:localhost:2638
jdbc:db2://1ocalhost/crm

36(260)

jdbc:microsoft:sqlserver://localhost;DatabaseName=customers

Userid and Password are optional but most databases require that they are specified.

Some drivers accept additional proprietary parameters described in the Connection Properties section.

Setup using JNDI lookup

The information needed to obtain a database connection using JNDI lookup is similar to what is needed for connecting using a JDBC driver.

| 8 DbVisualizer Personal - Untitled [==]==]

File Edit View Database Scripts 5QL Tools Window Help

L LI A el-R L=

b ¢ | «Drop your favorite objects here>

Dbject"ﬂew | bSQ_Dmmanda|

O | g | = |] : Database Connection: MySQL(JINDI)

.

i_ %"ﬁm“:h MySOL{INDI}
P CRM Ahoa
E"ﬁ.‘ Orade servers Q Connection I_' Database Info | . Data Types | R Se=rch |
Orade prod)
Orade test R
[Orade stage Alias: MySQL (INDI) |
o[l Orade: $5Aliasss Database Type: [MySQ. v] 0
----- DE2 LUW
..... Driver (INDI): {7 My5QL ~ T
""" Lookup Name: | /tmp/inditesta0se. tmp/test -~ T -
MName Format: jJdbc:mysql:(f =server=: = port3306> [<database=
Authentication
Userid: |rr.mt |
Pazsword: |**** |

Connect]| Disconnect

Connection Message

Disconnected.

GI'-"IT+01:UU||Develument||Prnﬁle:M”ﬁ Disconnected

Connection | Properties

Figure: New Database Connection using JNDI lookup

The figure above shows parameters to connect with a lookup service via the MySQL RefFS driver. The /tmp/jnditest4975.tmp/test lookup name
specifies a logical name for the database connection. This example is in its simplest form, since userid and password are not specified, nor where
the database connection is finally fetched from. Any errors during the process of getting a handle to the database connection appears in the
Connection Message area.

Connection Properties

In addition to the standard connection parameters (URL, Driver, Userid, Password, etc.), there are also a collection of connection properties. Which
properties are available depends on the database type. Some database types have more properties than others. Which edition of DbVisualizer you
use also affects which connection properties are available.

37(260)

All supported database types (Oracle, Informix, Mimer, DB2, MySQL, etc.) are listed in the Database tab in the Tool Properties window. For each
database type, there are a number of properties that are applied to any database connection of that type. This means, for instance, that a database
connection defined as being a PostgreSQL database type will use the PostgreSQL properties defined in Tool Properties. The Connection Properties
can then be used to override some settings specifically for one database connection. The advantage with this inheritance model is that property
changes that apply to all connections can be made in one place, instead of having to apply a common setting for every database connection of a
specific database type.

The following summarize the organization of the properties:

* Tool Properties (Database)

These apply to all database connections of the specific database type.
¢ Connection Properties

These apply for a specific database connection only.

-"Okay, so there are two places to change the value of a property. Which shall | use?"
This depends on whether the change should be applied to all database connections for a specific database type or just a single one. If the majority of

your database connections should use the new property, it is recommended to set it in Tool Properties. Any overridden properties in the Connection
Properties tab are indicated with an icon in the Properties tab label.

| 8 DbVisualizer Personal - Untitled (o=][=]
File Edit Wiew Database Scripts S5QL Tools Window Help
eGHE &80 Ok@

\:':? | «<Drop your favarite objects here =

I Databases | [] sripts [8] Object view | B saL cm|
BOP B @ :« Database Connection: CRM Ahoa

i Connections CRM Ahoa

.

=15 Oracle servers -
L[l orade test @’ Connection \E Database Info | @ Data Types | & Search|
. [l Orade stage
Orade prod [E' Connection Properties
E\‘ (CRM Ahoa -~Database Profile Connection Mode
¥l Schemas - Driver Properties Use this setfing to define what type of database the database
;)) = connection represent, For type Test and Production,
Session Properties li Authentication DbVisualizer renders a border arcund the SQL editor, editable
@ DBA Views limited Identif result sets and form editor to catch your attention.
----- DB2 LUw i) De m-."te Identifiers Use the Permission tool properties category to define rules for
..... MysQL ~| £} Qualifiers specific features and datzbase operations.
[_}.5! Physical Connection

----- svaoeoery " e [evcpment) Test | [rsticin]

SQL Statements

- Objects Tree Labels

SQL Editor
22 Query Builder Show only default Database or Schema
@ Data Types Check to enable that onty the defauit database and/or schema
& Explain Plan will appear in the Database Objects tree and throughout the
application.

--[g Objects Tree
Show only default Database or Schema:

Connect when "Connect All"

Defines whether this database will be connected when the
Connect All cperation is selected,

Connect when "Connect All™:

i
[e

38(260)

Figure: Connection Properties

The Connection Properties tab is organized in the same way as the Tool Properties window. The difference is that the list only includes the
categories that are applicable for the selected database connection. Briefly, the categories are:

¢ Database Profile
¢ Driver Properties
* MySQL (The current Database Type)
¢ Authentication
¢ Delimited Identifiers
¢ Qualifiers
¢ Physical Connection
e Transaction
¢ SQL Statements
¢ Connection Hooks
¢ Objects Tree
« SQL Editor
* Query Builder

The Database Profile and Driver Properties categories are only available in the Connection Properties tab and not in Tool Properties. The next
section explains the Database Profile and Driver Properties categories, while the other categories are described in the Tool Properties document.

Additional categories may appear in the connection properties depending on the type of database. An example is the category for Explain Plan for
Oracle, DB2 and SQL Server.

Database Profile

Please read in the Database Objects Explorer document for detailed information about database profiles.

The Database Profile category is used to select whether a profile should be automatically detected and loaded by DbVisualizer, or if a specific one
should be used for the database connection. The default strategy is to Auto Detect a database profile.

39(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseExplorer/databaseExplorer.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId753863

-. Database Connection: CRM Ahoa

CRM Ahoa

47 Connection !Dahbase Infio | . DataTypes | 8 Search |

@' Connection Properties
I - tohaze Profile Database Profiles

iDriver Properties Database profiles controls what objects appear in the objects tree, what detailed views are

- Drade availzble for each cbject type and actions used to operate on objects. Database profiles are

Authentication database specific and here you can either decide to let DbVisualizer automaticaliy pick

fimited Identif (recommended) the appropriate profile or manually choose one. If manualy choosing a profile
Delimited Identifiers make sure it is compatible with the database you are connecting to. The generic profile works

Qualifiers with any datsbase.
I:—]--'! Physical Connection Mote: You must reconnect the database connection after changing profile.
-l Transaction
-] 5QL Statements i@ Auto Detect () Manually Choose () "Generic” Profile

J Connection Hooks Profile Version =~ Date Description
SSJLEEE;:EE Labels db2 11504 2009-10-30 Profile for DBZ LUW
=2 Query Buider db2-zos 11413 2009-08-05 Profile for DB2 z/03S
@ Data Types derby 11504 2009-10-30 Profile for Apache Derby/JavaDB
h Explain Plan generic 11128 2009-06-03 Generic profile for any database
--[75| Objects Tree informix 11504 2009-10-30 Profile for Informix IDS
mimer 11651 2009-12-07 Profile for Mimer SQL
mysql 11504 2009-10-30 Profile for MySQL
neoview 11504 2009-10-30 Profile for HP Meoview
oracle 11504 2009-10-30 Profile for Oracle
postgresql 11128 2009-06-03 Profile for PostgreSQL
postgresqgla 11504 2009-10-30 Profile for PostgreSQL 8+
zqlsernver 11504 2009-10-30 Profile for SQL Server
sybase-ase 11588 2009-11-25 Profile for Sybase ASE

oo
Connection m Properties |

Figure: Database Profile category for a database connection

The way DbVisualizer auto detects a profile is based on the setting of Database Type in the connection details.

If you manually choose a database profile, this choice will be saved between invocations of DbVisualizer.

Driver Properties

The Driver Properties category is used to fine tune a driver or Initial Context before the database connection is established.

Driver Properties for JDBC Driver

Some JDBC drivers support driver specific properties that are not covered in the JDBC specification.

40(260)

-

-. Database Connection: CRM Ahoa

CRM Ahoa

g7 Connection _'Database Info | . DataTypes I P Seal'd1|

@ Connection Properties
i-Database Profile Driver Properties
W Defines IDBC Driver or JNDI specific properties that can be used to fine tune the database connedtion. A pre-defined
=8 Crade property is reverted to its default value when removing it while user defined propertiesare removed. The Edited flag
Authentication indicates that the property value has been edited or that the property has been added manualiy.
Delimited Identifiers Edited Parameter | Valug)
- L} Qualifiers AccumulateBatchResult true -
EI"':! Physical Connection autoCommit true
) Transaction database (null)
|- 5L Statements
. #7 Connection Hooks defaultExecuteBatch 1
-[i=| Objects Tree Labels defaulttChar false
- saL Edtor
B3 Query Builder disableDefineColumnType false
- Data Types fixedString false
(B Explain Plan includeSynonyms false
~[5 Objects Tree internal_logon {nully
java.naming factory.initial (null}
Java.naming.provider. url (null}
java.naming.security authentication (null}
java.naming.security credentials (null}
java.naming.security_principal (null}
javax net ssl keyStare (null} L
[i b

oes
Connection m Properties |

Figure: Driver Properties for JDBC Driver

The list of parameters, their default values and parameter descriptions are determined by the JDBC driver used for the connection. Not all drivers
supports additional driver properties. To change a value, just modify it in the list. The first column in the list indicates whether the property has been
modified or not, and so, whether DbVisualizer will pass that parameter and value onto the driver at connect time.

New parameters can be added using the buttons at the bottom of the dialog. Be aware that additional parameters do not necessarily mean that the
driver will do anything with them.

Driver Properties for JNDI Lookup

The Driver Properties category for a JNDI Lookup connection always contains the same parameters.

41(260)

: Database Connection: MySQL (JNDI)

My SQL{INDI)

g7 Connection _'Database Info | . DataTypes I P Seal'd1|

@ Connection Properties o
i..Database Profile Driver Properties N
Defines JIDBC Driver or JNDI specific properties that can be used to fine tune the database connection. A
=8| MysQL pre-defined property s reverted to its default value when remowving it while user defined propertiesare removed.
Authentication The Edited flag indicates that the property value has been edited or that the property has been added manually.
Delimited Identifiers Edited | Parameter | Valug |)
Qualifiers java.naming.authoritative {null) -
H"'_! Physical Connection java.naming batchsize {null) =
- Transaction java.naming.dns.url {null)
- =] 5QL Statements) o
E annecﬁm Hooks java.naming factory.object {null) :
= Obiects Tree Labels java.naming factory state {null) 1
[P sqL Editor java.naming factory.url.pkgs (null)
EE Query Builder

java.naming.language {null)

i D0OROoOoOoOEOEEO

java.naming.provider.url t3:Mocalhost 7001 |
java.naming.referral {null)
Jjava.naming.security. authentication (null) A

Constant holds the name of the environment property for specifying configuration information for -

Defauits
Connection | properties |

Figure: Driver Properties for JNDI lookup

The list of options for JNDI lookup is determined by the constants in the javax.naming.Context class. To change a value, just modify the value of the
parameter. The first column in the list indicates whether the property has been modified or not, and so, whether DbVisualizer will pass that parameter
and value onto the driver at connect time. New parameters can be added using the buttons at the bottom of the dialog. Be aware that additional
parameters do not necessarily mean that the InitialContext class will do anything with them.

Always ask for userid and/or password

Userid and password information is generally information that should be handled with great care. By default, DbVisualizer saves both userid and
password (encrypted) for each database connection. Userid is always saved while password saving can be disabled in the connection properties, in
the Authentication category.

The Require Userid and Require Password connection properties in the Authentication category can be enabled to tell DbVisualizer to
automatically prompt for userid and/or password when a connection is to be established. Enabling either one or both of these while leaving the
Userid and Password fields blank for a database connection ensures that DbVisualizer will not keep this vital information between sessions. The
following dialog is displayed if requiring both userid and password.

42(260)

: Database Connection: CRM Ahoa

CRM Ahoa

47 Connection I_' Database Info | . Datadypes | @ Search |

iDatabase Profile
i--Driver Properties

EI Crade

Qualifiers

Connection Properties

% Authentication

Delimited Identifiers

[—}-'! Physical Connection
]‘ Transaction

|~ 5QL Statements

¢} Connection Hooks

SQL Editor
=19 Query Builder
@ Data Types
h Explain Plan
-8 Objects Tree

Defaults

[Properties

Figure: Dialog asking for Userid and Password as a result of having Require Userid and Password settings enabled

Objects Tree Labels

Connection Authentication

connect, a dialog will be displayed prompting for it).

Save Password:

Require Userid:

Require Password:

Specify if database password should be saved (encrypted) betwesn
inwocations and if userid/password & required for 3 database. (If Require
Userid/Password is enabled and there is no userid/password specified at

Clear Password at Disconnect:

e

| & Connect: CRM Ahoa

Establish database connection for:
CRM Ahoa

Specify additional connection details below:

P Userid: |hr

Password: |..

Using variables in the Connection details

B
s

Variables can be used in any of the fields in the Connection tab. This can be useful alternative to having a lot of similar database connection objects.
Several variables can be in a single field, and default values can be set for each variable. The following figure shows an example with variables, i.e.,
variable named delimited by dollar characters, $$...$$.

Connection

alizs: |Drade: £5aliasss

Database Type: [-Drade

Criver (JDBC): [Orade Thin

Database URL: |jdbc:orade:ﬂ'1in:$.‘h]a13base Host||dbhost2] || |choices =[dbhost1,dbhost2, dbhost3] $5:55P0rt]|152158: 55510 | |ORCLES

URL Format: jdbc:oracle:thin: @<server=: <portl52l=: <sid=

Authentication

- T -

Userid: |

Password: |

Connect H Disconnect

Figure: Connection tab with variables

43(260)

The following variables appear in the figure:

+ $$Alias$$

« $$Database Host!| |dbhost2l || |choices=[dbhostl,dbhost2,dbhost3] $$
« $$Portl11521$$

e $$SIDIIORCL$S

Al of these variables define a default value after the "||" delimiter, except for the $$Alias$$ variable, which have no default value. The default values
appear in the connect dialog when you ask for a connection to be established. The $$Database Host$$ variable includes the choices option, with a
comma separated list of choices that should appear in a drop-down list. The drop-down list is editable, so the user is not locked into the choices from
the list.

The following figure shows the connect dialog based on the connection definition shown above.

Using variables in conjunction with the Require Userid and/or Require Password settings is also supported.

ra B

[i Connect: Oracle: $5Alas55 @

Establizh database connection for:
Oracle: $$Aliasss

Specify additional connection details below:

Alas: WyDB |
Database Host: | dbhost2 |v|
Port: 1521 |
SID: 'ORCL |
Userid: hr |
Passnord: @@ |

[Comect || cancel]

Figure: Connection tab with variables

Enter the appropriate information in the fields and then press the Connect button to establish the connection. When the connection is established,
DbVisualizer automatically substitutes the variables in the Connection tab with the values entered in the connect dialog. At disconnect from the
database, they revert back to the original variable definitions.

Connect to the Database

Press Connect when all information has been specified. DbVisualizer passes all information you entered on to the selected driver, and when the
connection is established, the following appears.

44(260)

.

| 8 DbVisualizer Personal - Untitled [==]==]

File Edit View Database Scripts 5QL Tools Window Help

L I el-R L=

b ¢ | «Drop your favorite objects here>

s Databases g Scripts Eﬁ Object View | ’ s0L Cma’:der|

B0 | b g | e | [& Database Connection: CRM Ahoa
@ g““e‘:ﬁ"'ﬁ Bl crM Ahca
EW- YCRIM Ahoa _
BB Schemas @7 Connection | [§ Database Info | 5 Data Types | 8 search|
- g HR (Default) _
I:l Tables Connection
-l views Alias: \CRM Ahoa |
5 53‘:“”“'""5 Database Type: |Clrade = | e
- Indexes
@ Sequences Driver {IDBC): | Orade Thin — | ‘
' ?E‘t&;’a"md Views Database URL: |jdbc:oracle:thin: @192. 168, 1. 156: 1521/0RCL e B
unctions
EH- Procedures URL Format: jdbc:orade:thin: @ <server=: < portl521>: «sid=
__ Packages Authentication
G-t Package Bodies | _ Userid: |hr |
-G Java Sources 3 Password: |=== |
BB 1ava Classes '
Triggers -
Object Types Reconnect l [Disconnect
Recycle Bin
: Jobs
- Scheduler
@ Database Links
[/1y Invalid Objects
Session Properties
= (£} DBA Views
a Isers
- 4@ Roles Connection Message
" fezgsi:ns b Cracde
i .] Oradle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
" Recyde Bin With the Partitioning, OLAP, Data Mining and Real Application Testing options
[+~ Resource Manager Orade JDBC driver
[+-{gH Storage 11.1.0.7.0-Production
’ Scheduler |GI'~"I'I'+01:UU ”Develoment”Proﬁle: orade ||E Connected - 00:00:54
- Statistics .
LR SGA - | | Connection i
; C 1 m Properties

Figure: A freshly initiated database connection using JDBC driver

The Connection Message box now lists the name and version of the database as well as the name and version of the JDBC driver. The database
connection node in the tree indicates that it is connected. The connection properties cannot be edited while a database connection is established.

The figure above also shows that the database connection node in the tree has been expanded to show its child objects.

If the connection is unsuccessful, it is indicated by an error icon in the tree. The error message as reported by the database or the driver appears in
the Connection Message area. Use this information to track down the actual problem. Since these conditions are specific for the combination of
driver and database, you should check the driver and database documentation to find out more. Below are a few common problem situations:

Error Message Explanation

No suitable driver. The JDBC support in Java determines what driver to load based on the database URL.
There is no driver that can handle a connection for the If the URL is malformed then there might be no driver that is able to handle the
specified URL. The most common reason is that the database connection based on that URL. This error is produced when this situation
driver is not loaded in the Driver Manager. Also make occurs or when the driver is not loaded in the driver manager. The recommendation is to
sure the URL is correct spelled. check the JDBC driver documentation for the correct syntax.

45(260)

java.sql.SQLException: lo exception: Invalid number The URL templates that are available in the Database URL list contains the "<" and ">"
format for port number place holders. These are there to indicate that the value between them must be
lo exception: Invalid number format for port number replaced with an appropriate value. The "<" and ">" characters must then be removed.

This example error message is produced by the Oracle driver when using the following
URL: jdbc:oracle:thin:@<qinda>:<1521>:<fuji>

Simply remove the "<" and ">" characters and try again.

Connections Overview

The Connections overview is displayed by selecting the Connections object in the Database Objects Tree. This overview displays all database
connections in a list and is handy to get a quick overview of all connections. In addition to the Alias, Profile, URL, driver, etc. there are a few symbols
describing the state of each connection. Double clicking on a connection changes the display to show that specific connection.

.

-

[a DbVisualizer Personal - Untitled EI@

File Edit View Database Scripts 5QL Tools Window Help

LI Hel-R

'g',g | <Drop your favorite objects here =

Databases | [] Seripts (8] object view | B sqL Corrmander|

3 C IR IR W ¢ Connections

4 % a

é--ﬂ Oradle servers 1H[2[3)[4][5 Tye | Alias 'Userid Profile Driver

[Orade prod PO E 7] Oracle CRM Ahoa hr auto Oracle Thin jdbcoraclethin:@192.168.1.156:152

g::j: ::;E 'EF [] Generic Oracle prod auto
Oradie: §6Alasss 1. [C] Oracle Oracle test system autc Oracle Thin jdbcoracle:thin:@192.168.1.156:152

DB2 LUW P Generic Oracle stage auto
MySQL 'EP m Oracle Oracle: $%Aliasdh auto Oracle Thin jdbcoraclethin:g$Database Host||df

MySQL{INDT) 1. Generic DB2 LUW auto
JavaDB/Derby 1. MySQL MySQL root auto MySQL jdbcmysqli192.168.1.107:3306/pur
1. MySQL MySQLINDI) root auto MySQL jdbcmysqli192.168.1.107:3306/pur

'EP E Generic JavaDBi/Derby auto
€| m 3

Symbol Description

1) 'F Database Connection uses a JDBC Driver

1) 4 Database Connection uses a JNDI Data Source

2) m Database Connection have overridden connection properties

3 P Database Connection have filters defined

4) S Database Connection is established

4 a Database Connection could not be established

4) g Database Connection is about to be established

5) Database Connection will be established when "Connect All" is executed

Figure: The Connections Overview

Information for each symbol is provided in the description area below the list. The fifth check symbol is the only editable symbol and is used to set
the state of the Connect when Connect All property, i.e., whether the database connection should be connected when selecting the Database-
>Connect All menu choice.

Click the Type column for an entry to modify its Database Type.

46(260)

Database Objects Explorer

Introduction

The Database Objects Tree is used to explore databases and browse details about objects. Which object types may be explored and which object
actions exist are database dependent.

= 2
| B DbVisualizer Personal - Z:\Users\rogge\myprefs\Bookmarks\HR Stuff\Hardware Inventony\Computers per Employee.sql
File Edit WView Database Scripts SQL Tools Window Help ObiectiVi =
. . ectiViewitab) e
WGEBIKWAOXO eyscactonmens
5 - 4
'%%@-3—5-5—55 i | Fleto [eMpiovess G Statistics G ADD_IOB_HISTORY
— Databases | LT saipts
LY JON X s B8 Table: BIO
i Connections il | Cormections/CRM Ahos/Schemas/HR, Tables/ BT
=@ % cam Ahoa ; _
Database = @ Schemas _ W constrants | @ . ghDependences | M ooL | 0L with Storage
Objects = @ m® (Default) = =0 References = sgator | Grants | /™7 Colusmns Comment
Free— L—JE}% L g Info | [Cokumns | (i Data | [Row Caunt | 2 Prmary Key | < Indexes | 2 Rowid
k) =R =
& [Cohares R0 S5P| |u/ENEE e -n/» [an
o Wl Constrants (4 - -
-) Referenced By Constraints | | | DB Fiter: [PHONE_NUMBER ke '515% | useFilter || uUseNoFiter |
53, Indexes
& g'rrmers — & EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBE[
* _'I!j]' Par ibons il 200 Jennifer Whalen JWHALEN 5151234444 =
{7 EMPLOYEES 2 203 Susan Mavtis SMAVRIS 515.123.7777
B[Views 3 204 Hermann Baer HBAER 515123 8888
- B Synoryms 4 101 Meena Kochhar NKOCHHAR 5151234568
ﬁ mmﬁ 5 108 Mancy Greenberg NGREENBE 515124 4569
) b 3 N
Mamw“:u"m“ 6 109 Daniel Faviet DFAVIET 515.124.4169
Functions 7 110 John Chen JCHEN 515,124 4269
&-@P Procedures Al e 112 Jose Manuel Urman JMURMAN 515,124 4469
Object Fiter g 114 Den Raphaely DRAPHEAL 515127 4561
10 115 Alexander Khoo AKHOO 515.127.4562
- 11 119 Karen Colmenares KCOLMENA 515127 4566
Objects) ; . [= 12 100 Steven King SKING 515,123 4567
1Tﬂr§§‘l A [- ; —
Filterisetup) | tame ~ [=] 6% 101
o e = [e
Match: @ Any (O Al —
L — | '
Max Rows: | 100000 | Max Chars: |0 0.000/0.031 sec || 12 [21)/13 || 1-12 |

Figure: Database Objects tab

The Databases tab to the left is the place to setup new database connections and establish connections. Once connected, expand

the database

connection object and explore the objects available. The Object View area to the right displays detailed information about the currently selected

object in the tree.

The Filter setup pane below the tree is used to control which objects are displayed in the tree. It comes in handy when you have many schemas or

tables in your database and want to limit the number of visible objects.

For some object types, there are actions (small dialogs for performing a task) for common operations, such as creating, altering, and dropping
database object. Which actions are available depends on the database you are connected to and the database profile used for the connection. More

about this in sections below.

All object names in the tree can be dragged to any editable text fields, including to the SQL [Commander editor.

47(260)

Create a Database Connection

There are a few objects that always appear in the tree independent of the edition of DbVisualizer and the database profile in use. The most important
object is the Database Connection, which is used to setup and establish a database connection. The other two objects are Folder and
Connections Overview. The following sections describe these objects in more detail.

Database Connection object

The Database Connection object is the root object for a connection. Before exploring or accessing a database, you need to establish the
connection. Create a new database connection using the Database->Add Database Connection main menu choice and the following will appear.

-

Use Connection Wizard? @

@ Create database connection using the Connection Wizard?
Always Show this Dialog

| Use Wizard | | NoWizard | | Cancel

Figure: Add database connection

We recommend that you always use the connection wizard when you create a new database connection, as it hides the complexity of loading drivers
and the syntax of database URLs (detailed information on how to establish a connection is provided in the Load JDBC Driver and Get Connected
document).

Once a database connection has been setup properly, you just need to double-click on the database connection to establish a connection.
'You can use the Database->Connect All main menu choice to connect all enabled database connections with a single click. You make a database
connection "Connect All" -aware in the Database Properties or in the Connections overview.

Alias

The name of the database connection object as it appears in the tree is by default "Database Connection". The Connection Alias can be used to
provide a name that is more descriptive. Enter the new name in the Alias field in the Connection sub tab.

Default database and schema

The (Default) indicator after the name of a database or schema in the tree indicates that it is the default database or schema. The default is
determined when you connect to the database.

Connections
R crr ahos|
l__—_}ﬁ Schemas
[b} CTHSYS

-3l HR { Default)

5I_INFORMTMN_SCHEMA
SPATIAL_CSW_ADMIN_USR
SPATIAL_WFS_ADMIN_USR

5YS
G- 4 SYSMAN
[b} SYSTEM
|55 Session Properties

- (5} DBA Views

Figure: The (default) indicator for database and schema objects

Right-click while the database connection node is selected and then chose Show Only Default Database/Schema to limit the display to only show|

48(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

lyour default database/schema.

Remove and copy database connection objects

To remove a database connection, select the Database->Remove Database Connection operation in the main menu. You can copy a database
connection with Database->Duplicate Database Connection.

Database Connection detailed information
The following section describes the tabs in the Objects View for a database connection briefly.

Tab Description

Connection This tab is always enabled and is used to setup the details for a database connection. You can also connect, disconnect and
reconnect using the buttons in this tab.

Database Info When connected, the Database Info tab shows various information supplied by the driver. Much of this information is low level, even
though some of it may be useful.

Data Types The Data Types tab lists all data types supported by the database.

Search The Search Tab is used to search among the objects in the tree. Search operates on the content in the tree. See the next section for
more information about search.

Search

The Search tab is used to search among the objects in the tree by object name. Note that if you have tree filters or any other property that limits the
content of the tree enabled, the search is performed only for those objects that match the filters. The types of objects that are searchable depends on
the database you are connected to. For instance, columns are included in the tree for some databases but not for others.

49(260)

[] Object view | B sq Corrmander|

Acticns W

:? Database Connection: CRM Ahoa

Connections/CRM Ahca
| 7 Connection | [} Database Info | & Data Types | @8 Search

Search For

Search Object Names: |JDB% | D Search

Usge an asterix (*) to indicate a wildcard. (Only if Regular Expression is disabled)

Scope
Search From: |S P CRM Ahoa - |
Case Sensitive:
Regular Expression:
Result
#=s(e
Type . Mame

3

[l Column CRM Ahoa/Schemas/HR/Tables/BIOIColumnsiJOB_ID (VARCHARZ)

[#] Column CRM Ahoa/Schemas/HR/Tables/BIOIConstraints/SYS_C009669 (Check)JOB_ID

[#] Column CRM Ahoa/Schemas/HR/Tables/EMPLOYEES/Columns/iJOB_ID (VARCHARZ)

[¥] Column CRM AhoalSchemas/HR/Tables/EMPLOYEES/Constraints/EMP_JOB_FK (Foreign Key)JOB_ID

[¥] Column CRM AhoalSchemas/HR/Tables/EMPLOYEES/Constraints/EMP_JOB_NN (Check)lJOB_ID

[#] Column CRM AhoalSchemas/HR/Tables/EMPLOYEES/ndexes/EMP_JOB_IX (NONUNIQUE)JOB_ID

[#] Column CRM AhoalSchemas/HR/Views/EMP_DETAILS_VIEW/Columns/JOB_ID (VARCHARZ)

[Column CRM AhoalSchemas/HR/Views/EMP_DETAILS_VIEW/Columns/JOB_TITLE (VARCHARZ)

¥ Index CRM AhoalSchemas/HR/Indexes/JOB_ID_PK (HR.JOBS)

[l Column CRM Ahoal/Schemas/SYSiiews/ALL_REFRESH/ColumnsiJOB (MUMBER)

[f] Column CRM AhoalSchemas/SYSViews/ALL REFRESH_CHILDREN/Columns/iJOB (NUMBER)

[f] Column CRM Ahoal/Schemas/SYSiiews/SLL_SCHEDULER_JOB_ARGS/ColumMNns/JOB_NAME (VARCHARZ)

[f] Column CRM Ahoal/Schemas/SYSiiews/ALL_SCHEDULER_JOB_CLASSES/Columns/JOB_CLASS_MAME (VARCHARZ)
[Column CRM AhoalSchemas/SYSiiews/SLL_SCHEDULER_JOB_LOGI/Columns/JOB_MNAME (VARCHARZ) -

|634.202sec | 70/2 || 115 |

Figure: The Search tab

Search by specifying the name of the object, or name pattern, and press the Search button. You can use asterisk (*) as a wildcard in a pattern, or
you can use a regular expression pattern if you enable it by checking the Regular Expression checkbox. You can also specify where in the tree to
start the search, and whether to do a case sensitive search.

You can interrupt a search operation with the Stop button in the grid toolbar. Use the Show Object Path toolbar toggle button to include or exclude a

column for the complete path for each found object in the grid. This path is the same as if navigating to each object manually in the objects tree.
Other grid toolbar buttons let you export and print the search result grid.

The search may take some time to perform the first time.

Double-click on a row to see detailed information about a specific object in a separate window.

Organizing Database Connections in Folders

If you work with many database connections, you can use folder objects to organize and group them in the tree. Folder objects can have child folder
objects in an unlimited hierarchy. Use the Database->Create Folder and Database->Remove Folder menu choices to create and remove folder
objects. You can use the Database->Move Up/Down main menu choices to move the folders (and database connections) in the tree, or you can just
drag and drop to the nodes to a new location.

50(260)

Databases Q Scripts

20 P BN

n Connections

-4 9 CRM Ahoa

El'ﬁ,‘ Orade servers
i [l orace prod

Oracle test

Oracle stage

Oracle: 554liasss

DBZ LUW

MyS0L

MySQL{INDI)

JavaDB/Derby

Mimer - sysadm

Mimer - mimer_store

Figure: The database objects tree and the folder object type

Connections overview

The Connections object is the root object in the tree and acts as a holder for all database connections and folders. When selected, it displays an
overview of all database connections in the Object Details view. Here you can see the basic settings and states for your database connections. For

more information, see the Load JDBC Driver and Get Connected chapter.

51(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

.

Ia DbVisualizer Personal - Untitled

File Edit View Database Scripts 5QL Tools Window Help

L LI Hel-R L=

g | []B10 [EMPLOYEES & Statistics 4§ ADD_JOB_HISTORY (5} Locks | | Computers per Employee. sgl

20 P e N

[&] object view | B sqL Comander|

Connections

= 1® CRM Ahoa
t 9 Schemas 1) 2) | 3) | 4) [5) Type Alias Userid Profile Ciriver
lass] Session Froperties | i CRM Ahoa jdbc:oracle:thin:@192.1
=3 SBA Views [l Generic Oracle prod auto
-0 g;z o ™ Oracle Oracle test system auto Oracle Thin jdbc oracle:thin:@192.1
MySQL 1. :",_ Generic Oracle stage auto
MySQL{INDI) 1 E| Oracle Oracle: $5Alias$s auto Oracle Thin jdbcoraclethin:3$0Data
JavaDB/Derby 1. Generic DB2LUW auto
Mimer - sysadm P MySQL MySQL root auto MySQL jdbcmysql/192.168.1.
Mimer - mimer_store 1. MySQL MySQLUIMNDI) root auto MySQL tmpijnditest8056 tmpit
1. Generic JavaDB/Derby auto
1. Mimer SQL Mimer - sysadm sysadm auto Mimer jdbcmimertcp:ilocalhg
1. Mimer SQL Mimer - mimer_store mimer_store auto Mimer jdbcmimertcp:ilocalhg
4 | n | 3

Symbol Description

1
1
2
3)
4
4
)|
5)

TEAREVES S

Database Connection uses a JDBC Driver

Database Connection uses a JNDI Data Source

Database Connection have overridden connection properties

Database Connection have filters defined

Database Connection is established

Database Connection could not be established

Database Connection is about to be established

Database Connection will be established when "Connect All" is executed

Figure: Connections object

Database Objects Tree

Standard Actions

The Database Objects toolbar buttons are used to do tree related operations. These are individually enabled or disabled based on the currently

selected object.

L bl R

Figure: Objects tree toolbar
Description of the buttons from the left:

Tool bar button

Reload

Description

Reloads the currently selected object by asking for new information about the object from the database. This is useful if

52(260)

new objects have been created or removed.

Stop Stops the current tree operation, for instance connecting to a database or expanding a node.

Show/Hide Tree Filter Is a toggle button that determines whether the Filter management pane will be displayed below the tree.

Create Database Adds a new Database Connection object in the tree. The location of the new object is determined based on the current
Connection selection. If no node is selected, the new is object added at the end of the list.

Create Folder Creates a new folder object.

Show in Window Request to display the details view for the selected object in a separate window.

The right-click menu for an object and the Database main menu lists object specific actions. The following actions are always available for all
objects:

Refresh Objects Tree F5
Reconnect Ctrl+Skift+R
Show in Window...

Add to Favorites...

Show/Hide Tree Filter

Show/Hide Table Row Count

Copy Name Ctrl+C

Copy Object Path
Clear Visited State

LD @vyléa

Figure: Standard right click menu actions for all objects

Object Actions

An object in the objects tree may have object specific actions attached to it. These actions are accessible via any of:

¢ Right-click menu in the objects tree
¢ Via the Database->Selected Object main menu
¢ Viathe Actions menu button in the object view

Here is an example of the actions menu launched via the Actions menu button:

53(260)

Table: BIO

Connections/CRM Ahca/Schemas/HR/ Tables/BIO W] Alter Table.

il c aints I Triogers I JBDE: . I Rename Tahble...
_ =2 References 7 Navigator & Grants Empty Table...

{gInfo | [f]comns | Ffpats | E@RowCount | 2P €3 Drop Table..
* .| 35 8 | CopyTable.. g
Comment Table...
Mame ..
! — Grant Privilege...

OWHNER HR é@ .
TABLE_NAME BIO g Import Table Data..
TABLESPACE_NAME USERS & Export Table..
CLUSTER_MAME (null) Create Index...
10T_NAME fnull) .

= Create T
STATUS VALID O Create Trigger
PCT_FREE 10 Analyze Table...
PCT_USED fnull) Script Object to SQL Editor b
INI_TRANS 1 Script Object to Mew SQL Editor
MAX_TRANS 255 ™
INITIAL_EXTENT 65536
NEXT_EXTENT (nulty
MIN_EXTENTS 1
MAX_EXTENTS 2147483645
PCT_INCREASE fnull)
FREELISTS (null)

Figure: Object actions menu

Common Object Actions

There are a few actions that appear for some object types in all database profiles. These are most often valid for plain table object types and offer
related functionality. Read the following sections for more information.

Create Table

The Create Table action launches the Create Table feature. You use it to create a table, optionally with a primary key, foreign keys and other
constraints. Read more about this feature in Create and Alter Table.

Create Index

The Create Index action launches the Create Index assistant dialog, where you can select columns to include in a new index for a table.

Import Table Data

Import Table Data launches a dialog where you can specify a CSV file to be imported into a table. Various configurations for how the source file is
organized and data mapping are offered. Read more in Export and Import.

Export Table

Export Table launches a dialog for exporting the DDL and/or data for the table. Read more in Export and Import.

54(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportImport/exportImport.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportImport/exportImport.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/tableDesigner/tableDesigner.html

Script Object to SQL Editor

Use this action to create pre-defined SQL statements based on the source table and its columns. The created statement is copied to the current SQL
editor in the SQL Commander. Here are a couple of examples:

Script Object to SQL Editor -> Select

SELECT
COUNTRY_ID,
COUNTRY_NAME,
REGION_ID

FROM
HR.COUNTRIES

Script Object to SQL Editor -> Insert

INSERT
INTO
HR . COUNTRIES
(
COUNTRY_ID,
COUNTRY_NAME,
REGION_ID
)
VALUES
(
0
)

For databases with DbVisualizer database specific profiles, the Script Object to SQL Editor action menu also contains an entry for generating the
DDL for Table and View objects.

Script Object to New SQL Editor

This is the same as Script Object to SQL Editor, except that the SQL is copied to a new SQL editor instead of to the current editor.

Objects Tree Filtering

The Filtering setup is activated via the Database->Show/Hide Tree Filter menu choice and the filter pane appear below the objects tree. Filtering is
useful to limit the number of objects that will appear in the tree.

Tree filters are managed per database connection object. What can be filtered is defined per database profile. The generic database profile supports
filtering of database (catalog), schema, table and procedure names.

The unfiltered schema objects for an Oracle The same objects but now filtered based on Filter defined as all names that do not start
connection. all schema names starting with "O" or "S". with "O" and "S".

55(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/databaseExplorer.html#mozTocId399048

o8 Yoracie test NEEE ¥ Joracie test - | c @O .

= & schemas = ﬂ Schemas g schemas
ANONYMOUS -4 oE b W ANONYMOUS
APEX_PUBLIC_UISER OLAPSYS APEX_PUBLIC_USER
BI | ORACLE_OCM i Bl =
CTXSYS ORDPLUGING CTXSYS
DESNMP ORDSYS DBSMMP
DIP OUTLM DIP
EXFSYS OWBSYS EXFSYS 2
FLOWS_030000 SCOTT FLOWS_030000
FLOWS_FILES SH 3 FLOWS_FILES
HR SI_INFORMTN_SCHEMA HR.
IX SPATIAL_CSW_ADMIM_USR I¥ L &
MDDATA g SPATIAL_WFS_ADMIN_LISR MDDATA
MDSYS sY5 MDSYS
i MGMT_VIEW SYSMAN b MGMT_VIEW
CE SYSTEM (Default) PM
t OLAPSYS |55 Session Properties PUBLIC
ORACLE_DCM - g DBA Views TSMSYS
ORDPLUGINS E Oracle stage i ; WKPROXY i
ORDSYS Obiject Filter Object Filtef
OLTLN L &
OWBSYS Activate Filters: Activate Filters:
M _ e . T
BUBLLC Object Type: [E. T8 Schema v] Object Type: [ﬁ T schema v]

ol [Name v (&) 0% @@ | | [nomexfs2] 0% (O]
SI_INFORMTN,_SCHEMA ™ ']EHS% ©@) Andfname - [[es]ls% (8]

SPATIAL_CSW _ADMIN_USR B o o
SPATIAL_WFS_ADMIN_USR = ¥ Match: () Any @

S5YSMAMN

Figure: Examples of tree filter settings

An active filter for a database connection is represented by the funnel icon just before the database connection name. The active state for a filter is
defined using the Activate Filters checkbox in the Object Filter pane. A filter can only be activated if there are any filters defined. Up to 15 filters can
be defined per object type.

A common requirement is to list only the default schema or catalog (database) in the database objects tree. This can be accomplished using the
filtering functionality, but the recommended way is to do this with the Show only default Database or Schema property in the Properties tab for the
Database Connection object. You can read more about this in the section.
A filter may be defined using regular expression syntax.

Show Table Row Count

The Database->Show/Hide Table Row Count menu choice decides whether the number of rows for table objects will be listed after the name of the
table in the tree.

Enabling this property results in a performance degradation.

Object Tree Icons

Every known object type is associated with an icon that is displayed in the objects tree, object view tab and the actions window. A few operations
may add an overlay icon in the objects tree to indicate certain conditions. These are the overlay icons that may appear on top of the object icon:

New symbol. This indicates that the actual object is newly created since the objects tree was last loaded
4 Warning symbol indicating that the condition(s) for the actual object is in a state that may require attention

@ Error symbol indicating that the object is in an erroneous or incomplete state

56(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId753863

Database Profiles

A Database Profile is the foundation for database specific support in DbVisualizer. A database profile is, somewhat simplified, a definition of the kind
of information that is presented in the database objects tree and in the various object views for a specific database engine. In addition, the profile
defines the actions for the object types defined in the profile. DbVisualizer loads the matching database profile when you connect to a database. If no
matching profile is found, or if you are running DbVisualizer Free, DbVisualizer uses a Generic profile with just the general database information and
actions included.

Database Specific Support

DbVisualizer Personal currently offer database specific support (database profiles) for the following databases (click links for details):

¢ DB2LUW

« DB2z/OS

¢ HP Neoview

¢ Informix

e JavaDB/Derby
e Mimer

e MySQL

¢ Oracle

¢ PostgreSQL

e« SQL Server

¢ Sybase ASE

The specialized database profiles define different object types, so the database objects tree may look different depending on which database you are
connected to. The structure and organization of a database profile is also something that may impact the layout of the tree, even though the provided
ones are similar in their structure. There are two root nodes in the majority of the profiles:

* User objects
*« DBAobjects

User objects are, for example, tables, views, triggers, and functions, while DBA objects most often are objects that require administration privileges in
the database in order to access them. DbVisualizer puts all DBA objects under the DBA Views tree node. If you connect to a database using an
account with insufficient privileges to access a DBA object, you may see error messages if you try to select nodes under the DBA Views node. The
following is an example of the DBA sub tree for Oracle.

= (5} DBA Views
-y Users
. Roles
-- Sessions
----- Locks
-0 Recyde Bin
-- Resource Manager

i+- @) Statistics
LI SGA

Figure: The DBA Views tree object

Database profiles are defined in XML and it is quite easy to extend and modify them. Read more in the [BEICNES-N el N metl=t0e1d document |

Generic profile

DbVisualizer supports a wide range of databases. The nature of the databases and what they support differ from vendor to vendor, so the
appearance and structure of the tree below the Database Connection objects for different databases differ as well. The generic database profile (the
only profile available in DbVisualizer Free) displays objects based on what JDBC offers in terms of database information (aka metadata information).
DbVisualizer asks the JDBC driver for all schemas, databases, tables and procedures, and then builds the tree based on what the driver returns.

57(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sybase-ase.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sqlserver.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/postgresql.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/mysql.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/mimer.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/derby.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/informix.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/neoview.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/db2-zos.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/db2.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

The advantage of using JDBC to get database metadata is that it is a standard way to access the information, independent of the database engine
type; the JDBC driver layer hides the proprietary details about where and how the information is really stored. The drawback with using JDBC is that
JDBC doesn't offer access to all metadata a database may hold. While the information presented by the generic profile, with its reliance on JDBC, is
sufficient for many tasks, a database specific profile offers far more details as well as more features. If you use DbVisualizer Free with one of the
databases supported by database specific profiles, you may want to upgrade to the DbVisualizer Personal edition.

The generic database profile when used for an Oracle connection look as follows:

EIE Oracle via Generic profile
. i) HR (Default)

{1 SYNOMYM

{77 TABLE

-] viEws

@ Procedures

Figure: The generic database profile when applied to an Oracle database connection

The appearance of the generic database profile may include schema objects and/or catalog objects depending on whether the database supports
these objects. The Procedures object always appear in the tree, regardless of if the database connection supports procedures or not.

The following sections describe the objects provided by the generic profile.

Catalog/Database object

Catalog is the term used in JDBC and some database engines for a logical grouping of database objects. Other database engines, e.g., Sybase,
PostgreSQL, SQL Server and MySQL use the term Database for, more or less, the same purpose. Both terms are used in interchangeably in
DbVisualizer.

The Object View for a Catalog object in the generic profile is a pane with two tabs, Tables and References. The Tables tab lists all the tables that are
located in the catalog while References shows the exact same list of tables but instead as a referential integrity graph.

58(260)

e

Edi

WS HE aa

g | .10 [7]eMPLOYEES & Statistics 4§ ADD_JOB_HISTORY (5} Locks | | Computers per Employee.sql

Databases Q‘ Scripts

O P ER T

| & DbVisualizer Personal - Untitled
File

t View Database Scripts

SQL Tools

A OX@

?_E Catalog: jiradb

MySQL

&+ | & information_schema

=-

[TABLE
|:| changearoup
[] changeitem
-] columnlayout
G-] columnlayoutitem
|:| component
|:| configurationcontext
-] customfield
|:| customfieldoption
-] customfieldvalue
|:| fieldconfigscheme
[] fieldconfigschemeissustype
&[] fieldconfiguration
|:| fieldlayout
-] fieldlayoutitem
|:| fieldlayoutscheme
[] fieldlayoutschemeassodiation
|:| fieldlayoutschemeentity
[] fieldscreen
&[] fieldscreenlayoutitem
[#-[] fieldscreenschems
&[] fieldscreenschemeitem

|_| fieldscreentab &

Window Help

(& object view | B sqL ::cm-rnmder|

Connections/MySQLjiradb

|:| Tables EE References

=

B0 35

TABLE_CAT TABLE_SCHEM TABLE_MNAME \TABLE_TYPE REMARKS ml
Jirado (nully 05_CURREMTSTEP TABLE -
Jirado (nully 05_CURREMTSTEP_PREY TABLE

Jirado (nully 05_HISTORYSTEP TABLE 3
Jirado (nully 05_HISTORYSTEF_FPREV TABLE

Jirado (nully 05_WFENTRY TABLE

Jirado (nully SEQUEMCE_VALUE_ITEM TABLE

Jirado (nully changegroup TABLE

Jirado (nulty changeitem TABLE

Jirado (nulty columnlayout TABLE

Jirado (nulty columnlayoutitem TABLE

Jirado (nulty component TABLE

Jirado (nulty configurationcontext TABLE

Jirado (nulty customfield TABLE

Jirado (nulty customfieldoption TABLE

Jirado (nulty customfieldvalue TABLE

jiradb [ty fieldconfigscheme TABLE <

| 0.000/0.000 sec || 87/5 || 1-16 |

Figure: The view for Catalog objects

The child objects shown for a catalog object depend on the capabilities of the JDBC driver. Typically, a child object represents a type of table that the
driver use to categorize the tables in a catalog, e.g., regular tables or system tables. For instance, the example in the figure above shows a MySQL
database connection with catalog objects as its child object. The catalog child objects are TABLE and LOCAL TEMPORARY, because these are the
table types that the MySQL JDBC driver supports (these table types are the same as those listed in the Table Types tab when selecting a database
connection object). For other databases, you may see child objects representing other table types.

Schema object

Select one or several rows (cells) in the tables grid and then choose Script: SELECT ALL to create a select script for the selected tables, copied to
the current SQL Commander where it can be executed.

The generic profile Schema object tree and view are organized in the same way as for the Catalog objects. There is in fact no difference except that
the schema objects are in another level in the tree and is represented by a different icon.

The following screenshot shows the information for the selected schema with the References tab selected.

59(260)

.

IB DbVisualizer Personal - Untitled IEI@

File Edit View Database Scripts 5QL Tools Window Help

S =P~ WalloPidi=

g | []B10 [EMPLOYEES & Statistics 4§ ADD_JOB_HISTORY (5} Locks | | Computers per Employee. sgl

Dbjectﬂew|’5q_mm|
'.|’| .-‘.|. 2 Schema: HR

i Connections

Connections/Cracle via Generic profile/HR

Eg zp;:lﬂifra'la Generic profile !E References
SEE (etut) | B@OSHELLIILLEHE RS @ |Hewcn -

-] TABLE
{2 VIEW
@' Procedures
-] Orade servers

J DB2LUW
B MysQL
JOB_HESTORY Ed JOES

| M?SQL{JNDI} 7 = — .':_—l' EMPLOYEES —* F smap whckeRmin
¥ JavaDB/Derby F a1 oA cam DEPARTMENTS o ——
i Mimer - S]!'SBdITI o CEPARTREWT O HUWEERIH) + —|

Mimer - mimer_store CMEATRCE - EERLCCMTES, > PECACE,
N o LOCATION D HASWEERI4) FOCOURTRY. D CHARE & OGN D HUMGER

& mwwonm o s

FPowered by yFile

|54%||Tables: 9||R.eﬁarences: 10

Figure: The view for Schema objects

Table object

The Table object is probably the most frequently accessed object in the tree, since its Object View shows not only a lot of information about the table
but also the data the table holds. This is also the place where you can edit the table data (only available with the DbVisualizer Personal edition).

60(260)

i Table: BIO

Connections{Cradle via Generic profile/HR/TABLE/EIO

2 Primary Key <Findexes | [Perants | P Rowid | cEReferences | 37 Navigator
Lg Info 7§ Columns | FH pata I Row Count
OS5 P - uHEEHE»e -n»
& EMPLOYEE_ID FIRST_NAME LAST_NAME| EMAIL | PHONE_NUMBER HIRE_D/[f]|
1 104 Bruce Ernst BERMST 590.423 4568 1991-05-210 »
2 106 Valli Pataballa VPATABAL 590.423 4560 1998-02-05 0
3 102 Lexe De Haan LDEHAAM 515.123.4569 1993-01-13 0
4 103 Alexander Hunold AHUMOLD 590423 4567 1990-01-032 0
5 198 Donald OConnell DOCON... 650.507.9833 1999-06-21 0
] 200 Jennifer YWhalen JWHALEM 515123 4444 1987-09-17 0
7 202 Pat Fay PFAY 603.123 6666 1997-08-17 0
8 203 Susan Mavris SMAVRIS 5151237777 1994-06-07 0
9 204 Hermann Baer HBAER 515.123.8888 1994-06-07 0
10 205 Shelley Higgins SHIGGING 515.123.8080 1994-06-07 0
11 206 William Gietz WGIETZ 515.123.8181 1994-06-07 0
12 101 Meena Kochhar MKDCHH... 515.123 4568 1989-09-210
13 105 David Austin DAJSTIM 590423 4569 1997-06-25 0
14 107 Diana Larenfz DLOREM... 590.423 5567 1999-02-07 0
1 | 1 " b

h‘lax Rows: |1UUUUU |Max Chars: |U I

0.016/0.078 sec || 107/13 || 1-14

Figure: The view for Table objects

The Object View for a table object contains the following tabs:

Tab

Info

Columns

Data

Row Count

Primary Key

Indexes

Grants

Row Id

References

Navigator

Description

Brief information about the table object

This tab lists type information about all columns in the table

Read more in Data tab

Lists the table row count

Shows the primary key

Lists all indexes for the table

Displays any privileges for the table

Displays the optimal set of columns that uniquely identifies a row

Read more in References tab

Read more in Navigator tab

Procedure object

The Procedure object shows the name of the procedure or function in the tree, and the Object View lists the parameters that are used when calling it.

e Procedure: ADD JOB HISTORY

Connedtions/Crade via Generic profile/HR/Procedures/ ADD_JOB_HISTORY

[[F] Procedure Columns
VOS5 H

PROCEDURE_SCHEM | PROCEDURE_MAME| COLUMM_MAME COLUMN_TYPE | DATA_TYPE |T‘\"F"IEI
HR ADD_JOB_HISTORY P_EMP_ID 1 3NUN ~
HR ADD_JOB_HISTORY P_START_DATE 1 93 DATI
HR ADD_JOB_HISTORY P_END_DATE 1 93 DATI
HR ADD_JOB_HISTORY P_JOB_ID 1 12 VAR
HR ADD_JOB_HISTORY P_DEPARTMEMNT_ID 1 I MNUN

1 m 3

0.203/0.000 sec | 5716 || 1-5 |

Figure: The procedure object

The Object View shows a list of column names for the selected procedure.

Object Views

The Object View tab shows detailed information about the selected tree object. The Object View may contain several sub tabs, depending on the
current database profile and the type of the object selected in the tree. There may also be several representations of the same information, providing
different views of the information. The following sections describe the different views, or visual presentation forms, provided by DbVisualizer.

Grid

The Grid view is the most common one as it displays the data in a standard grid style.

62(260)

i Table: BIO

Connedtions/Cradle via Generic profile/HR/TABLE/BIO

2 Primary Key Indexes Grants | M Rowid | =B References | .7 Navigator

g Info] Columns | FH pata | I Row Count
Y Y

TABLE_SCHEM TABLE_MAME COLUMN_NAME DATA_TYPE TYPE_NAME COLUMN_SIZE BU FFE@]
HR BID EMPLOYEE_ID 3 NUMBER B -
HR BID FIRST_NAME 12 VARCHAR2 20

HR BID LAST_NAME 12 VARCHAR2 25

HR BID EMAIL 12 VARCHAR2 25

HR BID PHOME_NUMBER 12 VARCHAR2 20

HR BID HIRE_DATE 93 DATE 7

HR BID JOB_ID 12 VARCHAR2 10

HR BID SALARY 3 NUMBER 8

HR BID COMMISSION_PCT 3 NUMBER 2

HR BID MANAGER_ID 3 NUMBER B

HR BID DEPARTMENT_ID 3 NUMBER 4

HR BID PHOTO 2004 BLOB 4000

HR BID RESUME 2005 CLOB 4000 i

1 | m | b

0.078/0.016 sec || 13/18 || 1-13 |

Figure: The Grid view

Form

The Form view extends the Grid view by adding a form below the grid. Click on a row in the grid and the information is displayed in the form.

63(260)

E—i SGA

Connedtions/Oradle servers/Oracle test/DBA Views(SGA

L 5GA | [g Poorly performing SQU's | . gj Object Cache |

0|35

S0L_TEXT | USERNAME SHARABLE_MEM (KB) PERSIS]|
* OracleDEM = SELECT SEVERITY_INDEX, CR... DBSNMP 12.36 -
select LOW_OPTIMAL_SIZE, HIGH_OPTIMAL .. SYS 12.49 B
select * from all_scheduler_schedules where owner... HR 24 27
SELECT LAST_LOAD_TIME FROM MGMT_TARGETS... SYSMAN 14.36
SELECT BLACKOUT_GUID, START_TIME, END_TIM... SYSMAM 14.42
select owner, object_name, object_type, status, crea... HR 232.39
select owner, object_name, object_type, status, crea... HR 232.39
UPDATE MGMT_TARGETS SET LAST_LOAD_TIME=. [G000 20.32 i
e e e i e e i —— X
| 0.047/0.765 sec | 1697/36 | 1-9

5L | [info
®$9EFHT -

1 UPDATE I

z MGNT TARGETS

3 SET

4 LAST LOAD TIME=:BEZ

5 YHERE E

& TARGET GUID = :Bl

7 RHD

g [

g LAST LOAD TIME < :B2
10 OR L43T LOAD TIME IS HULL %

Figure: The Form view

If there is only one row of data, only the form is displayed.

Source

The Source view is typically used to show the source for functions, procedures, triggers, etc. It is based on a read only editor with SQL syntax

coloring. The sub toolbar buttons from the left:

¢ Reload the data from the database

¢ Stop loading the data from the database
e Export the data to file

¢ Print the data

¢ Copy the data to SQL Commander

¢ Format the SQL

64(260)

il Table: BIO

Connections{CRM Ahoa(Schemas/HR/ Tables/BIC

Prowid | cBReferences | 7 Navigator | PGrants | /®] Columns Comment
_ LgInfo | lcoumns | [fipata | KB Row Count | Prrimarykey | <P indexes
Constraints | (@ Triagers | [gDependences | MpoL | M DDLwith Storage

@ This view shows the complete DDL with storage details used to create the object.

BSOS FT -

1 s
2 CRERTE TRBLE "HE"."EI0"
3 ["EMPLOYEE_ID™ NUOMEBER(c,0) HOT HULL ENAELE,
4 "FIRGT _NAME™ WARCHARZ(Z0), =
5 "LAST NAME™ VARCHARZ(Z5) HOT HULL ENARLE,
] "EMATL™ WARCHARZ (25) HOT HULL ENARLE,
7 "PHONE _NUHMEBER"™ WARCHARZ (Z0),
g "HIFE DATE™ DATE HOT HULL ENABLE,
2 "I0E_ID™ VARCHARZ(10) HOT HULL ENABLE,
10 "HALARTT NUMBER(S,Z),
11 "COMMISZSION _PCT™ NUMBER(:Z,Z),
1z "HMAMNAGEER_ID™ NUMEBER.(c,0),
13 "DEPARTHENT ID™ NUMEER(2,0),
14 "PHOTO™ BLOE, -

Figure: The Source view

Table Row Count

The row count view is really simple: it only shows the number of rows in the selected object.

8 1able: BIO
Connections/CRM Ahoa(Schemas/HR/ Tables/BIO

W constraints | () Triggers | g Dependences | ApoL | ™ DOL with Storage
Prowid | cEReferences | Mavigator | . Grants | /] Columns Comment
lginfo | [TlcCoumns | FHpata | EPRowCount | 5 primarykey | < Indexes
®

Number of rows: 107

Figure: The Row Count view

65(260)

Table Data

You use the Data tab to browse the data in the table and to do various data related operations. This view is based on the generic grid, but it adds a
few more visual components to limit the max number of rows, the width of text columns and the collection of data tab specific operations in the right-
click menu. In addition, you can also use a filter (a SQL WHERE clause) to limit the data to the rows that match the filter. The data tab is the place to
do edits in DbVisualizer Personal.

Table: BIO
Connections/CRM Ahoz/Schemas/HR/Tables/BIO
W constraints | () Triggers | g Dependences | MDDl | DOL with Storage
¥ Row Id =E References 47 Navigator L Gants | /) Columns Comment
‘ginfo | [flcoumns | [H{bats | [@RowCount | ¥ Primarykey | < Indexes
VO IS9P - uEEEHE»e -
& EMPLOYEE_ID FIRST_N. » 1 LAST_NAME EMAIL |PHONE_NUMBER HIRE_D/[f]|
1 121 Adam Fripp AFRIPP 6501232234 1997-04-100 »
2 196 Alana Walsh AWALSH 650.507.9311 1993-04-24 UE
3 147 Alberto Errazuriz = AERRAZUR 011.44.1344.429.. 1997-03-10 0
4 103 Alexander Hunold AHUNOLD 590.423.4567 1990-01-030
5 115 Alexander Khoo AKHOO 515127.4562 1995-05-18 0
5 185 Alexis Bull ABULL 650.509.2876 1997-02-200
7 158 Allan McEwen AMCEWEN 011.44.1345.829.. 1996-08-010
3 175 Alyssa Hutton AHUTTON 011.44.1644.429.. 1997-03-19 0
9 167 Amit Banda ABANDA 011.44.1346.729.. 2000-04-210
10 187 Anthony Cabrio ACABRIO 650.509.4876 1999-02-07 0
11 193 Britney Evereit BEVERETT 650.501.28768 1997-03-030
12 104 Bruce Ernst BERNST 590.423.4568 1991-05-210
13 179 Charles Johnson CJOHNSOM 011.44.1644.429.. 2000-01-04 0
14 153 Christopher Olsen COLSEN 011.44.1344.498.. 1998-03-30 0
15 | 162 Clara ‘ufir-‘.hlrlnv CVISHNEY 01144 134R 190 1997-11-110 7
4 1 3

Max Rows: | 100000 |Max Chars: 0 | 0.125/0.078 sec || 107/13 || 1-15 |

Figure: The Data tab for Table objects

Right-click menu

The Data tab grid right-click menu contains some operations in addition to those in the standard grid right-click menu. The additional operations are
primarily for creating SQL statements based on the current selection. Choosing any of these creates the appropriate SQL and then switch the view to
the SQL Commander tab. You must use these operations to edit table data in the DbVisualizer Free edition. With the DbVisualizer Personal edition,
you can instead use inline and form based editing. (Information about the standard right click menu operations are available in the Getting Started
and General Overview document).

You can generate SQL with either static values as they appear in the grid, or with DbVisualizer variables. A variable is essentially a placeholder for a
value in an SQL statement. When the statement is executed, DbVisualizer locates all variables and presents them in a dialog where you can enter or
modify values for the variables. DbVisualizer replaces the variable placeholders with the new values before executing the statement. Variables can
be used in any SQL statement and DbVisualizer relies on them heavily. (Read more about variables in the SQL Commander document).

Whether to use variables in the SQL statements generated by the right-click menu SQL operations depends on the Table Data-
>Include Variables in SQL setting in Tool Properties, under the General tab. By default, variables are being used in the statement. If you disable
the property, literal values are instead used in the generated statement.

Here is an example with the Include Variables in SQL setting enabled and then disabled. The SQL is generated when the Script: SELECT ALL
WHERE operation is selected based on the selection in the previous figure.

Include Variables in SQL is enabled:

select *
from HR.COUNTRIES
where COUNTRY_NAME = ${COUNTRY_NAME (where)||Brazill|Stringl Iwhere nullable ds=40 dt=VARCHAR }$

66(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Include Variables in SQL is disabled:

select *
from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil'

The following lists the generated SQL for each of the operations based on the selection of COUNTRY_NAME = Brazil, with variables disabled.

Operation

Script: SELECT ALL

Script: SELECT ALL WHERE

Script: SELECT ALL WITH FILTER

Script: INSERT INTO TABLE

Script: INSERT COPY INTO TABLE

Script: UPDATE WHERE

Script: DELETE WHERE

Where Filter

SQL Example

select *
from HR.COUNTRIES

select *
from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil’

select *
from HR.COUNTRIES
where REGION_ID = 1 // If this is the filter, see below

insert into HR.COUNTRIES
CCOUNTRY_ID, COUNTRY_NAME, REGION_ID)
values ("', "', D

insert into HR.COUNTRIES
(COUNTRY_ID, COUNTRY_NAME, REGION_ID)
values ('BR', 'Brazil', 2)

update HR.COUNTRIES

set COUNTRY_ID = 'BR',
COUNTRY_NAME = 'Brazil’',
REGION_ID = 2

where COUNTRY_NAME = 'Brazil’

delete from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil'

The filter capability in the Data tab lets you limit the number of rows in the grid, using the same syntax as for an SQL WHERE clause. The Filter
menu button in the grid toolbar contains all operations related to using a filter.

67(260)

Table: BIO

Connections{CRM Ahoa/Schemas/HR{ Tables/BI0

B constraints | () Triggers | g Dependences | ApoL | DOL with Storage
P Rowld | B References 7 Navigator | 2 Grants | /™) Columns Comment
[ginfo | [Flcoumns | CHDate | [PrRowcount | P Primarykey | &7 Indexes

1

®0|(35>

| HEEHE vy -

P Fier @ WHERE PHONE_NUMBER like '515% X | [seriter | usetorim |
FEMPL Use Mo Filter Use Count: 6 NTE
1 Clear Filter List Lact Uszed: TUEP:EE%%PE%%:IJ:S GMT:D}LUQ gﬂﬂg bo -
2 Show/Hide Filter (inlined) 515124 41649 1994-08-16 00| |
3 Canfigure Fller L 5151274561 1994-12-07 00
4 oo T = 515127 4565 1998-11-15 00
5 204 Hermann Baer HBAER 515123 8888 1094-06-07 00|%
6 111 lsmael Sciarra ISCIARRA 515124 4369 1997-08-30 00
7 200 Jennifer Whalen JWHALEN 5151234444 1887-08-17 00
8 110 John Chen JCHEN 515124 42649 1997-08-28 00—
g 112 Jose Manuel Urman JMURMAM 515124 4469 1898-03-07 00
10 119 Karen Colmenares KCOLMEMNA 515127 4566 1999-08-10 00
11 102 Lexe De Haan LDEHAAM 515123 4569 1893-01-13 00
12 113 Luis Popp LPOPP 515124 4567 1999-12-07 00
13 | 201 Michael Hartsl’[ein MHARTSTE 5151235555 1996-02-17 00 ~
1 m 3

Max Rows: | 100000 |Max Chars: [0 | 0.094/0.016 sec || 21/13 ... |

Figure: Filter menu

The top entries in the menu are previously used filters for the table, if any. The checkbox is selected for the filter that is currently in use. The filters
are saved between DbVisualizer sessions, and you can toggle between them by selecting them from the menu. You use the Use No Filter choice to
disable all filters for the table, and the Clear Filter List to permanently remove all filters for the table.

To create a new filter, select Configure Filter to launch the Filter Configuration dialog.

[| 8 Filter & Sort =7 |
Filter
EMPLOYEEID w | |= =] | Ao || or |

PHONE NUMEER like '515%'

Sort

EMPLOYEE_ID ~|[Ascending +|

UseFiter | | UseNoFiter || Close

Figure: The Data tab Filter Configuration dialog

The Filter Configuration dialog contains one Filter area and a Sort area.
The Filter area is composed of two parts. The upper one is used to define a condition for a single column. You can use the two lists to select the

column name and an operator, and enter the value of the column in the text field. You can use Ctrl-Enter while editing the value to force a reload of
the grid based on that single filter. The lower part displays the complete filter and the buttons are used to control whether the newly entered filter will

68(260)

be AND'ed or OR'ed with the complete filter. The buttons change appearance based on whether there is any filter or not. While in the complete filter
you can use Ctrl-Enter to force a reload based on the complete filter.

The Sort area is similar to the Filter area. You can select column names and sort order from the two lists, and click the Add button to add the sort
criteria for the single column to the complete criteria.

Click the Use Filter button to apply the filter and save it, and close the dialog by clicking the Close button.

If you often need to tweak the filter conditions and want a more compact user interface, you can use the inline filter view. Use the Show/Hide Inline
Filter choice in the Filter menu to toggle the visibility of the inline filter.

8 Table: BIO

Connections{CRM Ahoa(Schemas/HRf Tables/BIO

W constraints | () Triggers | g Dependences | ApoL | . DOL with Storage
Pprowld | cEReferences | ¥ Navigator | P Grants | /™) Columns Comment
Lginfo | [F]Columns Hfpata | [@rowCount | P rPrimarykey | &P Indexes
0045 ?uENEHE>e -s»
$ Filter: | PHONE_NUMBER like '515%' | [Use Filter][Use No Filter]
@ﬁ EMPLOYEE_ID IFIRST_N. 1 . LFLST_N.FIMEI EMAIL IF’HDNE_NUMBERI HIRE_DAT[Z
1 115 Alexander Khaoo AKHOO 515127 4562 1995-05-18 00 =
2 108 Daniel Faviet DFAVIET 515124 4169 1994-08-16 00 |
3 114 Den Raphaely DRAPHEAL 5151274561 1994-12-07 00
4 118 Guy Himuro GHIMURDO 515127.4565 1998-11-15 00
5 204 Hermann Baer HBAER 515.123.8888 1994-06-07 00| =
G 111 Ismael Sciarra [SCIARRA 515124 4369 1997-09-30 00
T 200 Jennifer Whalen JWHALEN 515123 4444 1987-09-17 00
a 110 John Chen JCHEM 515124 4269 1997-08-28 00—
9 112 Jose Manuel Urman JMURMAN 515124 4469 1993-03-07 00
10 118 Karen Colmenares KCOLMEMA 515127 4564 1999-08-10 00
11 102 Lexe De Haan LDEHAAM B15.123.45689 1993-01-13 00
12 113 Luis Popp LPOPP 515124 4567 1999-12-07 00
13 | 201 Michael Hartsltein MHARTSTE 515.123.5555 1996-02-17 00 —
4 {11 3
Max Rows: | 100000 |Max Chars: [0 | 0.141/0.031 sec || 21/13 || 1-13 |

Figure: Data tab with the Inline filter enabled

The inline filter is displayed above the grid. You can edit the condition in the text field and use Ctrl-Enter or click the Use Filter button to apply the
modified condition. Instead of manually typing column names in the field use the Ctrl-Space key binding to show a list of available columns.

Quick Filter

The quick filter acts on the data that is already in the grid, as opposed of a WHERE filter which is used to limit the number of rows fetched from the
database. With a Quick filter, you can easily list only those rows in the grid that match the entered search string.

The following figure shows data that matches the search string " d". Matching cells are highlighted.

69(260)

88 Table: BIO

Connections/CRM Ahoa/Schemas/HRf Tables/BIO

B constraints | () Triggers | g Dependences | ApoL | ® DOL with Storage
P RowId =2 References 7 Navigator | P Grants /*) Columns Comment
[gInfo | [F]colmns dHpata | [EProwCont | P rPrimarykey | & Indexes
VO35 |P - uEEEHEve s
EMPLOYEE_ID FIRST_N. ~ 1 LAST_NAME EMAL PHONE_NUMBER HIRE_DAT[Y]
1 102 Lexe De Haan LDEHAAM 515.123.4569 1993-01-12 00 =
2 103 Alexander Hunaold AHUMOLD 590423 4567 1990-01-02 00
3 1928 Donald OCaonnell DOCOMMEL 650.507.9833 1999-06-21 00
4 200 Jennifer Whalen JWHALEM 515123.4444 1887-08-17 00| -
5 101 Meena Kaochhar MKOCHHAR 515.123.4568 1989-09-21 00 B
] 105 David Austin DAUSTIM 500423 4569 1997-06-25 00
7 107 Diana Lorentz DLOREMNTZ 5904235567 1999-02-07 00
8 109 Daniel Faviet DFAVIET 515124 4169 1994-08-16 00
g 114 Den Raphaely DRAPHEAL 515.127.4561 1994-12-07 00
10 115 Alexander Khaoo AKHOO B15.127.4562 1995-05-18 00
11 116 Shelli Baida SBAIDA 515127 4563 1997-12-24 00
12 121 Adam Fripp AFRIPP 650.123.2234 1997-04-10 00
13 127 James Landry JLAMDRY 650.124.1334 1999-01-14 00
14 137 Renske Ladwig RLADWIG 650.121.1234 1995-07-14 00
15 | 142 Curtis Navies CNAVIFS RA01912994 1097-01-2900
4 L 3

Hax Rows: |1DDUUO |Max Chars: |U I

Figure: Using the Quick Filter

Entering successive characters will narrow the result even further, as in the following figure.

0.213/0.078 sec || 32 [107)/13 || 1-15 |

B 1able: BIO
Connections/CRM Ahoa(Schemas/HR Tables/BIC
W constraints | () Triggers | g Dependences | ApoL | . DDL with Storage
2 powId I o5 References #F Navigator I &2 Grants I /%] Columns Comment
lginfo | [flCoumns | [H{pate | [@RowCount | /¥ Primarykey | < Indexes
049D - uENEE>y -s»
£ EMPLOYEE_ID FIRST_N. ~ 1 LAST_NAME EMAL PHONE_NUMBER HIRE_DATE[]]|
1 102 Lexe De Haan LDEHAAM 515.123.45689 1993-01-13 00:C ~
2 103 Alexander Hunald AHUMOLD 590.423.4567 1990-01-03 00:C
3 114 Den Raphaely DRAPHEAL 515.127.4561 1994-12-07 00:C
4 115 Alexander Khoo AKHOO 515127 4562 1995-05-18 00:C
5 166 Sundar Ande SAMDE 011.44 1346.629... 2000-03-24 00:C
i) 186 Julia Dellinger JDELLING 650.508.3876 1998-06-24 00:C

4|]

3

i‘*‘lax Rows: |1OUUOU |Max Chars: |U |

0.219/0.078 sec || 6 [107]/13 | 16

Figure: Refining the filtering

The Quick Filter pull-down menu (click on the down arrow next to the magnifying glass) lets you choose if the filter should match cells in all columns

or just one selected column, case or case insensitive matching, and where in the cell the value must match.

Q- de

PR - N

ME ~ EMAIL PHONE_NUMBER
LDEHAAN 515123 4589 19
AHUNOLD 590.423 4567 19
DRAPHEAL 515127 4561 19
AKHOO 515127 4562 19
SANDE 011.44 1346 629 20
JDELLING 650.500.3876 19

0.219/0.078 sec

Monitor row count

Read more about the Monitor Row Count and Monitor Row Count Difference in Monitor and Charts.

Editing

Lv| an oy

EMPLOYEE_ID
FIRST_MAME
LAST_NAME
EMAIL
PHOME_MUMEER
HIRE_DATE
J0B_ID

SALARY
COMMISSION_PCT
MAMAGER_ID
DEPARTMENT_ID
PHOTO

RESUME

Case sensitive
Case insensitive
Use wild cards
Match from start
Match exactly
Match anywhere

Read about data editing in Edit Table Data

DDL Viewer

The DDL Viewer tabs appear only for objects in databases that have specialized database profiles.

71(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html#mozTocId117949

0|3 5FO -

1 CERERTE

[

2
3
4
5
&
7
g
9
10
11
12
13
14
15
la
17
1a

TABLE EIO

EMPLOYEE_ID NUMEER(:) HOT HULL,
FIRST NAME VARCHARZ (20),

LAST NAME VARCHARZ(25) HOT HULL,
EMATL VARCHARZ(Z5) HOT HULL,
PHONE_NUMEEE VARCHARZ (20),
HIRE_DATE DATE HOT HULL,

JOE_ID WARCHARZ (10) HOT HULL,
SALAFY NUMEER(G,2),
COMMISSION PCT NUMBER(Z,Z),
MANAGER_ID NUMBER(:),
DEPARTMENT ID NUMEER(4),

PHOTO BLOE,

FESUME CLOE,

FRIMARY KEY (EMPLOVEE ID)

Figure: The DDL viewer for a table

References

The References tab for a Table object shows how the table references other tables (Imported Keys) and how other tables reference the selected

table (Exported Keys), based on primary and foreign key declarations. Use the sub tabs at the bottom of the display to show either view. The

following shows the references from the table.

Table: EMPLOYEES

Connections/CRM Ahoa/Schemas/HR/ Tables/EMPLOYEES

MANAGER_ID MUMBER{&)

DEPARTMENT_ID NUMEER({4) —I_)

L gh Info I [Columns | FH bata | EP Row Count | A2 Primary Key I w# Indexes
[l constraints | (3} Triagers | | Dependencies Dol _/* DDL with Storage
/P Row1d ERReferences | 5 Navigator Poants | /) Columns Comment
.) 3
BOQ IR PLPLILLHEHE MG W@ Hearcic -
EMPLOYEES
& EmpLoYEE_ID NUMBER(E)

FIRST_MAME WARCHARZ(Z20)

LAST_MAME WARCHARZ(Z2S)

EMAIL WARCHARZ(ZS) JOBS

PHONE_MUMEBER VARCHARZ(Z2O)

HIRE_DATE DATE ‘? JOB_ID WARCHARZ(1O)

JOB_ID VARCHARZ(10) JOB_TITLE WARCHARZ(3S)

cALARY NUMBERE.2) MIN_SALARY NUMBER(ES)

COMMISSION_PCT NUMBER(Z 2) MAX_SALARY NUMBER(S)

DEPARTMENTS

#* DEPARTMENT_ID

HUMBER{4)

DEPARTMENT_MAME WARCHARZ{30)

MANAGER_ID
LOCATION_ID

MUMBER{S)
MUMBER{4)

| mﬂ%HTables: 3||P.eferen::es: 3

Imported Keys | Exported Keys

Figure: The references graph showing imported keys for a table

72(260)

Navigator

The Navigator tab (only available in the DbVizualizer Personal edition) provides an interactive way to navigate in data by following primary key and
foreign key references.

Table: EMPLOYEES

Connections/CRM Ahoa/Schemas/HR/ Tables/EMPLOYEES

lginfo | [Flcoumns | FHpata | [PRowCount | P primarykey | & Indexes
Wl Constraints | () Triggers | ciDependences | MDDL | A DDL with Storage
PRowld | cHOReferences | 7 Navigator P orants |) Columns Comment

BN IPRLLLLEE RS

JOE_ID

JOB_ID
EMPLOYEEID 188 JOBS _ :_:[EMPLOYEES |
4% 10B_ID SH_CLERK l@“’ JOB_ID EH_CLEEKJ
EMPLOYEES
EMPLOYEE_ID JOB HISTORY
o _|
4 EMPLOYEE_ID 198

Fa
DO 2| P -| 8 reiatedTable:]

£ EMPLOYEE_ID IFIRST_NAMEILAST_NAMEI EMAIL IF’H'DNE_NUMEIERI HIRE_DAT
1 192 Donald QConnell DOCOMMEL 650.507.9833 1999-06-21 00; »
2 199 Douglas Grant DGRAMT 650.507.9544 2000-01-132 UUZE'
3 180 Winston Taylor WTAYLOR 650.507.9876 1998-01-24 00:
4 181 Jean Fleaur JFLEAUR 650.507.9877 1998-02-23 00:
5 182 Martha Sullivan MSULLIMA - 650.507.9878 1999-06-21 00:
R 497 Zirard Canni MR RRMN RENT Q870 ANNN_M22n72 nne i
1|] | 3
Max Rows: | 100000 |Max Chars: 0 | 0.187/0.000 sec || 20/11 [16 |

Figure: The Navigator tab showing two navigation cases

The tab contains a graphic view showing navigation cases (paths through the data) at the top and a data grid showing the data for the navigation
case selected in the graph. You navigate in the data by selecting the row in the grid that holds the key value you want to follow, e.g., a specific
department in the example shown in the figure, and then select a primary or foreign key relationship from the Related Table list above the grid. This
creates a new navigation case in the graph and updates the grid with the corresponding data.

How to use the navigator is described in more detail in the Data Navigation section.

Procedure Editor

You can use the procedure editor to browse, edit, compile and execute procedures, functions, packages, package bodies, triggers and other
database objects that represent custom code that can be invoked in a database.

You can edit the source code in the editor and then click Save to save/compile the code. If errors are found, selecting an error message in the error
list highlights the row containing the incorrect statement in the editor (in the cases when a row number is available, which is not true for all
databases). To test the code, click Execute and a script for calling the procedure with the parameter values you provide is generated and executed
in the SQL Commander.

More information can be found in the Procedure Editor document.

73(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/navigator/navigator.html

#" Procedure: SECURE_DML

Connections/CRM Ahca/Schemas/HRProcedures/SECURE_DML

m Procedure Editor

S L AAREEL =R SEEEL Y © status: WAD

1 CEERTE OR REFPLACE PROCEDURE "HE™,"3ECURE DHML™

2 I8

3 BEGIH

4 IF TO_CHAR (3Y¥3DATE, 'HH:=4:MI') HOT BETHWEEHN '05:00' AHD '15:00°'

5 OB TO_CHA&E (aYSDATE, 'DT')

] RATSE_AFPPLICATION ERRO R (-20205,

7 '"¥fou may only make changes during normal office hours'):
5 EHD IF:

S EHD secure dml;

6:42 |Ins| [1 [ntitled

T
Errors:

PLS-00103: PAtraff; ymbolen "R" da en av filjande forvantad

4 LI 3

Figure: The procedure editor for functions, procedures, packages etc.

74(260)

SQL Commander

Introduction

The SQL Commander is used to edit, format and execute SQL statements or SQL scripts. Multiple editors may be open at the same time, each

controlling its own SQL log and result sets. Result sets can be displayed in grid, text or chart formats.

The SQL Commander supports the following features:

Syntax coloring

Auto completion

Multiple SQL editors

Multiple result sets

SQL editors displayed as tabs or windows

Result sets displayed as tabs or windows

Support for stored procedures producing multiple result sets
SQL formatter with extensive customization options
Execution control (stop on error/warning)

View result sets as grid, text or chart

Editable result sets with the inline or form editors

Support for BLOB, CLOB and binary data

View BMP, TIFF, PNG, GIF and JPEG images

View XML data in tree or text format

Export result sets as CSV, HTML, Excel, XML, SQL or text
Batch execution enabling export of unlimited sized result sets
Execution of script files of unlimited size

SQL history saved between sessions

Bookmark management (save favorite SQLs)

Sort, quick filter and basic calculations of result sets
Parameterized queries

Drop objects dragged from the Objects Tree

Auto Commit on/off support with confirmation checks if uncommitted updates
Full key binding support with predefined key maps for for Windows, Mac OS X, Linux-UNIX, SQL Query Analyzer and TOAD users

Database specific support:

Oracle, DB2 and SQL Server: Explain Plan queries presented either in tree or graph format
Oracle: support for TIMESTAMPLTZ, TIMESTAMPTZ and XML data types

Oracle: support for DBMS Output

75(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sqlserver.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/db2.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html

File Edit View Database Scripts SQL Tools Window Help _ |
- -
SR =24 YRl
i | <Drop your favorite objects here>
I | General | Bulder |
pobb®asEEE+O0¢ > o[En8)| S lisal@masiel
Database Connection —— [| Sticky D schema Man: Riows Mao: Chars Editors
(B oace =il -] [m 0w ffo | i e
1 Izelect ® from HR.DEPARTHENTS? () Show as Windows
2 select EI'[PI.EIY[E_ID_. FI_RST'_M, LIST__H.I.HE, EHAIL from HR.ENPLOYEES) [E
: 3 select * from HR.J0B_HISTORY: Beeastion
Editor =—————pp |||, 7] Stop on Ervor
5 -- select * from HR.JOBS: §
6 -- select * from HR. LOCATTONS : E mmmw
1:1 |s] Jruto Commic: oi] [untitlea Result Sets
l.‘v - 1@ Show as Tabs
| 2 1; select * from HR.DEPARTMENTS I e
|| P 236t BIOME D, FIRST NAME... | P 3 select * fiom HR.JOBHISTORY._ | Tabsatloe v,
! T —— [T in Single Row
20/39)> |u/ENEE»e - u[n B | S
n
] & EMPLOYEE_ID |FIRST_NAME LAST MAME| EMAIL
[100 Steven King SKING < 0 Showr a5 Windows
2 101 Meena Kochhar MEOCHHAR @ [7] P New Resit Sats
3 102 Lex DeHaan LDEHAAM
! 4 103 Mlexander Hunold AHUNOLD N Do ety eal e
. 1 104 Bruce Emsi BERNST Result Set Naming Scheme
Result View —p- | ¢ 105 David Austin DAUSTIN Slindex): $6a) =
T 106 Valli Pataballa VPATABAL
8 107 Diana Lorent: DLORENTZ
I s 108 Nancy Greenberg NGREEMBE -
|| 10 108 Daniel Faviet DFAVIET s —
{[EEE 110 John Chen JCHEN oo e Cas
FEY 444 i =y Y=Y 4 i :Ilhmmﬂm wﬂu:h
| - [0:015/0.000 sec || 10774 || 112 bl e
| [7008] (% Resuit Set [3] |/ DOMS Output|
Y - ﬂ

Editor Controls

Figure: SQL Commander overview

The figure shows the editing area with its controls above and the output view in the lower part of the screen. The following sections describe all
features and controls in the SQL Commander in detail.

Physical Database Connections and Transactions

The SQL Commander supports database transaction control via Auto Commit or manually using commit or rollback. The Use Single Physical
Database Connection setting in connection properties specifies whether DbVisualizer will use one or multiple physical database connection. This
setting is disabled by default and DbVisualizer will then always use at least one physical connection and one for every SQL editor that is created.
Running a statement or sequence of statements in one SQL editor will not lock the rest of the user interface while it is executing. If instead a single
physical database connection is used, all of the Ul is locked until the execution in the SQL Editor has completed. The reason for this behavior is that
it could otherwise lead to data corruption when using the same physical database connection for all DbVisualizer operations.

Another important feature is that the editor status bar shows the number of uncommitted requests if auto commit is off. Pay extra attention to this as
it indicates that you should complete the current transaction with either commit or rollback.

Editor

The SQL Commander always has at least one editor. It is called the primary editor and cannot be removed. To create additional editors, use the File-
>Create SQL Editor menu choice or the appropriate key binding. To close an editor, use the right-click menu on the editor tab or the close

76(260)

operations in the File menu.

3 1: Untitled

Create SQL Editor Ctrl+T
Po9% :
Close Current SQL Editor Ctrl+F4
—
Sticky Close All SQL Editors Ctrl+ Alt+W

; Close All But Current
Show/Hide Editor Controls

T

Figure: Editor tab menu

The SQL editor in DbVisualizer is based on the NetBeans editor module and supports all standard editing features. The right-click menu have the
following operations:

g
=4
1
&
)
|
b
E
By
=
@
a
&
)
&
?

Execute Ctrl+Enter
Execute Current Ctrl+Pericd
Execute Buffer

Execute Explain Plan Ctrl+Alt+Enter
Undo Ctrl+Z

Redo Ctrl+Shift+Z
Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Print...

Print Preview...

Clear All Ctrl+Shift+Delete
Find... Ctrl+F

Find Mext F3

Find Previous Shift+F3
Replace... Ctrl+H

Goto Line,., Ctrl+G

Lower Case Ctrl+Shift+L
Upper Case Ctrl+Shift+U
Comment Line Ctrl+Shift+R
Comment Block Ctrl+Shift+B
Format SQL ¥
Show Aute Completion.., Ctrl+5pace
Select All Ctri+ &

Select Current Statement Ctrl+5Shift+Pericd

Figure: The SQL editor right click menu

The SQL editor is also used when editing CLOBs in the form editor.

Database Connection, Catalog and Schema

You use the Database Connection and Database (or Catalog) lists above the editor to specify which connection and database to use when executing
the SQL in the editor. The list of connections shows all connections as they are ordered in the Database Objects tree, except that all currently active
connections are listed first.

77(260)

http://www.netbeans.org/

HR Test Data
Lab
% Bright Future

Figure: Database Connection, Database and Schema lists

If you check the Sticky box above the Database Connection, the current connection selection will not change automatically when passing SQL
statements from other parts of DbVisualizer, for instance, when opening a Bookmark. Consider an Bookmark defined for database connection
"ProdDB". If the Sticky checkbox is not checked (i.e., disabled), the database connection is automatically changed to ProdDB when you open the
Bookmark in the SQL Editor. However, if the Sticky checkbox is checked (i.e., enabled), the current database connection setting is unchanged. The
Sticky setting is per SQL editor instance.

The Database list (or Catalog) defines which catalog in the connection is the target for the execution. Since not all databases use catalogs, this list
may be disabled.

For most databases, the schema selected in the Schema list is used only to limit the tables the auto completion feature shows in the completion
pop-up; it does not define a default schema for tables referenced in the SQL, because most databases do not allow the default schema to be
changed during a session. For the databases that do allow the default schema to be changed, however, the selected schema is also used as the
default schema, i.e., the schema used for unqualified table names in the SQL. Currently, the databases that support setting a default schema are
DB2, HP Neoview, JavaDB/Derby and Oracle. If you don't want the selected schema to be used as the default schema for these database, you can
disable this behavior in the Tool Properties, under the database node's SQL Editor settings.

Limiting Result Set size (Max Rows/Chars)

The Max Rows field in the SQL Editor toolbar is used to control how many rows DbVisualizer will fetch for each result set. If there are more rows
available than presented in the result set, you will see a warning indicator in the grid status bar.

Setting Max Rows technically means that it is the JDBC driver limiting the rows. This may for some databases also affect non result set operations

such as DELETE. MS SQL Server is one example.

‘ @ 1: select EMPLOYEE_ID, FIRST_NAME... |

049 |uEHEEve - s> o |He®

£ EMPLOYEE_ID . FIRST_MNAME . LAST_MAME . EMAIL

1 100 Stev :

2 101 Neer| Notification Alert

= LA F The result set may contain maore rows andfor
4 103 Alexg some columns may be truncated. Adjust the
5 104 Brucq Max Rows and Max Chars settings to fix.
] 105 Davig

7 106 Valli

a8 107 Dian

9 108 Mancy Greenberg MNGREENBE
10 109 Daniel Faviet DFAVIET

0.000/0.000 sec ||+, 10/4 | 1-10

(_/log| [Result Set [1] | L DEMS Output

Figure: Max Rows exceeded warning

Clicking on the icon below the grid shows more information about the warning.

Setting Max Chars limits the number of characters that are presented for text data. A column that contains values with more characters than the
specified Max Chars is shown with a different background color to highlight that it is truncated.

78(260)

Load from and save to file

The SQL editor supports loading statements from a file and saving the content of the editor to a file. Use the standard file operations, Open, Save
and Save As in the File main menu or the toolbar to accomplish this. Loading a file always loads it into the currently selected editor.

I

SEE=[r

| & DbVisualizer Personal - C:\Users\hans\hr.sgl*
File Edit View Database Scripts S5QL Tools Window Help

ol B OXE

5.7 | <Drop your favorite objects here>

: [al Object View b S0L Commander |

(=[5 /=]

7 CEERTE TRAELE
& CREATE TABLE

POBE® ISEE D EE¢> O E88
Database Connection [sticky Database Schema Max Rows Max Chars
[orade - 4R » w00 |0
1 l-.:EE]lTE TABLE COUNTRIES | COUNTEY ID CHAR(Z) HOT HULL, COUNTREY NAME VARCHARZ(<40), FEGION_ID NUMEBEE, CO =
2 CRERATE TABLE DEFARTMENTS (| DEPARTMENT ID NUMEEER.(<4) HOT HULL, DEPARTMENT NAME VARCHARZ(50) HOT HULL, I'f|:
3 CREATE TABLE EMFLOYEEZ (EMPLOYEE_ID NUMBEER(5) HOT HULL, FIR3T NAME WARCHARZ (Z0), LAST NAME ‘.U!.RCHF!.RZI::
4 CRERTE TABLE J0BS (JOE_ID VARCHARZ(10) HOT HULL, JOE_TITLE WARCHARZ(35) HOT HULL, MIN SALARY NUMEER(
5 CEERTE TRBLE J0E_HISTOEY (EMPLOYEE_ID NUMBEER(f) HOT HULL, 3TART DATE DATE HOT HULL, END_DATE DATE HO
6 CRERATE TRABLE LOCATIONS (LOCATION_ID NUMBEE (<) HOT HULL, STREET ADDEE3S VARCHAR=(40), POSTAL_CODE VAFR

ORDERS { ID INTEGER HOT HWULL, CURRENT STATUS VARCHARZ (20), PRIMARY KEY (ID)):
FEGIONS { REGION ID NUMEER HOT HULL, REGION NAME VARCHARZ(Z5), COHSTRAINT EEG ID PK PRI

S ALTER TABLE COUNTEIES ADD COHSTERAITHT COUNTE_REG FE FOREIGH KEY (FEGION _ID) REFERENCES FEGICONS (REGICOE -

|

1n | }

J |

1:1 |ns]

|aute commit: on|Encoding: cp1252|nr.sqis

Figure: Loading a file into the SQL Commander

[Japung Aiznb B] EETERE

The name of the loaded file is listed in the status bar of the editor, with the full file path shown in the window title. The editor tracks any modifications
and indicates changes with an asterisk (*) after the filename.

When you exit DbVisualizer, you are asked what to do if there are any pending edits that need to be saved.

Load Recent

The File->Load Recent sub menu lists the recently loaded files. When you choose an entry, the file is opened in the current SQL editor.

79(260)

File | Edit View Database Scripts SQL Tools Window Help

D) Open.. Ctrl+ 0 e [
|@ Open Recent D | C:\Users\hans\monthly_report.sql
& Quick File Open... Ctrl+Alt+ 0 C:\Users\hans\hr.sql
. Save... Ctrl+5 Clear List
Save As... Ctrl+Shift+5 -
> : ENEIK St -1
|2 Create SQL Editor Ctrl+T
. Database

@ Close Current SQL Editor Ctrl+F4
l Close All 5QL Editors Ctrl+Alt+W

Close All But Current
JE Printer Setup...

Export Settings...

Import Settings...

Mew Window... Ctrl+Alt+MN

Exit Ctrl+Q

Figure: Open Recent Files menu

Quick File Open

You can also use the Quick File Open feature to open recent files as well as Bookmarks and History entries. By default, it is bound to the Ctrl+Alt+O
key combination, and is also available via a toolbar button in the SQL Editor as well as in the main File->Quick File Open menu.

g e = = e

Search: [J|RecentFiles || Bookmarks (V] History [| Monitors

Enter search text: 5 matches
&m | MNew editor
| Recent Files

ﬁ Emps group by salary.sql (Z:\Users\rogge\myprefs\Bookmarks\HR Stuff)

. Emps group by deptsql (Z:\Users\rogge\myprefs\Bookmarks\HR Stuff)
_ Emps group by salary.sgl (7:\Users\roooe\myprefs)Bookmarks\HR Stuff) =
:' Emps in birthday order.sgl (Z:\Users\rogge\myprefs|Bookmarks\HR Stuif)

| @ CREATE TABLE BIO (EMPLOYEE_ID NUMBER(6) NOT NULL, (Oracle test)
Try—

Figure: Quick File Open dialog

Editor Preferences

The Editor preferences pane is activated via the SQL->Show/Hide Editor Controls main menu option. It holds settings that control the appearance
of the SQL editor, result sets and the log.

80(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

General | Lgg I Query Builder

BRI O aTSEEE 0B ¢ 9 [E88

Database Connection Sticky Database Schema Mao: Rows Max Chars Editors
[orade ~| i - || 8 1R »| 1000 |0 | @ Show as Tabs
() Show as Windows
D!,t;:h Execution
2 Stop on Error
m
% Stop on Warning
1:1_ |ns] [2uto commit: on| [untitied] Result Sets

@ Show as Tabs

@ Log to GUI () Log to File
= £l |E] Tahs at Tap -

Tabs in Single Row

Show 5L in Toaol Tip
() Show as Windows
Pin Mew Result Sets
Don't Show Empty Result Sets
Result Set Maming Scheme
\${index}: ${sql -

Tip
Use SQL->Show | Hide Editor Controls
menu command or the m editor

tool bar button to control the visibility
of this pane.

Jlog | 7] ResultSet [3] | {ig DBMS Output

Figure: Editor preferences pane

All settings made in the editor preferences pane are saved between invocations.

Tip: The Result Set Naming Scheme may include HTML code, typically used to change the style of the elements.
Example: <html>${index}: ${sql} (${rows})</html>

Multiple editors

There is always one default editor named Main Editor. You can open additional SQL editors with the File->Create SQL Editor main menu
operation. Editors can be organized as tabs or internal windows using the View buttons. To remove all but the Main Editor select the File->Close all
SQL Editors menu operation.

Permissions

All SQL commands executed in the SQL Commanded are checked with the DbVisualizer Permission verifier before being executed by the database
server. The permission verifier use various rules to determine if a specific SQL is allowed, denied or need confirmation before being executed. You
can specify the rules for the verifier in Tool Properties->Permissions.

Charsets and Fonts

You can change the SQL editor font, which is useful and necessary in order to display characters for languages like Chinese, Japanese, etc.

81(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498

1 insert into RESTAURANTS (1D, MAME, SPECIALLTY, STYLE, LOCATION) walues (
21, TERTEEGOE, T kRN, TR, CER

3

4 insert into RESTAURANTS (ID, MAME, SPECIALITY, STYLE, LOCATION) values (
B2, TECTETATOREGOE, AT, Hiey, dkml

| mi38 ms| L]

Figure: SQL Editor with another font

Open Tool Properties and select the Font category to set the font for the SQL Editor. (It is a good idea to set the same font for both the SQL editor
and the grid components).

Displaying data correctly is not just a matter of setting the font, because the character encoding on the client side (in which DbVisualizer runs) and in

the database server may not be compatible. There is experimental support to set encodings to accomplish proper conversation between different
encodings. Please see the document for more information.

Key Bindings

The editor shortcuts, or key bindings, can be redefined in the Tool Properties Key Bindings category. Select the Editor Commands folder to browse
all editor actions.

Key Bindings

Use these settings to define the key bindings in DbVisualizer. You must make a copy of an
existing key map to alter key bindings. The active indicator highlights the current key map.

Keymaps

Default (active, read-only)

Linux-UNTY (read-only)

Mac 05 X (read-only)

S0QL Query Analyzer (read-only)
AN {read-onlv)

Remowve

AL]y
i

Keymap Settings
ermog: pefat | (ras-only
Action Key Bindings
| Al Bindings -
[l | Editor Commands 1
=l L. Main Menu 5
G- File
B Edit
i {3 Undo Cirl Z
Ctrl+5hift £
" Cut Ctrl ¥; Shift Delete; Cut
|_7!| Copy Ctrl C; Ctrl Insert, Copy
I [] Paste Ctrl V; Shift Insert; Paste -
Key Bindings:
| AddKey Binding... |
| EditKeyBinding... |
| Remowve |

Figure: The Key Bindings editor in Tool Properties

Read more about configuring key bindings in the Tool Properties document.

82(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId632432
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html

Client-Side Comments

Comments in the SQL Editor are identified by the comment identifiers in Tool Properties. These are client side comments and are removed by
DbVisualizer before execution.

Sometimes the comments need to be passed to the database. Oracle, for example, uses the block comment identifier to express optimizer hints for
the database. These must be passed to the database for processing. To enable this, just change the delimiters for the block comment to something
that doesn't interfere with the /*+ ... */ notation that Oracle uses.

An example is that you add a space after /*.

Comment Delimiters

Specify the comment identifiers that might appear in a SOL statement, Comments are extracted
from the SOL statement before execution.

Single Line Identifier 1: I:l
Single Line Identifier 2:
Block Comment Begin Identifier: |,|f* | End: |*f |

=zelect Id, Wame, Addre== from Emp; -- Thi= i= a =zingle line comnment

=elect Fime, Age from Type; [/ Thi= i= a =ingle line comment

ix

[Thi= i= a block comment]

create table Car [Type warcharZ(E0, Coler warchazzZ(l1l0)1]];
create index Carlnd [(Type a=c);

*

Figure: The SQL Editor -> Comments category in Tool Properties

Auto Completion

Auto completion is a convenient feature used to assist you when editing SQL statements.

The following figure shows the completion pop up with table names.

zelect * from

Choose Table

| DEPARTMENTS HR
[EMPLOYEES HR
|| J0BS HR
[7] J0B_HISTORY HR
] LOCATIONS HR
|| ORDERS HR
| REGIONS HR
[| EMP_DETAILS_VIEW HR

1:15 | Ins| |aute commit: on| |Untitleas

Figure: Auto completion pop up showing table names

Here is another completion pop-up showing column names.

83(260)

1 select * from HE.EMPLOYEES emp, HE.DEPARTMENTS dept
2 where enp.DEPARTMENT_ID =
Choose Column

-All Columns- HR.EMPLOYEES emp

EMPLOYEE_ID [MUMEBER] HR.EMPLOYEES emp

FIRST_MWAME [VARCHARZ] HR..EMPLOYEES emp

LAST_MAME [VARCHARZ] HR.EMPLOYEES emp

EMAIL [VARCHARZ] HR.EMPLOYEES emp

PHOMNE_NUMBER [VARCHARZ] HR.EMPLOYEES emp

HIRE_DATE [DATE] HR.EMPLOYEES emp

JOB_ID [VARCHARZ] HR.EMPLOYEES emp

SALARY [MUMEBER] HR.EMPLOYEES emp

COMMISSION_PCT [MUMBER] HR..EMPLOYEES emp

MANAGER_ID [MUMEBER] HR.EMPLOYEES emp

DEPARTMENT_ID [MUMEBER] HR.EMPLOYEES emp

-All Columns- HR..DEPARTMENTS dept

/” DEPARTMENT_ID [NUMEER] HR.DEPARTMENTS dept

DEPARTMENT_MAME [VARCHARZ] HR.DEPARTMENTS dept

MANAGER_ID [MUMEER] HR.DEPARTMENTS dept

LOCATION_ID [MUMBER] HR.DEPARTMENTS dept

2:27 | ns| |aute Commit: on| |Untitleas

Figure: Auto completion pop up showing column names

DbVisualizer currently provides auto completion for table and columns names for the following DML commands:

* SELECT
* INSERT
* UPDATE
 DELETE

To display the completion pop-up, use the key binding Ctrl-SPACE. You select an entry in the pop-up menu with a mouse double-click, the ENTER
key, or the TAB key. To cancel the pop-up, press the ESC key.

Tip: The SPACE key can be configured to select entries in the pop up. Do this in the Tool Properties General->Key Bindings category. Select the
Editor Commands key bindings and add the SPACE key for the Insert Newline editor action.

Note 1: If there are several SQL statements in the editor then make sure to separate them using the statement delimiter character (default to ";").

Note 2: In order for the column name completion pop-up to appear, you must first make sure there are table names in the statement.

Note 3: All table names that has been listed in the completion pop-up are cached by DbVisualizer to make sure subsequent displays of the pop-up is
performed quickly without asking the database. The cache is cleared only when doing a Refresh in the database objects tree or reconnecting the
database connection.

Note 4: The Schema list above the editor is used to assist the auto completion feature to limit which tables to list in the pop-up.

General display settings for the auto completion feature are managed in Tool Properties.

Here are some examples of how the auto completion works depending on when it is activated. The <AC> symbol indicates the position where the
auto completion pop-up is requested. The currently selected catalog is empty and the selected schema is HR. (These examples are when accessing
an Oracle database).

sQL Result
select * from <AC> Shows all tables in the HR schema (since HR is the selected schema)
select * from SYS.<AC> The pop up displays all tables in the SYS schema independent of the schema list
selection
select * from SYS.a<AC> Lists all tables in the SYS schema beginning with the A character

84(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId327467

select <AC> from SYS.all_objects

select <AC> from SYS.all_objects all, EMPLOYEES

select emp.<AC> from EMPLOYEES emp

select emp.N<AC> from EMPLOYEES emp

insert into EMPLOYEES (<AC>

Lists all column in the SYS.all_objects table

schema)

N character

Lists all columns in the EMPLOYEES table. Selecting the -All Columns- in the
pop-up results in all columns being added, comma separated.

Lists all columns in the SYS.all_objects and EMPLOYEES table (in the HR

Lists all columns in the EMPLOYEES table, here identified by the alias emp

Lists all columns in the EMPLOYEES table identified by alias emp starting with the

It is possible to fine-tune how auto completion shall work in the connection properties. The following settings can be used to adjust whether table and

column names should be qualified.

| @ Connection IE Database Info | @ Data Typesl & Sea.rch|

| | Connection Properties
iDatabase Profile
E----Driuer Properties

= [i Orade

Authentication
Dellmlted Identifiers

Physaml Connection
----- ﬂ Transaction

| 50L Statements
& § Connection Hooks
-2 Objects Tree Labels
SQL Editor
EE Query Builder
@ Data Types

E Explain Plan
{78 Objects Tree

Qualify Objects with Schema/Databasze

Use these settings to control whether object names should be be qualified with
the database or schema name.

Seripting: [
References/MNavigator Graphs: [
Auto Completion/Query Builder:

Qualify Columns

Use these settings to control whether column names should be qualified with the
table name.
Note: Using table name aliases will override this setting,

Auto Completion/Query Builder: [

(7 Properties

Figure: Properties controlling auto completion qualifiers

With Qualify disabled (for both table names and columns):

select Name, Address from EMPLOYEE where Id > 240

With Qualify enabled:

select EMPLOYEE.Name, EMPLOYEE.Address from HR.EMPLOYEE where EMPLOYEE.Id > 240

(The setting of Qualify Columns is ignored when an alias is used for a table name in the SQL).

The property settings in the figure below define whether delimited identifiers should be part of the completed SQL.

85(260)

‘ @ Connection | [§§ Database Info | 5} Data Types | # search

[_ﬁ' Connection Properties
i--Database Profile
Driver Properties

Delimited Identifiers

Delimited identifiers are identifiers which do not need to follow the rules of

Eli Orade regular identifiers. Such identifiers can include a sequence of printable
Authentication characters excluding those which are not allowed to use in delimit=d
T —— identifiers in the actual database. Usually delimited identifiers are used when
Delimited Identifiers you need to use SQL reserved word, spaces and mixed case sequences as an
| I Qualifiers identifier.
':'}'B_! Physical Connection Begin Identifier: EI End Identifier: EI
& Transaction =
~|E] SoL Sﬁmmemks Ex: update SCOTT."Phone #” set "Name” = "Mia' where "Id" = 72
¥4 Connection Hool
Objects Tree Labels
- s0L Editor |Use of Delimited Identifiers
E% Query Builder Select here what features in DbVisualizer that should generate delimited
@ Data Types identifiers for objects such as database, schema, table and column names,
& Explain Plan
{5 Objects Tree L4
5/ obj Auto Completion/Query Builder: [
s
seuie

Connection m Properties
Figure: Properties controlling delimited identifiers for auto completion
With Delimited Identifiers disabled:
select Name, Address from HR.EMPLOYEE where Id > 240

With Delimited Identifiers enabled:

select "Name", "Address" from HR."EMPLOYEE" where "Id" > 240

SQL Formatter

The SQL->Format SQL feature is used to format the complete editor buffer or current SQL (at cursor position) according to the settings defined in
the Tool Properties SQL Editor->SQL Formatting category. There are many things you can configure. After making some changes, press Apply
and format again to see the result. The formatter can work with the source SQL enclosed in quotes (e.g., when copied from a program), and it can

format the final SQL for inclusion in a program written in languages like Java, C#, PHP, VB, etc.

Example of the SQL before formatting:

select

CompanyName, ContactName, Address,

City, Country, PostalCode from
Northwind.dbo.Customers OuterC

where CustomerID in (select top 2 InnerC.CustomerId
from Northwind.dbo.[Order Details] 0D

join Northwind.dbo.Orders O on OD.OrderId = 0.0rderID
join Northwind.dbo.Customers InnerC

on 0.CustomerID = InnerC.CustomerId

Where Region = OuterC.Region

group by Region, InnerC.CustomerId

order by sum(UnitPrice * Quantity * (1-Discount)) desc)
order by Region

And after formatting has been applied:

86(260)

SELECT

CompanyName,
ContactName,

Address,

City,

Country,

PostalCode

FROM
Northwind.dbo.Customers OuterC
WHERE

CustomerID in

(

SELECT

top 2 InnerC.CustomerId
FROM

Northwind.dbo. [

ORDER

Details] OD

JOIN
Northwind.dbo.Orders 0O
ON

0D.OrderId = 0.0rderID
JOIN
Northwind.dbo.Customers
InnerC

ON

0.CustomerID =
InnerC.Customerld

WHERE

Region = OuterC.Region
GROUP BY

Region,
InnerC.CustomerlId
ORDER BY

sum(UnitPrice * Quantity *
(1-Discount)) desc

)

ORDER BY

Region

History

The SQL Editor keeps track of all executed SQL statements. You can use the Previous and Next buttons in the editor toolbar to walk forward and
backward through the statements. They insert the previously executed SQL, with accompanying settings for Database Connection, Catalog and
Schema (if Sticky is disabled). Please see Bookmarks and History for more details.

Bookmarks

Bookmarks are used to save frequently used SQL statements between invocations of DbVisualizer. They are managed primarily in the Scripts tab but
edited and executed in the SQL Commander. Please see Bookmarks and History for more details.

Execution

The execution of multiple SQL statements can be controlled using the Stop Execution On controls. These define whether the execution of the
following SQL statements will be stopped based on two states:

¢ Errors
Stop the execution if the SQL resulted in an error
¢ Warnings
Stop the execution if the SQL executed successfully but no rows were affected

87(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

The Stop Execution On controls are only effective when executing multiple SQL statements

SQL->Execute

Use the SQL->Execute main menu operation to execute the SQL in the current SQL editor. The SQL Commander executes the statements one by
one and indicates the progress in the log area. The currently selected Database Connection is used for all statements. The SQL Commander does
not support executing SQLs for multiple database connections in one batch.

The result of the execution is displayed in the output view based on what result(s) are returned. If there are several results and an error occurred in
one of them, the Log view is automatically displayed to indicate the error.

If you select a statement in the SQL editor and choose SQL->Execute main menu option, only the selected statement is executed. This is a useful
feature when you have several SQL statements are in the SQL editor and you just want to execute one or a few of the statements.

select * from HE.DEPARTMENTS:
select EMPLOYEE ID, FIRST HNAME, L43T NAME, EMAIL from HR.EMPLOYEESR:

-- seleckt * from HE. AB5;
-- select * from HR. LOCATIONS;

LEu) R R AU S R

4:1 | ns| |2ute Commit: o [untitled

Figure: Selection execute
In the above figure, only the highlighted statement is being executed.

Comments in the SQL editor are not sent to the database when you use SQL->Execute. If you want comments to be preserved when creating or

changing a stored procedure or function, please use the instead of the SQL Commander.

SQL->Execute Current

The Execute Current operation is useful when you have a script with several SQL statements. It lets you execute the statement at the cursor
position without first having to select the SQL statement. The default key binding for execute current is Ctrl-PERIOD (Ctrl-.).

Execute Current determines the actual statement by parsing the editor buffer using the standard statement delimiters.

Tip: If you are unsure what the boundaries are for the current statement then use Edit->Select Current Statement. This will highlight the current
statement without executing it.

SQL->Execute Buffer

Execute Buffer sends the complete editor buffer for execution as one statement. No comments are removed and no parsing of individual statements
based on any delimiters is made. This operation is useful when executing anonymous SQL blocks or SQLs used to create procedures, functions, etc.

SQL->Execute Explain Plan (Oracle, SQL Server and DB2)

Explain Plan is supported for Oracle, DB2 and SQL Server. Explain Plan executes your query and records the plan that the database devises to
execute it. By examining this plan, you can find out if the database is picking the right indexes and joining your tables in the most efficient manner.
The explain plan feature works much the same as executing SQLs to present result sets; you may highlight statements, run a script or load from file.
The explain plan results can easily be compared by using the pin feature in combination with window style presentation.

DbVisualizer presents the plan either in a tree style format or in a graph. What information is shown depends on what database it is. In the tree view

put the mouse pointer on the column header for a tooltip description what that column represents. The following screenshot shows the SQL in the
editor at top and the corresponding explain plan as the result.

88(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/sqlCommander.html#mozTocId942744

1 SELECT

z d.DEPARTMENT NAME,
3 1.CITY,

4 c. COUNTEY NAME,

5 r.BEGION NAME

& FROM

7 HR.DEPARTMENTS d,
& HR.LOCATIONS 1,

9 HE. COUNTRIES o,
10 HR.REGIONS

11 WHERE

1z d.LOCATION ID = 1.LOCATION ID

13 AHD 1.COUNTEY ID = c.COUNTEY ID
14 AHD c.FEGION_ID = r.REGION_ID
15 AHD d.MANAGER_ID TH

16 i

17 SELECT

18 EMPLOYEE_ID

14 FROM

0 HE. EMPLOYEE S

21 WHERE FIRST NAME LIKE 'A%
2z 1

|auto commit: on| |ontitleas|

21:15 | 1ns||
F %

| 2 EXPLAIN 1: SELECT d.DEPARTMENT _NAME, |.CL...

m | ‘ ' ! ‘ ,9 ,e }3 p . | . i@ Tree View (7) Graph View
Operation Mode Cost (%) Cost CPUCost IO Cost Optimizer Cardinality
@ SELECT STATEMENT 0.0 %% 5] 363492 & ALL_ROWS 3 a
=5 @ MESTED LOCPS 0.0 % 5] 363492 3} 3
B _\:; MESTED LOOPS 16.7 % 5 338468 5 3
EI @ MNESTED LOOPS 0.0 %% 3 244292 3 11
: B Efé;! MESTED LOOPS 0.0 % 2 150072 2 23 |=
Fey 93' HR.COUNTRY_C_ID_PK IMDEX (FULL SCAMN) 16.7 % 1 12121 1 AMALYZED 25
EI w} HR.LOCATIOMS TABLE ACCESS (BY INDEX ROWID) 16.7 % 1 8871 1 AMALYZED 1
P b ‘* HR.LOC_COUNTRY_IX IMDEX (RANGE SCAM) 0.0 %% o] 1250 0 AMALYZED 2
E} _‘:;] HR.DEPARTMEMTS TABLE ACCESS (BY INDEX ROWID) 16.7 % i 9689 1 AMALYZED 1
o ‘* HR.DEPT_LOCATION_IX INDEX (RAMGE SCAM) 0.0 %% o] 1650 0 AMALYZED 4
E _:} HR.EMPLOYEES TABLE ACCESS (BY INDEX ROWID) 16.7 % i 8361 1 AMALYZED 1~
i1 3

(™ Result Set [1] | 4 DBMS Output

Figure: Explain Plan presented as a tree

The Graph View shows the plan as a graph. The graph can be exported to an image file or printed. Use the menubar buttons to export and print.

89(260)

‘ @ EXPLAIN 1: SELECT d.DEPARTMENT _NAME, |.CL.. |

DSFRLLTILLHE®

CAT =m
0 i "
BESTED LOGFE
CTST Tt
£ [
U C— s
0 '
[]
BMESTED LOGFS R TABLE MOCEES (B INDEX ROW
[[r=—— =Y
i (] Cmi 1
Ui T CPUCe mn
0 " o 1
[
[]
MESTED LOGOFS HLEMPLOTEES TABLE ACCESS (BY INDEX ROW HRLREG 0P INOER (LUMIGLE SGan
[T TR TS e i P Lt e o P [T
Emi a i 1 i]
CruCe scm o - U -
L. 1 0 i 1 o i [
|
[|
MEETED LOGFS HELDEP TABLE KOCEEE (B IMDEX BOW HELENP_EW ID PR INDEX (UMIOLE SGay
] [rer——— T e o P} [y
i 3 i 1 Emi "
CAT w-— CPUC— i CFUCm: za
0 i 3 W Em 1 e [
[
[1
M G0 PH INOET (FLILL Siral HRLLOGATIONS TASLE ACCESE (BY IMDEX ROW HELOEPT LOCATIOM I INDET [RAMGE 508
b i 1} wn b i 1} . ke i 15 us
i 1 i 1 i [
U Ce Tm U Ce - U -
- 1 - 1 o [

HELLGE_COUNTRY I INDEX (RANGE 508
uw
[
o=
[

o i P}
ot
oruCe:
i

- [Tl ResultSet [1] @Bﬁﬂsmmt

Figure: Explain Plan presented as a graph

Each of the supported databases use different techniques to manage their explain plan support. To control this, either click the Preferences toolbar

button or go to Connection Properties->[database]->Explain Plan.

90(260)

| @7 Connection | [§§ Database Info | 5} Data Types | @ search|

[_ﬁ Connection Properties

--Database Profile Explain Plan Table
DLi'u'er Properties Use these properties to control the explain table for Cracle.
=] Orade _
Authentication i@ Use Default Plan Table
Delimited Identifiers () Use User Defined Plan Table
| £ Qualifiers
I:—}-B! Physical Connection e | |
" Transaction Plan Table Name: [PLAN_TABLE |

|~ 0L Statements
¢} Connection Hooks
- |[Z| Objects Tree Labels

Create Plan Table if not Exists:

EE SQL Ed;tc.:d Explain Coloring

Query Bulder Use these property settings to control wether to color code the highest cost
@ Data Types nodes,

ﬁ Explain Plan

[g Objects Tree Color Critical Modes:

Critical Threshold: % of total cost *
Warning Threshold: % of total cost \:‘3

Cefas

Figure: Explain Plan configuration

The configuration options are different for each of the supported databases.

Auto Commit, Commit and Rollback

The commit and rollback buttons and the accompanying operations in the SQL main menu are enabled if the Auto Commit setting is off for the
current SQL editor. The default setting for Auto Commit is on, which means that the driver/database automatically commits each SQL that is
executed. If Auto Commit is disabled, it is very important to manually issue the commit or rollback operations when appropriate.

The following commands can be executed in the SQL Commander for database independent commit and rollback:

@commit
@rollback

The Auto Commiit setting is enabled by default and can be adjusted in the Connection Properties. You may also adjust the auto commit state for the
SQL editor you are using in the SQL Commander with the following command:

@set autocommit true/false

SQL Scripts

An SQL script is composed of several SQL statements and can be executed in a batch. Each SQL statement is separated by a single character, a
sequence of characters, or the word "go" on a single line. The default settings for the separator characters are defined in Tool Properties and can be
modified to match your needs.

91(260)

S0QL Statement Delimiter
The character(s) that delimits one SQL statement from another during execution.

The delimiter is ignored if found within apostrophes (), double quotes(™ ™}, in a single line
comment or in a block comment. Tt i ako ignored if found in a Variable.

SQL Statement Delimiter 1:
SQL Statement Delimiter 2:

Allow "go® as Delimiter
Check to enable go as the only word on a line as an additional SQL statement delimiter.

Allow "go” as Delimiter:

Anonymous SQL Blodk Identifiers
The character(s) used in the SQL Commander to identify the begin and end of an anocnymous

SQL block.
Begin Identifier:

End Identifier:

Figure: Statement Delimiters

The following SQL script illustrates some uses of the SQL statement delimiters based on the settings in the previous figure:

select * from MyTable; /¥ Stmt 1 */

insert into table MyTable /* Stmt 2 */
(Id, Name) /* This is a comment */ values (1, 'Arnold')

go

update MyTable set Name = 'George' where Id = 1; /* Stmt 3 */

select * from /* Stmt 4 */

MyTable; // This is a comment

You can also use the @delimiter client side command to temporarily change the delimiter in a script.

Execute Large SQL Scripts

If you have a large script (tens of MB), loading it into the SQL Commander and generating log entries in the GUI for all statements require a lot of
memory.

For a script that is large but still small enough to load into the SQL Commander, you can save memory (and therefore run it faster and more
efficiently) by selecting to log to a file instead of the GUI:

iif) Log to Fie =

To save even more memory, you can use the @run client side command to run the script without loading it into the SQL Commander:

@run my_huge_script.sql;

The @run command reads one statement at a time from the file. There are, however, still a few things that require the whole file to be read before
the statements can be executed: parsing the script for variables, parameter markers, and restricted commands, as well as counting all statements in
order to provide progress information. When you run a script that is large enough (more than 10 MB) for these things to potentially cause memory
problems and slow down the processing, DbVisualizer gives you a chance to turn off this preprocessing and progress reporting so that the
statements instead can be executed directly as the are read from the file, one at a time.

92(260)

Notification Alert =

A This script iz very large and there may not be enough memory to process it
L’Q in the normal way. We recommend that you instead log to a file and execute
without the normal preprocessing to avoid potential problems.

HOTE! This means that no variables or parameter markers are substituted and
restricted commands are executed without confirmation.

Log to File: [

ECantinue wi'o Preprocessing | [Continue Mormally] [Cancel]

Figure: Disable preprocessing dialog

To ensure that you don't have any problems running scripts this large, you must specify a file for logging. We also strongly recommend that you click
Continue w/o Preprocessing, thereby disabling all variable, parameter and restricted commands processing. Only click Continue Normally if you
know for sure that you have enough memory available and have adjusted your installation so that DbVisualizer can use it. With the preprocessing
disabled and all logging going to a file instead of the GUI, you should be able to execute scripts of any size (we have tested with scripts as large as 4
GB).

Another alternative for execution of large scripts is to use the DbVisualizer command line interface instead of the GUI application. This option is the
absolute most efficient and fastest.

Anonymous SQL Blocks

An anonymous SQL block is a block of code which contains not only standard SQL but also proprietary code for a specific database. The anonymous
SQL block support in the SQL Commander uses another technique in the JDBC driver to execute these blocks. The way you tell the SQL
Commander that a SQL block is to be executed is to insert a begin identifier just before the block and an end identifier after the block. The figure in
the previous section shows these settings and the default values for the Begin Identifier it is --/ and for the End Identifier it is /.

Here follows an example of an anonymous SQL block for Oracle:

--/ script to disable foreign keys

declare cursor tabs is select table_name, constraint_name

from user_constraints where constraint_type = 'R' and owner = user;
begin
for j in tabs loop
execute immediate ('alter table 'llj.table_namell|' disable constraint'!||j.constraint_name);
end loop;
end;

/

If you want to execute the complete editor buffer as an anonymous SQL block, use the SQL->Execute Buffer operation. In this case, you do not need
the begin and end identifiers.

Stored Procedures

With DbVisualizer Personal, you can execute stored procedures and functions for databases with extended support using the @call client side
command described below and in the Procedure Editor chapter.

For other databases it is not officially supported by DbVisualizer even though the native commands (e.g. CALL or EXEC) work for some databases.
The best way to figure it out is to try. Our internal tests show that the Sybase ASE and SQL Server procedure calls work okay with literal IN

parameters in the SQL Commander. DbVisualizer also presents multiple result sets from a single procedure call as of version 4.0 for these
databases.

Client Side Commands

The SQL Commander supports a number of DbVisualizer specific commands that you can use in the SQL Editor. A command begins with the at sign,
"@". The following sections describe the available commands.

93(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId246198

@run - run SQL script from file

@cd <directory> - change directory

Use the following commands to locate and execute SQL scripts directly from a file without first loading the file into the SQL editor. This is useful if you
are using an external editor or a development environment to edit the SQL but use DbVisualizer to execute it.

e @run <file>

Request to execute the file specified as parameter

¢ @cd <directory>
Change the working directory for the following @run command

Example of a script utilizing the file referencing commands:

select * from MyTable; --

@run createDB.sql;

@cd /home/mupp;
@run loadBackup.sql;

@export - export result sets to file

Selects data from MyTable

-- Execute the content in the

-- createDB.sql file without loading into the SQL editor.
-- The location of this file is the same as the working
-- directory for DbVisualizer.

-- Request to change directory to /home/mupp

-- Execute the content in the loadBackup.sql

-- file. This file will now be read from the

-- /home/mupp directory.

The @export commands are used to declare that any result sets from the SQL statements that follows should be written to a file instead of being
presented in the DbVisualizer tool. This is really useful, since it enables dumping very large tables to a file for later processing or, for example, to
perform backups. The following commands are used to control the export:

* @export on

Defines that the SQL statements that follows will be exported rather then being presented in DbVisualizer
* @export set parml="valuel" parm2="value2"

The set command is used to customize the export process. Check the table below for the complete set of parameters.

+ @export off

Defines that SQL statements that follows will be handled the normal way, i.e., the result sets are presented in the DbVisualizer tool

These parameters are supported:

Parameter

AppendFile

BinaryFileDir

BinaryFormat

BooleanFalseFormat

BooleanTrueFormat

CLOBFileDir

CLOBFormat

CsvColumnDelimiter

Default

false

Don't Export

false

true

Value

\t (TAB)

Valid Values

true, false, clear

Directory path for data files when BinaryFormat is set to File

Don't Export, Size, Value, Hex, Base64, File

false, no, 0, off

true, yes, 1, on

Directory path for data files when CLOBFormat is set to File

Don't Export, Size, Value, File

94(260)

CsvincludeColumnHeader

CsvincludeSQLCommand

CvsRemoveNewlines

CsvRowCommentldentifier

CsvRowDelimiter

DateFormat

DecimalNumberFormat

Destination

Encoding

ExcellncludeColumnHeader

ExcellncludeSQLCommand

ExcellntroText

ExcelTextOnly

ExcelTitle

Filename

Format

HtmllncludeSQLCommand

HtmlintroText

HtmITitle

NumberFormat

QuoteDuplicateEmbedded

QuoteTextData

Settings

ShowNullAs

SqllncludeCreateDDL

SqlincludeSQLCommand

SqlRowCommentldentifier

true

false

false

\n

yyyy-MM-dd

Unformatted

File

UTF-8

true

false

false

DbVisualizer export output

REQUIRED

Ccsv

false

DbVisualizer export output

Unformatted

true

None

(null)

false

false

true, false

true, false

true, false

\n (UNIX/Linux/Mac OS X), \r\n (Windows)

See valid formats in Tool Properties document

See valid formats in Tool Properties document

File

true, false

Any description

true, false

Any title

CSV, HTML, XML, SQL, XLS

true, false

Any description

Any title

See valid formats in Tool Properties document

true, false (quote char is the same as QuoteTextData)

None, Single, Double

true, false

true, false

95(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566

SqlSeparator ;

Can be set if DbVisualizer cannot determine the value for the ${dbvis-object}

TableName)
variable
TimeFormat HH:mm:ss See valid formats in Tool Properties document
TimeStampFormat yyyy-MM-dd See valid formats in Tool Properties document
HH:mm:ss.SSSSSS
XmlIincludeSQLCommand false true, false
XmlintroText
XmiStyle DbVisualizer DbVisualizer, XmlIDataSet, FlatXmIDataSet

Example 1: @export with minimum setup

The following example shows the minimum commands to export a result set.
The result set produced by the select * from Orders will be exported to the C:\Backups\Orders.csv file, using the default settings.

@export on;
@export set filename="c:\Backups\Orders.csv";
select * from Orders;

Example 2: @export with automatic table name to file name mapping

This example shows how to make the filename the same as the table name in the select statement. The example also shows several select
statements. Each will be exported in the SQL format. Since the filename is defined to be automatically set, this means that there will be one file per
result set and each file is named by the name of its table.

There must be only one table name in a select statement in order to automatically set the filename, i.e if the select joins from several tables or

pseudo tables are used, you must explicitly name the file.

@export on;

@export set filename="c:\Backups\${dbvis-object}$" format="sql";
select * from Orders;

select * from Products;

select * from Transactions;

Example 3: @export all result sets into a single file

This example shows how all result sets can be exported to a single file. The AppendFile parameter supports the following values.

e true

The following result sets will all be exported to a single file
¢ false

Turn off the append processing
e clear

Same as the true value but this will in addition clear the file before the first result set is exported

@export on;

@export set filename="c:\Backups\alltables.sql" appendfile="clear" format="sql";
select * from Orders;

select * from Products;

select * from Transactions;

96(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566

Example 4: @export using predefined settings
The Export dialogs let you save export settings to a file for later use. Such an export settings file can be referenced in the @export set command.

@export on;

@export set settings="c:\tmp\htmlsettings.xml" filename="c:\Backups\${dbvis-object}$";
select * from Orders;

select * from Products;

select * from Transactions;

The example shows that all settings will be read from the c:\tmp\htmisettings.xml file.

@delimiter - Temporarily change the statement delimiter

When you use SQL statements to create functions and stored procedures in a script that also contains other SQL statements, the statement
delimiters for statements within the code body of the CREATE statement often clash with the delimiters for the other statements. One way to handle
this is with Anonymous SQL Blocks, but it may be more convenient to temporarily change the statement delimiter. That is what the @delimiter
command is for:

@delimiter ++;
CREATE OR REPLACE FUNCTION HELLO (pl IN VARCHARZ2) RETURN VARCHARZ
AS
BEGIN
RETURN 'Hello ' Il p1;
END;
++
@delimiter ;++
@call ${returnValuellCnull)|IStringlInoshow dir=out}$ = HELLO(C'World');
@echo returnValue = ${returnValue}$;

The first @delimiter command sets the delimiter to "++" so that the default ;" delimiter can be used within the function body in the CREATE
statement. The "++" delimiter is then used to end the CREATE statement, and another @delimiter command sets the delimiter back to ";" for the
remaining commands in the script.

Note that current delimiter must be used to delimit the @delimiter command itself from the other statements: the first @delimiter command uses ";"

and the second uses "++".

@call - Execute a function or stored procedure

You can use the @call command to execute a function or a stored procedure.

For a function, returning a value, use this syntax:
@call <OutVariable> = <FunctionName>(<ParamList>);

where the <FunctionName> may need to be fully qualified with a schema (and/or catalog/database) and the <ParamlList> is a comma separated list
of literal values or variables. Here's an example:

@call ${return_valuel |(null)|IStringl|dir=out noshow}$ = get_some_value(Q);
For a procedure, use this syntax:
@call <ProcedureName>(<ParamList>);

where the <ProcedureName> may need to be fully qualified with a schema (and/or catalog/database) and the <ParamList> is a comma separated
list of literal values or variables. Here's an example:

@call my_process('literal input',

97(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportImport/exportImport.html

${var_inl [(null) | IStringl Idir=in}$,
${var_out!| |1 (null) | IStringl ldir=out noshow}$,
${var_inout!|'in_value'lIString! Idir=inout}$);

As shown in these examples, you must use the dir option to specify how the variable is to be used (in, out or inout) and you may use the noshow
option to prevent being prompted for a value for an output variable .

You can use the @echo command described earlier to write the value assigned to an output variable to the log.

The Procedure Editor chapter shows a few more examples, and how you can generate a script for calling a procedure or function. The Variables
section below describes the variable syntax in more detail.

@echo - Echo text

The @echo command simply echos the supplied text or the value of a variable in the output.

@window iconify - Iconify the main window

This command results in the main window being lowered (iconified).

@window restore - Raise the main window

This command results in the main window being raised (if iconified).

@desc table - Describe the columns in table

Use the @desc command to show column information for a table. For tables that are not in the current database or schema, you need to qualify the
table name properly.

@desctable;
@desc database.table;
@desc schema.table;

@ddl - Generate DDL command

The @ddl command is used to generate a DDL command (CREATE statement) for a number of different database object types. The command
supports this general syntax:

@ddl <objType>="<objId>" [drop="true | false"] [constrCtrl="<constrCtrl>"]

<objType> is one of table, indexesfortable, view, procedure, function, package (Oracle only), packagebody (Oracle only), module (Mimer only)
or trigger, and <objld> is the qualified identifier for the object (case sensitive).

If drop is set to true, a DROP statement is included before the CREATE statement.

The constrCtrl parameter only applies to tables. It accepts two values: noconstr means that no constraints should be included in the statement that
can potentially cause creating the table or inserting data into it to fail (FK and CHECK constraints), while onlyconstr means that an ALTER
statement adding the remaining constraints should be generated instead of a CREATE statement.

@spool log - Save log to file
The @spool log command is used to save the log to file. (The log is not cleared after being saved).

@spool log mylog.txt

98(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html

@stop on error - Stop execution if any error occurs

@stop on warning - Stop execution if any warning occurs

The @stop on error and warning can be used to control that the script processing should stop if any error or warning occurs. The corresponding
@continue on xxx command is used to ignore any error or warning conditions.

@stop on error;

@stop on warning;
@continue on error;
@continue on warning;

@set autocommit - Sets the auto commit state

Pass either true or false as a parameter and it will set the auto commit state accordingly.

@commit - Commits the current transaction

Commits the current transaction via this database independent command.

@rollback - Rollback the current transaction

Rollback the current transaction via this database independent command.

@set serveroutput - Enable/disable the DBMS output management for Oracle

Pass either true or false as a parameter to start or stop the DBMS output management for Oracle.

Variables

Variables are used to build parameterized SQL statements and let DbVisualizer prompt you for the values when the SQL is executed. This is handy if
you are executing the same SQL repetitively, just wanting to pass new data in the same SQL statement.

Variable Syntax

The variable format supports setting a default value, data type and a few options as in the following example:
${FullName! | Andersson! |String| Iwhere pk}$

Here is the complete variable syntax:

${name |1 value || type || options}$

* name
Required. This is the name that appear in the substitution dialog. If multiple variables in a script have the same name, the substitution
dialog shows only one and the entered value will be applied to all variables of that name.

* default
The default value that appears in the substitution dialog

* type

99(260)

The type of variable - String, Integer, Float, etc. This is used to determine whether the value should be enclosed by quotes. If no type is
specified, it is treated as an Integer (no quotes).

* options
The options part is used to express certain conditions:
. pk
Indicates that the variable is part of the primary key in the final SQL. Represented with a key icon
e where
Defines that the variable is part of the WHERE clause. The green star icon further illustrate this condition
* noshow

This option define that the variable should not appear in the substitution dialog. A proper default value must be set if using this
option, unless it is an output variable (see dir below)

¢ nobind
Specifies that the value should be replaced as text in the final statement instead of being replaced as a parameter marker

¢ dir=in | out | inout
The direction for a variable used with the @call command (it is ignored for other uses). A variable assigned the return value for a
function must be declared as dir=out, and a variable used for a procedure parameter must use a dir type matching the
procedure parameter direction declaration. in is the default.

Pre-defined Variables

A few pre-defined DbVisualizer variables can be used anywhere in the SQL. These are replaced with actual values just before the SQL is sent to the
DB server. The final value for these variables are self explanatory.

${dbvis-date}$

${dbvis-time}$

${dbvis-timestamp}$

By default, the values are formatted as defined in Tool Properties->Data Formats, but you can also specify a custom format for a single use of the
variable, e.g.

${dbvis-date|||||format=[yyyyMMdd]}$

The following variables can be used only when monitoring a SQL statement that produce a result set and the Allowed Row Count for the monitor is
> 0. The output format is seconds and milliseconds. Ex: 2.018

${dbvis-exec-time}$
${dbvis-fetch-time}$

Note that none of the above variables will appear in the Variable Substitution window explained below.

Variable Substitution in SQL statements

For variable processing to work in the SQL Commander, make sure the SQL->Process Variables in SQL main menu option is enabled.

A simple variable may look like this:

${FullName}$

A variable is identified by the start and end sequences, ${ ... }$. (These can be re-defined in Tool Properties). During execution, the SQL Commander
searches for variables and displays a window with the name of each variable and an input (value) field. Enter the value for each variable and then
press Execute. This will then replace the variable with the value and finally let the database execute the statement.

Consider the following SQL statement with variables. It is the simplest use of variables as it only contains the variable names. In this case it is also
necessary to enclose text values within quotes since the substitution window cannot determine the actual data type from these variable expressions.

INSERT

INTO
"SCOTT". "EMP"

VALUES

(
${EMPNO}S$,
"${ENAME3$',
"${JOB}$",
${MGR}$,
"${HIREDATE}$',
${SAL}S,

100(260)

${COMM}$,
${DEPTNO}$

Executing the above SQL will result in the following window being displayed:

g Enter Data for Variables E

AE IR S e -wvK

Key Variable Value
EMPNO
ENAME (nully
JOB {(nully
MGR (nully
HIREDATE (null)
SAL (nully
CONMM {(nully
DEPTHO (null)
EMPNO
Mot MULL
[7] Show 5QL Continue] [Cancel
50L Preview o
El =9 -
1 THSERT
2 THTO
3 TRCOTT™ . "EMI"WALUES
4 [
5 HULL,
] 'nmall!',
7 'mall',
g HULL ,
a 'all',
10 HULL,
11 HULL,
12 HULL
13 1

Figure: The substitute variables window

The substitution window have the same look and functionality as the Form Data Editor i.e. you can sort, filter, insert pre-defined data, copy,
paste and edit cells in the multi line editor, plus a lot of other things. In addition the substitution window adds two new commands (leftmost in the
toolbar and in the form right-click menu) specifically for the substitution window:

* Set Default Values
This will set the value to the default value for the variable. If a default value was not specified in the variable, (null) will appear
¢ Set Previously Used Values
Set the value for each variable to the values used in the previous run (if there is no values from a previous run, this button is disabled).

The SQL Preview area shows the statement with all variables substituted with the values.

Here is an example of a more complex use of variables.

update SCOTT.EMP set
EMPNO = ${EMPNOI 76981 BigDecimall Ipk ds=22 dt=NUMERIC }$,
ENAME = ${ENAME| IBLAKE| IStringlInullable ds=1@ dt=VARCHAR 1}$,

101(260)

JOB = ${JOBI IMANAGERI |Stringl Inullable ds=9 dt=VARCHAR }$,
MGR = ${MGRI 17839 IBigDecimallnullable ds=22 dt=NUMERIC }$,
HIREDATE = ${HIREDATE|11981-05-01 00:00:00.0| | Timestamp| Inullable ds=7 dt=TIMESTAMP }$,
SAL = ${SALI128501| |BigDecimall Inullable ds=22 dt=NUMERIC }$,
COMM = ${COMMI | Cnull)|IBigDecimallInullable ds=22 dt=NUMERIC }$,
DEPTNO = ${DEPTNOI I30| IBigDecimall Inullable ds=22 dt=NUMERIC }$
where EMPNO = ${EMPNO (where)||7698||BigDecimal | Iwhere pk ds=22 dt=NUMERIC }$

This example use the full capabilities of variables. It is in fact generated by the Script to SQL Editor->INSERT COPY INTO TABLE right click menu
choice in the Data tab grid.

| & Enter Data for Variables [mE3w]
ABOE| e vV
Keyl WVariable . Value
£ EMPNO
ENAME Lampert
JOB MAMAGER
MGR 7839
HIREDATE 1981-05-01 00:00:00.0
SAL 2850
COMM (null)
DEPTHO 30
£ <l EMPNO (where) 7698

EMPNO NUMERIC
Mot MULL, Key Column

[¥] Show SGL —] ’ —
SQL Preview i
B2l -
1 UFDATE
E SCOTT.EMP
3 SET
4 EMFND = 7698,
2 ENAME = 'Lampert',
& JOE = 'MAMAGER',
7 MGR = 7539,
& HIFEDATE = '1981-05-01 00:00:00.0°,
& SAL = 2350,
10 COMM = WULL,
11 DEFTNO = 30
12 WHERE
13 EMPNO = 7698

Figure: The substitute variables window
To highlight that a variable is part of the WHERE clause in the final SQL it is represented with a green icon in front of the name.

When executing a statement that consist of variables, DbVisualizer replaces each variable with either the value as inline text or as a parameter
marker. Using parameter markers to pass data with a statement is more reliable and safe than inline values. It is also the recommended technique to
set values as the database engine may then pre-compile these statements properly. DbVisualizer will automatically generate a parameter marker if
the variable have the type section set and if there is no nobind option specified.

The following will be replaced with a parameter marker:

${Name||rolle||String}$

These will be replaced with the variable value:

102(260)

${Name||rolle}$
${Name||rolle||String||nobind}$

Variables in DbVisualizer may be used anywhere in a statement. However, there may be problems once the final statement is passed to the
database for execution and it contain parameter markers in non supported places. A simple example is Oracle that don't accept parameter markers
for a table name. To solve this problem either clear the type part of the variable expression or add the option nobind (see above).

Parameter Markers

Parameter markers are are usually represented in a SQL statement with a question mark, ? or a string prefixed with a colon, :somename. Example:
select * from EMP where ENAME = ? or ENAME = ?

Parameter markers are primarily used in prepared SQL statements that will be cached by the database server. The purpose with cached statements
is that the database server will analyze the execution plan once when the SQL is first executed. Subsequent invocations of the same SQL will then
only replace the parameter markers with appropriate values, which results in much better response than executing SQLs with dynamic values
directly in the SQL.

Parameter marker processing is managed by the JDBC driver and not all drivers supports it. One notable example is that the Oracle JDBC driver
lacks support completely.

With a JDBC driver that does support parameter marker processing, the following window appears when executing the previous SQL statement.

m
SB[E» ve -v|lvi

Key Variable Yalue
Parameter 1 [g&0==00)
Parameter 2 Larsson

Parameter 1 CHARACTER VARYING(43)
Allow MULL

[7] Show SQL Continue][Cancel

SOL Preview

El3|9 -

1 SELECT
7 *
3 FROM

4 NIMER STORE. COUNTRIES
5 WHERE

& COUNTRY
7 0OR COUNTEY

[}
L)

L}
L)

Mote: The SQL preview show the ariginal SQL without any parameter replacement applied.
The reason is that parameter markers are managed by the JDBC driver and not by
DbVisualizer.

Figure: The parameter marker substitution window

(For parameter marker processing to work in the SQL Commander, make sure the SQL->Process Parameter Markers in SQL main menu option is
enabled).

103(260)

Output View

The Output View in the lower area of the SQL Commander is used to display the result of the SQLs being executed. How the results are presented
is based on what type of result it is. Alog entry is always produced in the Log view for each SQL statement that is executed. This entry shows at a
minimum the execution time and how many rows were affected by the SQL. There may also be a result set if the SQL returned one. These result
sets are presented either as tabs or windows based on your choice.

| 1: select * from HR.DEPARTMENTS | @ 2: select EMPLOYEE_ID, FIRST_NAME... | ® 3: select * from HR.JOB_HISTORY

RO|$F P uEEHEHE ve -n|» a- EEl=
£ EMF‘LDYEE_IDIg@ START_DATE | END_DATE ~ JOBID DEPARTMENT_ID
1 102 1993-01-13 00:00:00 1998-07-24 00:00:00 IT_PROG 60 -
2 101 1989-09-21 00:00:00 1993-10-27 00:00:00 AC_ACCOUNT 110 I
3 101 1993-10-28 00:00:00 1997-03-15 00:00:00 AC_MGR 110
4 201 1996-02-17 00:00:00 1999-12-19 00:00:00 MK_REP 20 E
5 114 1998-03-24 00:00:00 1999-12-31 00:00:00 ST_CLERK 50
] 122 1999-01-01 00:00:00 1999-12-31 00:00:00 ST_CLERK 50
I 200 1987-09-17 00:00:00 1993-06-17 00:00:00 AD_ASST a0
8 176 1998-03-24 00:00:00 1998-12-31 00:00:00 SA_REP 20

0.000/0.000 sec || 10/5 |

- (™ Result Set [3] | U DBMS Output

Figure: The output view

If an error occurs during execution, the SQL Commander automatically switches to the Log view so that you can further analyze the problem.

Log
At the top of the Log tab, you can choose to log information about the execution of your SQL statements to the GUI or to a file.

it () Log toFile (-]

Figure: The Log destination controls

If you choose to log to file, you can enter the file path in the text field or click the button to the right of the field to launch a file browser. By default, the
log information is written to the GUI, below the log destination controls.

The log keeps an entry for each SQL statement that has been executed. It provides generic information, such as how many rows were affected and
the execution time. The important piece of information is the execution message which shows how the execution of that specific statement ended. If
an error occurred, the complete log entry will be in red, indicating that something went wrong.

[S]18:59:49 [SELECT - 27 row(s), 0.031 secs] Result set fetched |

/=/18:59:50 [SELECT - 107 row(s), 0.000 secs] Result set fetched |@ Copy ChrleC |
= /18:59:50 [SELECT - 10 row(s), 0.015 secs] Result set fetched

[£/18:59:50 [SELECT - 0 row(s), 0.000 secs] [Error Code: 942, SQL State: 42000] ORA-00942: t E Save As... Ctrl+5hift+5
;:;}'1&5‘951] [SH.ECI' -19 rnw{s], 0.047 SE[S] Result set fetched -'-E& Clear Lﬂg Ctrl+Delete

Qlﬂ:‘i‘t‘iﬂ [SELECT - 23 row(s), 0.016 secs] Result set fetched
— & statement(s) executed, 186 row(s) affected, exec/fetch time: 0.109/0.094 sec [5 sucg Clear Success Entries

Clear Error Entries

Clear Warning Entries

/7 log | (7] Result Set [5] | G DBMS Output

Figure: The Log with one failed statement

The detail level in an error message depends on the driver and database that is being used. Some databases are very good at telling what went
wrong and why, while others provide less detail.

104(260)

Clicking the icon to the left of each log entry selects the corresponding SQL statement in the SQL editor. The icon also has a right-click menu with
two choices: Load SQL into Editor and Insert SQL into Editor. The first choice replaces the current content of the SQL Editor with the SQL
statement corresponding to the log entry, while the second inserts it at the caret position in the SQL Editor.

Log controls

The Editor Control area contains a Log tab where you can control the log content. Use the Show controls to define which information you want to
appear in the log. The Filter controls are used to specify which entries should be displayed.

Auto clear log

If you enable the Auto Clear Log control, the SQL Commander automatically clears the log between executions.

Result Set

Aresult set grid is created for every SQL that returns one or more result sets. These grids can be displayed in a tab or window style view, similar to
how the SQL editors are displayed. Each grid shares the common layout and features as described in the Getting Started and General Overview
document. The format of the result can be one:

e Grid

The result is presented in a grid.
¢ Text

The result is presented in a tabular format.
¢ Chart

Read more in Monitor and Charts.

105(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

: [ﬁ Object View D SQL Commander |

POBRGISEHE D RIEC > BE08

: ® Load SQL into Editor E
VO S5 P> &EEE B »®|® sl inokdtor]
4’ DEPARTMENT_ID DEPARTMENT_NAME MA €3 Close Current Ctrl+F4
1 10 Administration Close All -
2 20 Marketing "
= 30 Purchasing Close All But Current 1 E@
4 40 Human Resources Clase All Empty .| .| P - n =
5 50 Shipping 2 Pin Current
B BOIT | | P Unpin Current T_DATE = END_DATE
7 70 Public Relations . B 00:00:00 19958-07-24 00:(
g 50 Sales Pl h 00:00:00 1993-10-27 00
9 90 Executive Unpin Al B 00:00:00 1997-03-15 00:(
10 100 Finance Close All Pinned 7 00:00:00 1999-12-19 00:
11 110 Accounting Close All Unpinned T B 000000 1999-12-31 00:(
_ 1-11 | [1 00:00:00 1999-12-31 00:
> [Show Grids Cti+4 5517 00:00:00 1993-06-17 00
B 2 select EMPLOYEE ID, FIRST_NAME... Show Texts Ctrl+5 5-03-24 00:00:00 1998-12-31 00
3 .| 3 @| P - -|@ B .| .| > @ 7] Show Charts Ctrl+6 B-01-01 00:00:00 1999-12-31 00:
' 0| 200/1994-07-01 00:00:00 1998-12-31 00:
4’ EMPLOYEE_ID FIRST_NAME LAST_NAME EMA 4| = | -
1 100 Steven King SKING [0.000/0.000 sec | 10/5 | 10|
2 101 Neena Kochhar MEOC
3 102 Lex De Haan LDEHAAM
4 103 Alexander Hunold AHUMNOLD
5 104 Bruce Ernst BERMST
] 105 David Austin DAUSTIN
T 406 Valli Patahalla VPATARAL ol
0.000/0.016 sec || 107/4][17|

- (™| Result Set [3] | 4 DBMS Output

Figure: The windows output view

[15pping A1anty S | .13 s

The figure above shows the windows output style with three result set grids. A result set grid can be closed using the red cross in the window frame

header.

With the tabs style, you use the Close right click menu choice when the mouse pointer is in the tab header to close a result set:

106(260)

: [ﬁ Object View D S0L Commander |

PORRIOISEE D ROBI¢> B E8S T
F
| ﬁ 1: select * from mn@mwﬂ ,g 2: select EMPLOYEE_ID, FIRSLNhMJ:_I_ﬂ:zualad—_*_En-m_'lm_ulccm\r| ﬁ
' ® Load SQL into Editor i
VO SY| > @uEHE B >® - 8|M§ 1ol intoEditor - EFER=
aﬁ EMF'LDYEE_IDIFIRST_NH.MEIL.&ST_NPA.MEI EMAIL a Close Current Ctri+F4 Iﬂ]
c
; 0iNeona—Koohar_pwoge] O =l
eena ochhar =

3 102 Lex DeHaan LDEHAaN CloseAllBut Current =

4 103 Alexander Hunold AHUMNOLE Close All Empty ==

g 104 Bruce Ernst BERMST ,g Pin Current

i} 105 David Austin DAUSTIM .

. ,’ Unpin Current

T 106 Valli Pataballa VPATABAL

3 107 Diana Lorentz DLOREN] Pin Al

9 108 Mancy Greenberg NGREEM Unpin All

10 109 Daniel Faviet DFAVIET Close All Pinned

11 110 John Chen JCHEM Close All Unginned

12 111 Ismael Sciarra ISCIARRA

13 112 Jose Manuel Urman JMURMAN (2] Show Grids Crl+4

14 113 Luis Popp LPOPP Show Texts Ctrl+5

15 114 Den Raphaely DRAPHEA E-I Show Charts Ctrl+6

16 115 Alexander Khoo AKHOO

17 116 Shelli Baida SBAIDA

18 117 Sigal Tobias STOBIAS

19 118 Guy Himuro GHIMURC

20 119 Karen Colmenares KCOLMEMA

21 120 Matthew Weiss MWEISS

22 121 Adam Fripp AFRIPP

23 122 Payam Kaufling PEALFLIMN

24 123 Shanta Yollman SVOLLMAN —

0.000/0.016 s=c | 107/4 || 1-25 |

(™) Result Set [3] | L DBMS Output

Figure: The right click menu for tabs

Result set menu

The result set menu is available by right-clicking on a tab or on the result set desktop (window style). It contains options to control the current result
set and all result sets. The following actions are available:

Menu Choice Description
Load SQL into Editor Loads the SQL for the selected result set tab or window into the current editor.
Insert SQL into Editor Inserts the SQL for the selected result set tab or window into the current editor at the cursor position.
Close Current Closes the current result set
Close All Closes all result sets
Close All But Current Closes all but the current result set

Close All Empty Closes all result sets that are empty (no data)

107(260)

Pin Current

Unpin Current

Pin All

Unpin All

Close All Pinned
Close All Unpinned
Show Grids

Show Texts

Show Charts

Editing

Pins the current result set (preventing it from being removed at the next execution).

Unpins the current result set

Pins all result sets. Pinning a result set prevents it from being removed at the next execution.

Unpins any pinned result sets, making them candidates for removal during the next execution.

Removes all pinned result sets directly.

Removes all unpinned result sets directly.

Changes the display mode to show the grid tab for all result sets

Changes the display mode to show the text tab for all result sets

Changes the display mode to show the chart tab for all result sets

A result set grid may be enabled for editing based on the following criteria:

PobN2

The result really is a result set

The SQL is a SELECT command

Only one table is referenced in the FROM clause

All columns in the result set exist in the table with exactly the same names

For some databases, you must also either qualify the table name with the schema name, or make sure that the table belongs to the schema selected
in the Schema list for the SQL Editor. If all of the above is true, the standard editing tool bar appears just above the grid. Read more about editing in
the Edit Table Data chapter.

Multiple result sets produced by a single SQL statement

Some SQL statements may produce multiple result sets. Examples of this are stored procedures in Sybase ASE and SQL Server. The SQL

Commander checks the results as returned by the JDBC driver and add grids to the output view accordingly. The following shows the sp_help
command which returns several result sets with various information about the newTable table.

108(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html

Database Connection ——— [| Sticky Database ———— Schema ——— Max Rows Max Chars
igSybase vi j[ﬂhans vi H dbo v: 1000 0

ap_help newTabl El

1:17 |mns| |2uto commit: on| |untitleas

,@ 5: sp_help newTable | P sp help newTable ,@ 7: sp_help newTable ,@ 3: sp_help newTable
,@ 1: sp_help newTable | ,9 2: sp_help newTable ,g 3: sp_help newTable ,@ 4: sp_help newTable

s0s5m a EEE

Column_name . Type ILength lF'reclScaIe lNuIIs lDefauIt_name IRuIe_name IAccess_RuIe_nar
1 |colt decimal g 18 0 1 (null) {mull} (rnull}
2 |col2 float g MU WU 1 (null} {mull} (rnull}
3 |col3 varchar 22 NU. NU_ | 1 (null} {mull} (rnull}
4 |cold datetime g MU WU 1 (null} {mull} (rnull}
5 |cols int 4 MU NU__ | 1 (null} {mull} (rnull}
1 | 1 [r

Figure: Multiple result set grids produced by a single SQL statement

The result set grids in the figure above all share the same label, sp_help newTable. The number after the label represents the order number for the
actual result. A stored procedure can return different results, not all being result sets. The number helps you identify which entry matches which

result set grid in the log. Here is the Log output view for the previous example.

Database Connection ——— [| Sticky Datsbase ——— Schema ——— Max Rows Masx Chars
g Sybase v: [ﬂ hans v: H dba v: 1000 0
sp_help newTabhle

1:17 | ws] |aute commit: on| |Untitleds|

F 5.

@ Log to GUI (7) Log to File (-]
5;-}'19'32:11 [SP_HELP - 1 row(s), 0.047 secs] Command processed Il
Code: 0 —-—— Object does not have any indexes._

Code: 0 —— No defined keys for this object.

Code: 0 ——-

Code: 0 ——— Lock scheme Allpages

Code: 0 ——- The attribute "exp row size' i3 not applicable to tables with

allpages lock scheme.

Code: 0 —--- The attribute 'concurrency opt threshold' is not applicable to
tables with allpages lock scheme._

Code: 0 —-

4:319'32:11 [SP_HELP - 1 row(s), 0.047 secs] Result set fetched

;';-}'1'_1-32:11 [SP_HELP - 5 row(s), 0.047 secs] Result set fetched

[=]19:32:11 [SP_HELP - 1 row(s), 0.047 secs] Result set fetched

5;-?1'_!'32:11 [SP_HELP - 1 row(s), 0.047 secs] Result set fetched

.-;'.__;-}'19'32:11 [SP_HELP - 1 row(s), 0.047 secs] Result set fetched

5:319'32:11 [SP_HELP - 1 row(s), 0.047 secs] Result set fetched

5;-}'19'32:11 [SP_HELP - 1 row(s), 0.047 secs] Command processed

4:319'32:11 [SP_HELP - 1 row(s), 0.047 secs] Result set fetched

;';-}'1'_1-32:11 [SP_HELP - 1 row(s), 0.047 secs] Result set fetched | 4
— 10 statement(s) executed, 14 row(s) affected, execffetch time: 0.470/0.125 sec [10 successful, 0
warnings, 0 errors]

m

109(260)

Figure: The Log after executing an SQL statement that returns multiple results

All entries with the log message "Result set fetched" are represented by a grid in the previous figure.

Text

The Text format for a result set presents the data in a tabular style. The column widths are calculated based on the length of each value and the
length of the column label.

The column widths may vary between executions of the SQL.

| P 1: select = from HR.EMPLOYEES |

B0 EE A

1 EMPLOYEE_ID FIRST NAME LAST NAME EMATL PHONE_NUMEEE. HIFE_DA7 »
P L
3 100 Steven King SKING 515.123. 4567 193?-05-E
4101 Neena Kochhar NKOCHHAR G15.123. 4568 1989-08-

5 102 Lex De Haan LDEHAAN ~ 515.123.4569 1993-01-

& 103 Alexander Hunold AHUNOLD 590.423. 4567 1980-01-

7 104 Eruce Ernst BERNST 590.423. 4568 1981-05-

& 105 David Austin DAUSTIN 590.423. 4569 1987-06-

9 106 Valli Patahalla VPATAEAL 500.423. 4560 1998-02-
10 107 Diana Lorents DLORENTZ 590.423. 5567 1989-0z2-
11 108 Nancy Greenberg ~ NGREENEE 515.124.4569 1994-08-
1z 109 Daniel Faviet DFAVIET G515.124.4169 1994-05-
13 110 John Chen ICHEN 515.124.4269 1997-08-
14111 Izmael Sciarra ISCIARRA 515.124.4369 1987-08-
15 112 Jose Manuel Trman IMURMAN — 515.124.4469 1998-03-
16 113 Luis Popp LPOFE 515.124.4567 1989-12- _
o -f-l- - UL - - - |__-_-_-- ot T T -P-

0.031/0.016 sec || 107/11 |

Figure: The Text result set format

Chart

Aresult set can be charted using the Chart view in a grid. Please read more about it in the Monitor and Charts document.

DBMS Output (Oracle)

The DBMS Output tab for Oracle is used to enable and disable capturing of messages produced by stored procedures, packages, and triggers.
These messages are typically inserted in the code for debugging purposes. For SQL*Plus users, the corresponding feature is enabled via the set
serveroutput on command. To enable display of DBMS messages in DbVisualizer, select the DBMS Output tab and press the Enable button.

Once DBMS output is enabled, the icon in the tab header is changed. Invoking a stored procedure in the SQL editor will result in the following being
displayed in the output tab. (Each block of output is separated with a timestamp).

110(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html

Datsbase Connection [7] sticky Datsbass Schems ——— Max Rows Max Chars
[orade ~| |8 4 HR » w00 |0

call enp_repaorti)

1:1 |ng |aute commit: on| [untitieas

P @ lo) | 5¢ Buffer size: 100000

1 ---159:47:35 --- -

2 Enpno Ename Job I

e =

4 100 King 4D FRE3 | 4

5 101 Kochhar AD WP

6 102 De Haan AD_VF

7 103 Hunold IT_PROG

g 104 Ernst IT _PROG

9 105 Austin IT PROG

10 105 Pataballa IT PROG

11 107 Lorentz IT_FROG

12 108 Greenberg FI_MGR

13 109 Faviet FI_ACCOUNT

14 110 Chen FI_&CCOUNT

15 111 3&ciarra FI_ACCOUNT

lé 112 TUrman FI_ACCOUNT

17 113 Popp FI_ACCOUNT

15 114 FRaphaely PU_MAN

13 115 F¥hoo P _CLEERE]

| =/ tog | (7] Result Set| 53 pBMS Output

Figure: DBMS Output tab

111(260)

Query Builder

Introduction

The Query Builder provides and easy way to develop database queries. The Query Builder provides a point and click interface and does not require
in-depth knowledge about the SQL syntax.

The Query Builder is part of the SQL Commander, alongside the SQL Editor. To open the Query Builder, make sure the SQL Commander tab is
selected and then choose either the SQL->Show Query Builder menu choice or click the vertical Query Builder button to the right in the SQL
Commander. When you are ready to test a query built with the Query Builder, you just load it to the SQL Editor for execution.

This document talks only about Tables even though the Query Builder supports both table and view objects.

File Edit View Database Scripts SQL Tools Window Help

YGEB e O OKO0

Y | <Drop your favorite objects here >

| @ Datobases | saps|

[l
0> s P T OlE
- Orace (W orade S e /8w | [1000 |/

B E Schemas L = kAl | el
=2 B s (Default — =
a ?FT‘&H&) HR.DEPARTMENTS = :
& 7] counTres |dept HR.EMPLOYEES
= D DEPARTHMENTS ? DEPARTMENT _ID emp
E E ::::‘[""EEY DEPARTMENT_NAME & [EMPLOYEE_ID
. CHSTe [F] MANAGER_ID [¥] FIRST_MAME
& Joes - =] | AST N P
8] L ocaTIONS | [F] LOCATION_ID —\\ LAST_MAME I— Dmgram a
- ORDERS IE EMAIL
G- [REGIONS) [7] PHONE_MUMBER
= [Views Fluine naTe
& & Synon " HR.COUNTRIES
o - = e |
(i-&5 Materiakadd Views & [0l COUNTRY_ID — N (e

(- Functions = [LOCATION_ID -

e} Procedurgs [F] REGION_ID [] STREET_ADDRESS | |

- (g Packages [POSTAL_CODE

4 Loera g

+) a fCes =

[F] STATE_PROVINCE

E'buad!m \; ool ToY In

- (a) Triggers

&= Chject Jypes AW

= RecydafBin 1 SELECT -~

-G Jobs o dept. DEFARTHMENT NAME, E

[offf Scheduer 3 HR. COUNTRIES . COUNTRY _NAME, i

[} gl Databgse Links 4 enp. FIRST HAME, e— GUEW det

¢ InvabdObjects 5 emp.LAST _HAME, <4

- EH) Session Propefties 6 emp EMATL,
- () DeA views 7 loc. CITY
2 FROM
L] HE OFPARTMFATS dAsmt =
Gl etaks| (g soureview
Drag tables/views

from objects tree

112(260)

Figure: The query builder

Current Limitations

These are the current limitations in the Query Builder:

* Unions and sub queries are not supported.
* Not all join types are supported when joins are expressed as WHERE clause conditions. The Inner join type is supported for all databases,

but the Left and Right types are only supported for databases with proprietary syntax to express these types, e.g., Oracle, SQL Server
and Sybase. The Full type is not supported for any database. If a join type is not supported, the setting in the Join Properties dialog is

silently ignored.
* When importing an SQL query from the SQL Editor, unsupported keywords and statement clauses are ignored. A dialog tells you which

parts of the query are being ignored when unsupported parts are found in the imported statement.

Creating a Query

To create a query, open the query builder using the SQL->Show Query Builder menu choice or click the Query Builder button in the SQL
Commander as described earlier. Make sure that the controls in the top section of the Query Builder are set correctly, as described in Database

Connection, Catalog and Schema.

La Object View D SQL Commander |
P®e 0

Database Connection Sticky Database Schema Mz Rows Max Chars
[Oracle v -8 R ~ w00 | |0 |

Query Builder

Drag tables from the objects tree and drop hete

[t2ping 25 | [sowpa ibs || |

S

Columns | Caonditions I Grouping I Sortng|

Select only unique records (DISTIMCT)

Column/Expression Alias Agaregate Group By

e

Details | |, SQL Preview

Figure: The initial appearance of the query builder

The easiest way to jump between the Query Builder and the SQL Editor is by clicking the vertical control buttons to the right in the SQL Commander.
Clicking these buttons changes the display, but does not copy the query from one display to the other. To copy the current query from the Query
Builder to the SQL Editor, use the toolbar buttons at the top of the Query Builder:

113(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId255438
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId255438

O IEYe
Figure: Query builder toolbar

The first button (from left) replaces the content of the SQL Editor with the query SQL and executes it
The second button replaces the content of the SQL Editor with the query SQL, without executing it
The third button adds the query last in the SQL Editor

The fourth button copies the query to the system clipboard

The fifth button opens the editor properties

aprwbNR

The first three buttons automatically change the display to the SQL Editor.

You can also load a query from the SQL Editor into the Query Builder, as described in detail below.

Adding Tables

To add tables, make sure the database objects tree and the table and/or view objects are visible. Then select and drag nodes from the tree into the
diagram area.

BO P Ew T > Do

[
i
g Enge‘:h':m i Database Connection Sticky Database ————— Schema ———————— Max Rows Max Chars |’g
FacCl - m
& § Schemas [orade v v |8 Hr ~ w00 | | =
= 9 HR (Default) . . —
=[] Tables HR.EMPLOYEES 53 m 44
. @[] COUNTRIES Fel
| -
._,E EMPLOVEES & [C] EMPLOYEE_ID £ [DEPARTMENT_ID =
-[77] J0B_HISTORY FIRST_NAME DEPARTMENT_MAME =
= LAST_MAME MAMAGER_ID -
-] LOCATIONS EMAIL LOCATION_ID
PHOME_MUMBER
&[] REGIONS HIRE_DATE
m Views | JOB_ID
- & Synonyms r SALARY

- £ Indexes

- E:-g Sequences COMMISSION_PCT

MANAGER._ID

Materialized Views

[-{u8 Functions DEPARTMENT_ID

-- Procedures

() Packages

[Package Bodies iAW

- @ Java Sources Columns | Conditions | Grouning | Sorting)

lava Classes

F Triggers Select only unigue records (DISTIMCT)

- 5 Object Types Column/Expression Alias Aggregate Group By AN
- Recyde Bin ! ! |

[+ e Jobs = 7
- - Scheduler

[+l Database Links = = -

m% Trwalid Mhierts o Details | E‘ Sq‘ —

Figure: Adding tables to the query builder

To add a table, drag it from the object tree to the diagram area of the Query Builder. When the table is dropped in the diagram area, it is shown as a
window with the table name as the window title.

Below the title is a text field where an optional table alias can be entered. If a table alias is specified, it is used in the Query Builder and the
generated SQL statement to refer to this table.

Under the table alias field is a list of all table columns. A check box in front of each name is used to select whether the column should be included in
the query result set. Columns selected for the query result set also appear in the Columns and Sorting details tabs.

114(260)

Joining Tables

Manually Joining Tables

To join two tables, select the column in the source table window with the mouse, drag it to the target table column, and drop it.

oy T

1 EMPLOYEE_ID Pl [DEPARTMENT_ID
FIRST_NAME DEPARTMENT_NAME
LAST_NAME / MANAGER_ID
EMAIL LOCATION_ID
PHONE_NUMBER !

HIRE_DATE @
JOB_ID =
SALARY

COMMISSION_PCT
MANAGER_ID

DEPARTMEMT_ID —

%

Columns | Conditions I Grouping I Sortngl

Select only unigue records (DISTINCT)

Column/Expression Alias Agaregate Group By

o>

Figure: Joining two tables

The two columns now represent a join condition, shown in the graph as a link between the columns. If more than one join condition is needed, link
additional columns in the two tables by dragging and dropping the columns in the same way as for the first join condition. The default join type is an
Inner join and the default condition is "equal to" (=), represented as an icon with overlapping circles with the shared area shaded and an equal sign
below them.

Joining Tables Automatically

Some database schemas declare how tables are related using primary and foreign keys. Other schemas use column names to indicate these
relationships. For instance, in the figure above, the EMPLOYEES table has a column named DEPARTMENT _ID, which refers to the column with the
same name in the DEPARTMENTS table. The Query Builder can be configured to use both kinds of rules to automatically join the tables you add to
the query builder.

The auto-join feature is disabled by default. You can enable it in the tool properties for the database type (Tools->Tool Properties, under the

Database tab) or for a specific connection (the Properties tab at the bottom of the Object View window when the connection is selected in the object
tree).

115(260)

[] Tool Properties ——
[} Database

Query Builder Auto-Join Properties

= MyS0L
I[i Netezza i With Autc-loin enabled, columins in a table added to the Query Builder are compared to
- columns in the tables already present. If 2 match is found (either by matching FK/PK
E‘l_ﬂ Oradle declarations or matching column names, depending on the selected auto-join type), the tables
Authentication are joined automatically.
Delimited Identifiers
{27 Qualifiers Auto-Join Enabled:
[_}.D! Physical Connection (@ Match columns by FK/PK dedarations
ﬂ Transaction Auto-Join Type:

“ S0L Statements () Match columns with egual names

¢ ¥ Connection Hooks

- Objects Tree Labels .) »
- [B 50L Editor Generate JOIN Clause in Query Builder

EE Cuery Builder Specifies if joins should be generated as JOIN clauses or a5 conditions in the WHERE clause.

@ Data Types Generate JOIM Clause in Query Builder:
& Explain Plan
_E Objects Tree
+-| & Pervasive

&) e) [o

m

Figure: Query Builder Properties

The Query Builder node lets you enable the auto-join feature and select whether to use key declarations (FK/PK) or column names to find out how
the tables are related.

When you add a new table with auto-join enabled, the Query Builder automatically joins it to the tables already in the builder if table columns match
the selected matching rule.

If columns in the table you add are related to other columns in the same table, the Query Builder creates two windows for the table and joins them

based on the matching rule. In this case, a table alias is also added for one of the windows so that you can tell the two windows for the same table
apart.

Join Properties

A Join Properties dialog can be opened by double-clicking the icon or selecting Join Properties from the right-click menu while the mouse pointer is
over the join icon. The Join Properties dialog shows the source and target table columns and the conditional operator.

You can change the join type and the conditional operator in the Join Properties dialog. The join type defines how the records from the tables should
be combined:

¢ Inner
This is the most common join type as it finds the results in the intersection between the tables.
o Left
This join type limits the results to those in the left table leaving 0 matching records in the right table as NULL.
* Right
This is the same as left join but reversed
e Full

A full join combines the results of both left and right joins.

116(260)

Operator
Table: EMPLOYEES

Column; DEPARTMENT_ID

DEPARTMENTS

DEPARTMENT _ID

Join Type
Ininer @

i) Left @
Orght (P
O Fd @

Figure: Join Properties dialog

If you have multiple join conditions (linked columns) between two tables, you can specify different conditional operators for each join condition, but

the join type is shared between all join conditions; if you change it for one join condition, it is changed for all the other join conditions linking the two
tables. This is not a restriction in the Query Builder but rather how SQL is defined.

Here is the sample SQL generated from the previous join definition:

SELECT
*
FROM
HR.EMPLOYEES
INNER JOIN
HR.DEPARTMENTS
ON

(HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID)

Remove Tables and Joins

A table window is removed by clicking the close icon in the window header. A join is removed by selecting Remove Join in the right-click menu while

the mouse pointer is over the join icon.

(@ Join Properties...
% Remuove Join

Remove All Joins

Remove All Tables

Figure: Diagram right click menu

All tables and joins may be removed via Remove All Joins and Remove All Tables.

Query Details

The Details tabs below the diagram area are used to define the various parts of the query. The tabs basically represent the following parts of the final

SQL:

SELECT <Columns>
FROM <Tables>
WHERE <Conditions>

GROUP BY <Columns>
HAVING <Grouping>
ORDER BY <Sorting>

(The Tables clause is defined in the diagram, not by a tab).

Columns

Use the Columns tab to specify characteristics of the columns that are included in the query. The list is initially empty until a column is checked in a
table window or a column expression is added manually (see below). Columns will appear in the list in the same order as they are checked but may
be moved at any time with the up and down buttons. To include all columns from a table, right-click in the column list in the table window and choose
Select All.

[HREMPLOVEES \Eﬁ m
[EMPLOYEE_ID — | & [C] DEPARTMENT_ID

FIRST_NAME
LAST_NAME / MANAGER_ID
EMAIL LOCATION_ID
PHONE_NUMBER)
HIRE_DATE @
JOB_ID =

SALARY /
COMMISSION_PCT
MAMAGER_ID
DEPARTMENT_ID —

F %

Columns | Conditions I Grouping I Sorhng|

Select only unigue records (DISTINCT)

ColumniExpression . Alias . Agaregate . Group By
EMPLOYEES FIRST_MAME "Férmamn”
EMPLOYEES.LAST_MAME "Efternamn”
EMPLOYEES EMAIL "E-post”
DEPARTMENTS.DEPARTM... |"Avdelning”
EMPLOYEES. SALARY “Lin”

Jkk

HHHHHH

Figure: The Columns tab

The previous screenshot shows a total of 5 checked columns in the two tables. These are presented in the columns list by their full column identifier,
qualified by either the table name or the table alias. To remove a column from the list, uncheck the corresponding column in the table window.

The alias field is used to specify an optional alias identifier for the column. The alias is used as the identifier for the column in the final query and also
appears as the column name in the result set produced by the query. Check the documentation for the actual database to see if the alias must be
quoted since the Query Builder does not do this for you.

The Aggregate and Group by fields are used in combination:

* The Aggregate field lists the available aggregation functions (AVG, COUNT, MAX, MIN, SUM) that may be used for columns
* The Group By field specifies whether the column should be included in the group for which aggregate columns are summarized

The Group By field is disabled unless an aggregate function is selected for at least one column, and once you select an aggregate function for one
column, you must set Group By for at least one of the other columns to form a valid query. If you remove the aggregate function for all

columns, Group By is automatically reset for all columns. Group By and aggregate are also mutually exclusive options for one column, so when you
select one of them, the field for the other is disabled for that column.

A custom expression may be added by entering data in the empty row last in the list, e.g., "col1 + col2" or "TO_CHAR(ts_col, 'DD-MON-YYYY
HH24:MI:SSxFF')". Once entered, press enter to insert a new empty row. You can remove a custom expression by selecting it and clicking the

118(260)

Remove button.

Conditions

The Conditions tab is used to manage the WHERE clause for the query. A WHERE clause may consist of several conditions connected by AND or
OR. The evaluation order for each condition is defined by indentation in the condition list. Each level in the list will be enclosed by brackets in the

final SQL.

Here is an example from the Conditions tab.

,
T e o

emp

dept

[EMPLOYEE_ID —
FIRST_MAME
LAST_MNAME
EMAIL
PHONE_MUMBER
HIRE_DATE @

s

DEPARTMENT_ID
DEPARTMENT_NAME
MANAGER_ID
LOCATION_ID

JOB_ID .
SALARY
COMMISSION_PCT
MANAGER_ID
DEPARTMENT_ID —

F %

Columns | Conditions |G|'|:-L||:ui|‘|g ISortlng|

oF the conditions in this branch must match

----- | 11 |/emp.saLary (=]l> » 4000

=)

él---ofﬂﬂe conditions in this branch must match

[121 |/EPARTMENT NAME [+ || = -l

I

(=]

..... [1.2.2]|IEPAF‘.TMENT_NAME|E][= v”HumanF‘.esnurces |E]

Figure: Condition settings

To create a new WHERE condition, press the indexed button in the list. In the menu that is displayed you may choose to create a new condition on
the same level, a compound condition or delete the current condition.
For compound conditions you may choose whether All (AND), Any (OR), None (NOT OR) or Not All (NOT AND) conditions must be met for its sub

conditions. The SQL for the Conditions tab in the figure is:

WHERE
emp.SALARY > 4000
AND
C
dept.DEPARTMENT_NAME = 'Human Resources'
OR dept.DEPARTMENT_NAME = 'IT'

Next to the input field for each condition, there is a drop down button. When pressed it shows all columns that are available in the tables currently

being in the Query Builder. You can pick columns from the list instead of typing these manually.

119(260)

..... ’ 1.2.2 I|IEPARTMEI\IT_NAME|E[= v”HumanResnurces HE

emp F
DEPARTMENT ID

dept »
DEPARTMENT NAME |
MANAGER_ID
LOCATION_ID

Figure: List of columns in the Conditions tab

Grouping

The Grouping tab is used to define the conditions for the HAVING clause that may follow a GROUP BY clause in an SQL query. This tab is only
enabled when at least one of the columns in the Columns tab is marked as a Group By column.

The HAVING clause is similar to the WHERE clause, except that the HAVING clause limits what rows are included in the groups defined by the
GROUP BY clause, after the WHERE clause has been used to limit the total number of rows to process.

You work with conditions in this tab in the same way as described in the Conditions section, with one exception regarding the drop-down button for
the fields in a condition. In the Grouping tab, the drop-down shows all columns listed in the Columns tab, with an aggregate function expression for
columns that have an aggregate function defined. This is because (according to the SQL specification) the conditions in a HAVING clause must only
refer to columns that are being returned by the query.

Sorting

The sorting tab is used to specify how the final result set will be sorted. All columns for the tables in the graph, plus any custom expressions created
for the selection list in the Columns tab, are listed in the Sorting tab.

| Cok.nnsl Conditions | Grouping | Sorting |
Available Columns Sorted Columns | Descending

dept DEPARTMENT_ID - emp FIRST_NAME

dept DEPARTMENT _NAME emp.LAST_NAME

dept LOCATION_ID

dept MANAGER_ID

emp.COMMISSION_PCT
emp.DEPARTMENT_ID I8

m

Bl

Figure: The Sorting tab

All columns listed in the Columns tab are initially listed in the Available Columns table. Select the ones you want to use in the sorting criteria and
click the Move Right button to move them to the Sorted Columns table.

In the Sorted Columns table, you can change the default sort order (ascending) by clicking the check box in the Descending Order column. You can
remove columns from the sorting criteria by selecting them in the Sorted Columns table and clicking the Move Left button.

SQL Preview

The SQL Preview tab at the bottom of the query builder is used to show a preview of the final SQL. This is a read-only view and cannot be modified.

Testing the Query

To test the query, simply press the appropriate toolbar buttons in the Query Builder to copy the SQL to the SQL Editor. Then execute the SQL as
usual in the SQL Editor.

120(260)

POREO®ISEHED FER/< > ®[ESS

Database Connection I:l Sticky Database ———— Schema ———————— Max Rows Max Chars
[orade . | 8 R > W00 | D |
1 SELECT -
z2 enp. FIRST NAME A8 "Fornamn',
3 enp. LAST NAME AS "Efternamn’™, =
4 enp.EMATL AS "E-post”,
3 dept. DEPARTHMENT NAME AS "awdelning™,
& enp. ALARY AS "Lon™
7 FROM
g HE.EMPLOYEES enp
9 THHER. JOTH HE.DEPARTMENTS dept
10 OH &7
1:1 |ns] |aute commit: on| [untitlea+|

‘ ,g 1: SELECT emp.FIRST_MAME AS "Férn...

RO SR EE=R

Fdrmamn IEﬂemamnl E-post | Avdelning . Lén .
1 |Valli Pataballa VPATABAL IT 4800
2 |Susan Mavris SMAVRIS Human Resources 6500
3 |Diana Lorentz DLOREM... IT 4200
4 |David Austin DAUSTIN 1T 4800
5 |Bruce Ernst BERMST IT G000
6 |Alexander Hunold AHUNOLD IT 9000

Figure: Testing the SQL

To further refine the SQL press the Query Builder button and make the necessary changes.

Loading a Query from the SQL Editor

If you have an existing SQL query that you want to modify using the Query Builder, you can load it from the SQL Editor into the Query Builder by
il

clicking the rightmost button in the SQL Editor toolbar:

It's important to be aware that the Query Builder does not support all features of the SQL SELECT statement, such as comments, UNION, and

database-specific keywords. If you load a query into the Query Builder that contains unsupported constructs or keywords, they are ignored and a

dialog pops up with a warning about this fact. You can then use the SQL Preview tab in the Query Builder to compare the SQL as it is represented in
the Query Builder with the original SQL that you loaded to understand what was ignored.

Properties controlling Query Builder

There are a few properties that control how the Query Builder works and the SQL it generates. You can set these properties for the database type
(Tools->Tool Properties, under the Database tab) or for a specific connection (the Properties tab at the bottom of the Object View window when
the connection is selected in the object tree). Check the following sections for details.

Express joins as JOIN clause or WHERE condition

The Generate JOIN Clause in SQL Builder property is available in the [Database Type]->Query Builder node. Joins can be expressed either via
the standardized SQL JOIN clause or a WHERE clause, using database-specific syntax for the Left and Right join types. The database-specific
WHERE clause syntax is somewhat different between the supported databases and the Full outer join type is not supported. The default for this
property is to use a JOIN clause.

A simple inner join expressed as a JOIN clause:

121(260)

FROM HR.EMPLOYEES
INNER JOIN HR.DEPARTMENTS
ON (HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

Here is the same join expressed as a WHERE condition:

FROM HR.EMPLOYEES, HR.DEPARTMENTS
WHERE HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

The syntax for expressing Inner and Outer joins in WHERE conditions is different between databases. Oracle, for example, uses the "(+)" sequence
to the left or right of the conditional operator to express left or right joins. SQL Server and Sybase use "*=" or "=*" for the same purpose.

DbVisualizer automatically uses the correct join notation when generating joins as WHERE conditions for databases that support left and right joins
using WHERE conditions. For databases that do not provide syntax for left and right joins, the join type is ignored and the WHERE condition that is
generated produces an inner join result.

Table and Column Name qualifiers

Whether to qualify table names with the schema or database name and whether to qualify column names with the table name are defined in the
[Database Type]->Qualifiers node.

Delimited Identifiers

Identifiers that contain mixed case characters or include special characters need to be delimited. Define this in the [Database Type]->Delimited
Identifiers node.

Drag style and Diagram Size

If you enable the editor controls from the Query Builder or SQL Editor toolbar, you can also set the style table windows in the Query Builder diagram
should have when moving them, as well as the default size for newly added table windows.

122(260)

Bookmarks and History

Introduction

When you work with a database, there are often some set of SQL statements that you use over and over to perform frequent tasks. You probably
have them saved in script files that you can load into an SQL Editor, but DbVisualizer Bookmarks make it even easier to work with them. A Bookmark
is a script visible in the Scripts tab in the tree area of the GUI.

Other times you type SQL statements directly in an SQL Editor and execute them. Later you may realize that you need to execute a statement again.
You can then use the History window to locate the statement and reuse it.

In this chapter, you will learn all about how to use Bookmarks and the History.

Bookmarks

You find your Bookmarks under the Scripts tab in the tree area to the left in the main DbVisualizer window. The content of a Bookmark is one or
more SQL statements. It may also be associated with a Connection, a Catalog and a Schema, to be used when executing the statements. This
information is displayed, and can be edited, in the lower part of the Scripts tab, along with information about the file that holds the Bookmark. If you
don't want to see these details, you can disable it with the Show Details toggle control in the right-click menu for a node.

9 Dot] s
eEs/som

LJ Scripts
= 47 Bookmarks
= 5 HR Stuff
(2] Hardware Inventory
|| Create BIO table.sql
|| Emps group by deptsql
B Emps aroup by salary.sql
|| Emps in birthday order.sql
|| Selectfrom BIO.sql
&3 Monitors

= File
Mame Emps group by salary.sql
Comment
Size (bytes) 245
Modified 2009-12-08 14:34:28
Path Z\Users\rogge\myprefs\Bookmarks'\HR ..
Encoding MacRoman

= Database Connection
Connection B CRM Ahoa
Catalog
Schema Q. HR

Figure: The Scripts tab with Bookmarks

123(260)

Creating, Editing and Organizing Bookmarks

You can create a new Bookmark by selecting the Bookmarks node in the tree and clicking the Create File toolbar button. This adds a new node in
the tree, with the default name selected so that you can replace it with the name you want to use. You can also rename the Bookmark later using the
Rename toolbar button with the node selected.

A Bookmark can also be created from the current content in an SQL Editor. Click the Save File As toolbar button to open a file chooser dialog, and
click the Bookmarks button in the file chooser dialog to go to the Bookmarks root directory. Enter a filename for the Bookmark and click Save.

[E Spara @

~

Sparai: | | HR Stuff - O
(T 1. Hardware Inventory Hidden Files:
.sh-} |_| Create BIO table.sql how
Tidigare || Emps group by dept.sgl)
|_| Emps group by salary.sql Goto Directory for:
!I |_| Emps in Birthday order.sq| ’ Bookmarks ” Muonitors l
Skrivbord Encoding:

E‘J 9 cpiz52 -

Mina dokument

Datt;r Filnarnn: |Ern|:|5 group by salary.sql | ’ e]
@ Filformat: [SQL Script (.sgl, ddl) -] Avbryt

Figure: The File Chooser dialog

To put some SQL statements in a new empty Bookmark or to edit the contents of an existing Bookmark, you need to open the Bookmark in an SQL
Editor. If you want to use the SQL Editor you currently have open, you can double-click the Bookmark node in the tree or click the corresponding
toolbar button. If you want to edit the Bookmark in a new editor, use the right-click Open File -> Open in New Editor operation or press Alt and then
double-click. When you are done with your edits, use the Save toolbar button in the SQL Editor to save them.

The default open behaviour when double-click a script file can be configured in Tool Properties->Script category.

You can also add the content of a Bookmark to the current content of an SQL Editor. Select the Bookmark node, drag it with the mouse key
depressed to the position in the editor where you want to add it, and drop it there by releasing the mouse button.

Folders can be used to organize your Bookmarks. Click the Create Folder toolbar button to create a new folder and give it the name you want. You
can then drag an existing Bookmark node to the folder, and create new Bookmarks and subfolders in the folder by selecting it and clicking the
Create File and Create Folder buttons.

The order of the folders and the Bookmarks within a folder is determined by the filesystem and cannot be changed manually.

Executing Bookmarks

With a Bookmark opened in the SQL Editor, you can of course execute its statements by clicking the Execute toolbar buttons as usual, but you can
also open and execute a Bookmark directly by selecting it in the tree and using the Execute File operations in the right-click menu.

124(260)

Open File b

Execute File D | Z& Executein Current Editor
Save As... Ctrl+ Skift+ 5 |ﬁ Execute in New Ei‘tor
Create File

Duplicate File

Create Folder

P EHO08 Y O &Ey FE

Delete Delete

Rename

Reload from Disk Ctrl+R

Expand Tree Objects

Collapse Tree Objects

Show Details

Add to Favorites...

Toggle Monitor Visible State Ctrl+T
______ Select All Ctrl+A
@ Copy Path
@ Copy Selection Ctrl+C
& Find.. Ctrl+F

Figure: The Execute File operations in the right-click menu for a Bookmark

Adding a Bookmark as a Favorite

If you are using a Bookmark very often, you may find it more convenient to add it to the Favorites area. You can drag and drop a Bookmark from the
Scripts tab to the Favorites area, or launch the Favorites editor via the Add to Favorites right-click menu operation.

Sharing Bookmarks

It's easy to share your Bookmarks with someone else because they are stored as regular files. The files are located in a subfolder of the DbVisualizer
user preferences folder named Bookmarks. The user preferences folder is typically a subfolder named .dbvis in your home folder.

The main Bookmark content is stored in a file with exactly the same name as the node in the Scripts tab. The additional data associated with the
Bookmark is stored in a file with the same name plus the .met extension.

To share some of your Bookmarks with someone, we recommend that you use DbVisualizer to create a separate Bookmarks subfolder for the

shared Bookmarks. You can then use any external tool to create a file archive (e.g. a ZIP file) of that subfolder and send it to your friend or colleague.
He or she can then extract the files into the local DbVisualizer user preferences Bookmarks folder.

As you execute SQL statements in the SQL Commander, DbVisualizer saves them as History entries, along with information about the Connection,
Catalog, Schema and the execution result. This makes it easy to locate statements and scripts you have executed in the past.

If you just want to go back and forth between statements you have executed recently, you can use the Get Previous from History and Get Next
from History toolbar buttons in the SQL Editor.

To look through all saved statements, you can display the History entries by clicking the Display SQL History toolbar button in the main window or
select the corresponding operation from the Tools menu.

125(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/favorites/favorites.html

[(© sa History = e]=]

[| i [:
| 3 | Max Entries: 300 Q-
B E@E 5 :

Time SrmplrEQL Slalemen! SIZB fEhrtes} Datahase Type Dalabase Ccmnedmn Elapsm:l Suc:ess Em:Hs Rows
}.200912-1515.18:06 SELECT 1: SELECT 2: 22 Oradle ' Oracle test 0,08 0 €32 04
©2009-12-1516:1529 @export on ; @export set Format 145 Oracle ¥ Oracle test 053 3 @1 o0
=] 2009-12-1516:07.12 select* from HR BIO 20 Oracle W Oracle test 13 1 0 107
\ 2009-12-15 15:54:09 select * from HR.BIO 20 Oracle ﬂ Oracle test ﬂﬂ? 1 0 107
=] 2009-12-15 15:54:05 select * from HR.BIO 2n Oracle ﬂ Oracle test 1 0 107

2009-12-1515:20:37 _ |CREATE TABLE EIO (EMPLOYE. m-anm-'ﬂ
| 2009-12-15 15:20:02 select * from HR.BIO 2n Oracle B Dracl&lesl 107
| 2008-12-15 15:19°56 seledt * from HR BIO 20 Oracle W Oracle test 1,53 1 0 107
L2} 2009-12-15 15:10:23 20 R i
83/9 | 45-57
[L CRERTE -
2 TAHLE EI0 —
i | { |ﬂ
4 ENPLOYEE_ID NUMBER(6) MOT HULL,
5 FIRST_NANE VARCHARZ (20),
& LAST_NAMNE VARCHARZ (25) WOT HULL,
7 EMATL VARCHARZ(Z5) HOT MWULL,
8 P]'[lJME_HLI'I‘EBER WARCHARZ (20) ,
9 HIRE_DATE DATE HOT HULL,
10 JOB_ID VARCHARZ (10) NOT NULL,
11 JALARY NUMEBER([Z,Z),
12 COMMISSION PCT MUMBER(Z,Z),
13 MANAGER_ID WUMBER(:),
14 DEFARTHENT_ID NUMEER(4)
15)&
16 IHSERT -
L L] 3

Flename: 7:\Usersirogge\myprefsHistor y\20091215-152037990.5q0

Figure: The SQL History window

The entries are ordered with the most recently executed entries at the top by default, but you can reorder them by clicking on the column headers.
The complete content of the selected entry is shown below the list, unless you disable it by clicking the Show Details toolbar button or select the
corresponding operation from the right-click menu.

Reusing a History Entry

When you have found the entry you're looking for, you can open it in the current SQL Editor by double-clicking it or clicking the corresponding toolbar
button. If you want to open the entry in a new editor, use the right-click Open File -> Open in New Editor operation.

You can also add the content of an entry to the current content of an SQL Editor. Select the entry in the list, drag it with the mouse key depressed to
the position in the editor where you want to add it, and drop it there by releasing the mouse button.

Saving a History Entry as a Bookmark

If you realize that you need easy access to a History entry in the future, you can save it is as a Bookmark. Just select the entry and use the Save as
Bookmark operation, or just drag it to the Bookmarks tree and drop it.

Quick Load

An alternative to locating Bookmarks in the Scripts tab and History entries in the History window is to use the Quick Load feature, by default bound to
the Ctrl+Alt+0 key combination. It is also available via a toolbar button in the SQL Editor as well as in the main File->Quick File Open menu.

126(260)

cm rmmie erermere s
Search: [J|RecentFiles || Bookmarks (V] History [| Monitors
Enter search text: 5 matches

&m | [] New editor

. Emps group by deptsql (Z:\Users\rogge\myprefs\Bookmarks\HR Stuff)
: Emps group by salary.sgl (7:\Users\roooe\myprefs)Bookmarks\HR Stuff) =

=Y

|=] Emps in birthday order.sgl (Z:\Users\rogge\myprefs\Bookmarks\HR Stuif)

| @ CREATE TABLE BIO (EMPLOYEE_ID NUMBER(6) NOT NULL, (Oracle test)

Figure: Quick Load window

The Quick Load feature locates files with partly matching names from the categories you have selected, as you type. You can use an asterisk ("*") as
a wildcard in the search string.

When you see the file you're looking for, just select it and click Enter to load it into an SQL Editor. Use the New Editor checkbox to decide whether
you want to open it in a new editor or in the current editor, and use the Max field to limit the number of matching files to display in the list.

127(260)

Monitor and Charts

Introduction

With the monitor feature, you can track changes in data over time, viewing the results of one or many SQL statements either as grids or graphs.
Typically, you configure the monitor to run the statements automatically at certain intervals.

The monitoring feature combined with the charting capability in DbVisualizer Personal is really powerful, delivering real time charts of many result
sets simultaneously. For example, you can use monitoring to spot trends in a production database, surveillance, statistics, database metrics, and so
on. At DbVis Software, we have a dedicated workstation that uses the monitoring feature to automatically present live chart information from our

Internet servers and customer database.

Any SQL statement that produces a result set can be monitored, and when you monitor multiple statements, different statements may use different

database connections concurrently.

—
| € hhonten

NG =@ O00ERSO=re

13 Chowe haum (=R] ""'A-Pr;n-m SHE~]
L L IE NN - <R X IEN 5 -HulF. o EE
Close Issues Rajected
i ' g
= | -
| | |
||| | | i || =
|| ! [
[|I | l 111 1|
| \ b b
HHL J | . i 'l || I||I|| ||
p LR W s |
i i S { & fA—it &]
L e I|I ‘) | |I f llll |
Jl A .\I i 1 A | 18 | [\‘ll I|||
. II'\|') 1 -|| i|' r||._: ,J' Il.] 1| III I\\' : |
1 M =S Il.. -._..\.-I
T8 Incudenta Dy B e [-?E‘;I
89 4900 F TEF | e 4920 8 @ I|
Man clased |

incigents/Day

Figure: Monitor window showing result as charts

The chart customization covered in this document is also applicable to the charts for result sets in the SQL Commander (DbVisualizer Personal).

128(260)

Monitored SQL Statements

Monitored SQL statements are managed under the Monitors node in the Scripts tab in the tree area to the left in the main DbVisualizer window. A
monitored SQL statement is associated with information about the target database connection and (optionally) the catalog (the JDBC term which
translates to a database for some databases, like Sybase, MySQL, SQL Server, etc) and schema. It also has a title, a maximum row count (how
many results to keep track of) and a visibility status (whether the monitored statement result should be included in the Monitors windows, discussed
below). This information is displayed, and can be edited, in the lower part of the Scripts tab, along with information about the file that holds the
monitored statement. If you don't want to see these details, you can disable it with the Show Details toggle control in the right-click menu for a node.

r_r-__J Scripts : [E Object \ﬁew| D‘ SQL Commander |
B 59 o

®® PORRG IFSHE D F2D(¢ > B ([EBB[
7 : g
< Scripts Database Connection — [Sticky Database Schems —— Max Rows Max Chars |2
= m
& 47 Bookmarks [MysaL v |[@puedd ~|| 4 - |00 |0 &
= &7 Monitors Wom cor =3
: 2 YEAR (TD'ate) RS YERR E
|'& Closed.sqg 3 MONTH (TDate] #AS MONTH , o
—ﬂ Rejected.sql 4 concat (YEAR (TDate), ' ', DATE_FORMAT (TDate, 'Zh'})) , E
= 5 EUM|Incident=s) RS COUHT -
|'g Mon Closed.sql & FROM =
|| Re-opened.zql 7 BugHousze =
5 GROUP BY =
E YEAR |
10 MOHTH
11 DRDER. BY
=l File 1z YEAR ,
h 13 HMORTH ASC
Mame Incidents.sql
Comment
Size (bytes) 358
Modified 2009-12-16 17:16:36
Path Zilsers\rogge\myprefsiMonitor...
Encoding £ cp12s2
=l Database Connection
Connection B MySQaL
Catalog {8 puredb
Schema
= Monitor
Title Incidents/Day
Visible
Max Row Count 100
13:14 |[INS] [[Zuto Commit: ON|[Enceding: Cpl25Z|Incidents.sglk
. 4

Figure: The Scripts tab with Monitors

The figure above shows the Incidents/Day monitored statement and the SQL that is associated with it.

The following is an example of the result set produces by the statement:

129(260)

[1% Incidents/Day -E|-§

eo4ym > |HEH
YEAR MONTHNUM MONTH | COUNT |

26 | 2004 8 2004 Aug 269 -
27 | 2004 92004 Sep 467
28 | 2004 10 2004 Oct 244
29 | 2004 11 2004 Nov 549
30 | 2004 12 2004 Dec 433

31 | 2005 12005 Jan 443 |=
32 | 2005 2 2005 Feb 837
33 | 2005 3 2005 Mar 593
34 | 2005 42005 Apr 514
35 | 2005 5 2005 May 149
36 | 2005 6 2005 Jun 437
37 | 2005 7 2005 Jul 300
38 | 2005 8 2005 Aug 417

39 | 2005 9 2005 Sep 581 _

0.032/0.000 sec || 83/4 || 26-40 |

Figure: Monitor window showing the result in Grid format

The interesting columns in the result are the Month and Count. The Year and MonthNum are there just to get the correct ascending order of the
result.

Creating, Editing and Organizing Monitored Statements

You can create and work with monitored statements in the same way as with a Bookmark. The main difference is how they are used and a couple of
additional ways monitored statements can be created. For information about how to manually create, manage and share monitored statements,
please see the Bookmarks and History. The following sections describe how you can get help creating the bookmarks for a couple of cases that are
commonly used for monitoring.

Monitor table row count

It is very common to want to keep track of how the number of rows in a table varies over time. The right-click menu in the Data tab grid for a table
therefore has a Create Row Count Monitor operation that creates a monitored statement for you automatically.

It creates a monitor with SQL for returning a single row with the timestamp for when the monitor was executed and the total number of rows in the
table at that time. Every time the monitor is executed, a new row is added to the grid, up to a specified maximum number of rows. When the
maximum row limit is reached, the oldest row is removed when a new row is added. Example:

PollTime RowCount
2003-01-23 12:19:10 43123
2003-01-23 12:11:40 43139
2003-01-23 12:21:10 43143

2003-01-23 12:22:40 43184

Figure: Example of the result from a Table Row Count monitor

The SQL for this monitor uses two variables, DbVis-Date and DbVis-Time. These variables are substituted with the current date and time, formatted

130(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

according to the corresponding Tool Properties settings. The reason for using these variables instead of using SQL functions to retrieve the values is
simply that it is almost impossible to get the values in a database-independent way. Another reason is that we want to see the client machine time
rather than the database server time. You can, of course, modify the SQL any way you see fit, as long as the PollTime and RowCount labels are
not changed.

select '$$DbVis-Date$$ $$DbVis-Time$$' as PollTime,
count(*) as RowCount
from Computers

Figure: Sample of the SQL for the Table Row Count monitor

DbVisualizer keeps the result for previous executions, up to the specified maximum number of rows, so that you can see how the result changes
over time. You define the maximum number of rows in the Max Row Count field in the details area at the bottom of the Scripts tab. This property is
initially set to 100 when you use Create Row Count Monitor to create the monitor.

SEsyon
L] scripts
&7 Bookmarks
= &3 Monitors
P BIO-Row Count.sql

| o Closed.sal

| o Incidents.sql

| & Mon Closed.sql
|| Re-opened.sql
| o Rejected.sql

= File
Mame BIO-Row Count.sgl
Comment
Size (bytes) 23
Modified 2009-12-16 21:58:52
Path ZilJsers\roggeimyprefsiMonitors\BIO-Row Count.sql
Encoding € cp12s2

= Database Connection
Connection [CRM Ahoa

Catalog
Schema 0 HR
= Monitor
Title BIO: Row Count
Visible

Max Row Count 100

Figure: Details area with the Max Row Count field for a monitored statement
You can change the value to limit or extend the number of rows that DbVisualizer should keep. Setting it to 0 or a negative number tells DbVisualizer

to always clear the grid between executions of monitors.

Monitor table row count difference

In addition to tracking the number of rows in a table over time, you may want to see by how many rows the value changes. You can create a monitor
for this purpose with the Create Row Count Diff Monitor operation, available in the right-click menu for the grid in the Data tab.

In addition to the Row Count Monitor, the Row Count Diff Monitor reports the difference between the number of rows in the last two executions:

PollTime RowCount RowCountChange

131(260)

2003-01-23 12:19:10 43123 0

2003-01-23 12:11:40 43139 16

2003-01-23 12:21:10 43143 4

2003-01-23 12:22:40 43184 41

Figure: Example of the result from a Table Row Count Difference monitor

The SQL for this monitor adds a third column, named RowCountChange. It utilizes the fact that DbVisualizer automatically creates variables for the
columns in a monitor result set, holding the values from the previous execution. The RowCountChange column is set to the value returned by the
count(*) aggregate function for the current execution minus the value from the previous execution, held by the RowCount variable. All columns in a

monitor result set can be used like this to reference values from the previous execution of the monitor.

select '$$DbVis-Date$$ $$DbVis-Time$$' as PollTime,
count(*) as RowCount,
count(*) - $$RowCount| |count(*)$$ as RowCountChange
from Computers

Figure: Sample of the SQL for the Table Row Count Difference monitor

Monitor Window

The Monitor window, launched via the Tools->Monitor menu option, is where you active monitors and look at the results. The monitors can be
organized either as tabs or internal windows. The monitor results can be viewed only as grids in DbVisualizer Free, while DbVisualizer Personal adds

the capability to view them as charts or text.

-

@ Monitor (= [=]=]
§|% E|EE@‘.-.‘D. AutoReIoadIntervaI:
| [7] 7: Close Issues | [7] 8: Rejected | [7] 9: Non dosed | [77] 14: Incidents/Day | [7] 15: BIO: Row Count|
RO S5A a |EE=R

YEARIMDNTHNUMI MOMTH .CDUNT.
11 2003 5 2003 May 210 -
12 2003 G 2003 Jun 193
13 2003 72003 Jul 135
14 2003 2 2003 Aug 314 E
15 2003 9 2003 Sep 186
16 2003 10 2003 Oct 395
17 2003 11 2003 Mov 266
18 2003 12 2003 Dec 224
149 2004 12004 Jan 182
20 2004 22004 Feb I
21 2004 3 2004 Mar 437
22 2004 4 2004 Apr 349
23 2004 5 2004 May 235
24 2004 G 2004 Jun 284 v
0.031/0.000 sec | 89/4 || 11-24

Figure: The Monitor window with all monitors organized as tabs

132(260)

The Monitor window has toolbar at the top with an Auto Reload Interval field. The rest of the window holds result areas for each monitored
statement with the Visible attribute enabled. Each individual monitor result tab or window also has a toolbar with controls that apply just to that
result. The screenshot is from DbVisualizer Personal, with View buttons in the toolbar for the selected monitor; these buttons are not included in
DbVisualizer Free.

The main toolbar buttons have the following functions:

Toolbar Button Description
Close Closes the Monitor window
Reload Reloads all results (i.e., executes all monitors and updates the result sets)
Locate Current Locates and select the monitor node in the Scripts tab corresponding to the currently selected result
Clear Current Clears the currently selected result
Clear All Clears all results
Show as Tabs Shows the results as tabs

Show as Windows Shows the results as internal windows

Show Grids Shows all results as grids
Show Graphs Shows all results as graphs
Show Text Shows all results as text

Cascade Windows Arrange the result windows so the overlap each other

Tile Vertically Arrange the result windows side-by-side vertically

Tile Horizontally Arrange the result windows side-by-side horizontally

Start Monitors Starts auto-update of all monitors, repeatedly executing all statements at the intervals specified by the Auto Reload Interval
field
Stop Monitors Stops the auto-update

The Auto Reload Interval field is used to control how often to execute the monitors when auto update is running. Use the field to specify how many
seconds to wait between auto-reloads. The specified number of seconds may be increased automatically by DbVisualizer if the total execution time
for all monitors is longer than the specified value.

Charts

This section is only applicable to DbVisualizer Personal.

Charts in conjunction with the Monitor feature is really powerful, since monitored data is very often a good candidate to be charted. The charting
capability in DbVisualizer Personal is also available in the SQL Commander; everything described here also applies to the grids for the result sets in
the SQL Commander.

The basic setup of a chart is really easy. It is just a matter of selecting one or more columns that should appear as series in the chart. The basic
requirement is that the monitor has been executed, so that there are columns to choose the series from. The appearance of the charts can be
thoroughly customized using the advanced customization editor.

The chart view is controlled by the buttons in toolbar shown in the monitor result area when the graph mode is selected:

133(260)

[Show/Hidecharticontrolspane

'
soi@@mimlaﬁ:

Resetizooming

Figure: Chart control buttons

The following sections explain the features and how to setup the chart.

Chart Controls

The chart controls are used to customize the Data that shall be displayed in the chart, optional axis labels, titles, etc. It is also used to control the
Layout of the chart in terms of chart type, legend type, etc.

Data

Use the controls in the Data tab to customize which data shall appear in the chart.

B0 syR[D P = [

. Data
Incidents/Day | La“’”_t| :
¥-Axis Label: -
2000 r 1
Serie Column Label Type
1600] YEAR Long
[MONTHNUM Lang
1200 S [MONTH String
Eries: COUNT BigDecimal
S0a
400 - -
¥-Axis Title: Rotation: Mone -
i ¥ -Axis Title: Rotation: :None v:

Figure: Data customizer

Select at least one Series from the list of columns. As soon as you select a series, it is immediately added to the graph. The Label field can be used
to specify an optional label for the series as it should appear in a legend. The column name is used if no label is specified.

The X-Axis Label box is used to specify the column in the result that should be used to render the labels of the X-axis. X-Axis Title and Y-Axis Title
specifies the titles for the X and Y axis. You can use the Rotation settings if you want the X and Y axis text rotated.

The title for the monitored statement, as defined in the details area in the Scripts tab, is used as the title for the chart. The script file name is used if
no title has been specified.

Layout

The layout tab is used to configure the appearance of the chart, primarily the type of chart want to use. Note that all settings are per monitor. The
following screen shots show some of the most commonly used chart types.

134(260)

Incidents/Day Incidents/Day
1500

1800

1600 -

1400

1200 JT
1000} » H
] . AT L]

&00
soo}
4004 « gl
prae) ——) . ¥ l
i
Incidents/Day Incidents/Day
1800 1800
1600 1600}
1400 1400}
1200 1200}
1000 1000} -
800 a00} 4 l
00 soo}
4001 soo}
200 200}
0 ok

Figure: Chart type examples

The advanced layout editor can be used to customize every aspect of the layout. The basic layout settings, however, are the following:

Show Symbaols:
Show Paint Labels:
Show Inverted:

30
Chart Type: [Lne v]
Fill Pattern: | Solid -
Legend Type: [R.Egdar vl

ndvanceds.etﬁngs:[Start Editor. ..]

Figure: Layout customizer

Show symbols specifies whether each value in a line chart should be represented by a symbol. Show Inverted defines whether the X and Y axis
will be switched. 3D specifies if a bar chart will be displayed in 3D. The Chart Type lists all the available chart types. Fill Pattern defines how a bar,
area and pie chart shall be filled. Legend Type specifies whether a legend will be displayed or not.

You can use the Advanced Settings editor to customize all the bits and pieces of the chart. This document does not explain all the configurations
that can be done using this editor since that would result in a 100 page book. Play around with the different settings and see how the graph changes.

Settings that are made in the Advanced Editor are not saved between invocations of DbVisualizer.

135(260)

Chart View

Zooming

Charts support zooming by selecting a rectangle in the chart area. Selecting another rectangle in that zoomed area will zoom the chart even further,

and so on. To reset the zoom, click the Reset Zoom button or press the "r" keyboard button while the mouse pointer is in the chart area.

Rotating

All 3D chart types support rotating and changing the depth of the chart. Use the following to change the appearance:

e Shift+Left Mouse button
Changes the depth of the chart

e Ctrl+Left Mouse button
Changes the rotation of the chart

Examples:

Car Suppliers - Sales Per Market 2002

coa
400
300
z0a
100
u} T
- = E 5
1 o el = i
=3 = b] =
b = o [
o =
Car

Car Suppliers - Sales Per Market 2002

=] = = =
o = E 2
o
= - = =
o =
s bl o I
a
o =
Zar

Car Suppliers - Sales Per Market 2002

Lexussaa Yolvo Missanni
Renault Citreaon ViV

Car Suppliers - 5ales Per Market 2002

1000

oo

&00 W rorthameric

400 Oasia
.Euru:upe

200 Osouthamerica

o

Lexuzzaa
Miszanni

i
w
=

Figure: Example of 3D charts

The above screen shots are just a few examples of the 3D chart types and how depth and rotation settings are used to change the appearance.

136(260)

Export

The export operation is context sensitive and works on the currently selected chart, graph or grid. The controls in the export dialog also adapt to the
currently selected object. If a chart is the current object the following export dialog will appear:

-

-

| 8 Export Chart (=]

E‘q Export Chart Settings
Output Format

PG () FNG
Layout

Orientation: Portrait (") Landscape

Size: Asls v

Height:

<Back || Next> | | Cancel

ﬁ

E‘E‘q Export Chart Output Destination

Qutput Destination
File |C:‘|Users‘hans‘|,d13rt.jpg

&

s | [Bom | [o

Figure: Export dialog for charts

The default size of the exported image is the same as it appears on the screen. To change the size, either select a pre-defined paper size in the Size

list or enter a size in pixels.

137(260)

Create and Alter Table

Introduction

The Create Table, Create Index and Alter Table Assistants are used to create new tables and indexes and to alter existing tables. The assistants are
quite simple to use since they examine various metadata in the database (depending on which assistant is used) and then let you point and click to

define the table or index.

The assistants are launched from the Database->Selected Object main menu, from in the Database Objects tree right-click menu, or from the
Actions menu button in the object view. The menu choices are enabled only if a table or index can be created for the selected node in the Database

Objects tree.

Create Table

To create a table, select an appropriate node in the objects tree, typically a Tables node, and launch the Create Table assistant from one of the

menus as described earlier.

Elg Oracle

E}g Schemas
=@ HR (Default)

=

Ij ! I: Create Table...

n

N Q Import Table Data...
Refresh Objects Tree

Reconnect

Show in Window...

Add to Favorites...

Show/Hide Tree Filter

D@V e

Copy Mame

e T s T T Ty e e e e s MO 1 O

Clear Visited State

PEEEEDE0EERERE
el @@LerEd

Show/Hide Table Row Count

F5
Ctrl+5hift+R

Chrl+C

Figure: The right-click menu in the Database Objects tree

The Create Table assistant is organized in three areas from the top:

¢ General Table Info

Specifies the owning database connection, database and/or schema. These are picked up from the selection in the tree when the assistant

is started. Table name is is set to a default name that you can change to the real table name.

¢ Table Details

A number of tabs where you specify information about the columns and, optionally, various constraints. The Columns, Primary Key and
Foreign Key tabs are available for all databases. The remaining tabs are database-specific and depends on the features supported by the

database engine.
e SQL Preview

The SQL previewer instantly shows the SQL statement for creating the table.

138(260)

Obiject Details

M

Database Connection: |Drade

»

m

Database: | - |
Schema: ’HFL v]
Table: [EMPLOYEES |
Storage Area: | - |
Columns | primary Key | Foreign Keys | Unigue Constraints | Check Constraints|
Mame Data Type Size Mullable Default 0
_ EMPLOYEE_ID INTEGER
DEPARTMENT_ID INTEGER (&]
T NAME VARCHAR2 30 A
EMAIL VARCHAR?Z 30
ROOM VARCHAR2 30
SALARY MUMBER 7 2
PHOTO BLOB
[¥] Show 5QL [Execute l [Cancel
ol Previen
[ElEIRE
1 CRERTE
2 TABLE HF.EMPLOYEES
3 [
4 EMPLOYEE ID INTEGER HOT HULL,
5 DEPARTMENT ID INTEGER,
& NAME VARCHARZ (307,
7 EMAIL VARCHARZ |30,
8 ROOM VARCHARZ (30,
a SALARY NUMBER(7,Z),
10 FHOTO BLOE
11 j

Figure: The Create Table assistant

Just enter as much information as is needed to describe the table and click Execute to create the table.

Columns tab

The Columns tab lists all table columns along with their attributes.

139(260)

Columns | primary Key | Foreign Keys | Unigue Constraints | Check Constraints|

Mame Data Type Size Scale Mullable Default
EMPLOYEE_ID INTEGER
DEPARTMENT_ID INTEGER
MAME VARCHARZ 30
EMAIL VARCHARZ 30
ROCM VARCHARZ 30
SALARY NMUMBER T 2
PHOTO BLOB

<J>lee

Figure: The Columns tab (for Oracle)

Add columns by clicking on the Add button, and remove the currently selected column by clicking on the Remove button. You can reorganize the

columns using the Up and Down buttons.

Enter the name of the column in the first field and select a data type from a drop down list in the second field. The list contains the names of all data

types the database supports.

Columns | primary Key | Foreign Keys | Unigue Constraints | Check Constraints|

Mame Data Type Size Scale Mullable Default
INTEGER -

BINARY_DOUBLE &

BINARY _FLOAT 30
BLOB E| 30
CHAR 30
CLOB 7 2

FEEEEED

FLOAT -

INTEGER y

<> e

Figure: Data Type list (for Oracle)

For some data types, such as character types, you may also specify a size, i.e., the maximal length of the value.
you can may specify both a size and a scale (the maximal number of decimals).

(R AL LR LS I P - = lv) [N}
SALARY MNUWMBER i 2
DL T ol No =1l

Figure: Size and scale for a decimal data type

The above example will allow a total length (including the decimal places) of 7. Examples:

1.02

For others, like the decimal types,

140(260)

9871.1
8172.0

12.112 Error!

1921211.11

Error!

The last two fields let you specify if the table is nullable and a default value to use for rows inserted into the table without specifying a value for the

column.

Below the column list, you may see one or two additional fields, depending on the features supported by the database you create the table for. The
fields are enabled when you select a column that they apply to. The Collation field is enabled for character columns if the database supports the
declaration of a collation for textual data. The Auto Increment field is enabled for numeric fields if the database supports automatically inserting the

next available sequence number in a numeric column.

Columns | Primary Key | Foreign Keysl I.ndexes|

a0
T D Y I
30

Mame . Data Type Size

EMPLOYEE_ID INTEGER
DEPARTMEM... INTEGER
MNAME YARCHAR
EMAIL VARCHAR
ROOM YARCHAR
SALARY DECIMAL
PHOTO BLOB

Scale

T 2

Mullable

Default

Collation:

w | Auto Increment: | |

<ol

Figure: Collation and Auto Increment controls

The Create Table assistant uses database metadata to try to enable only the fields that apply to the selected data type, but please note that it is not
always possible. For instance, there is no metadata available to tell if a data type requires, or allows, a size. If you don't enter a required attribute or

enter an attribute that is unsupported for a data type, you will get an error message when you click Execute to create the table.

Primary Key tab

The Primary Key tab contains information about an optional primary key for the table. A primary key is a column, or a combination of columns, that

uniquely identifies a row in a table.

141(260)

Columns | Primary Key | Foreign Keys | Unique Constraints | Check Constraints |

Constraint Name:| |

Column Include N
EMPLOYEE_ID
DEPARTMENT_ID
e (o]
EMAIL
ROOM
SALARY
PHOTO

Figure: Primary Key tab

You can, optionally, enter a constraint name for the primary key constraint in the Constraint Name field. Select the columns to be part of the primary
key by clicking the checkboxes in the Include field in the columns list.

You can change the order of the columns in the key by selecting a column and move it using the Up and Down buttons.

Foreign Keys tab

In the Foreign Keys tab, you can declare one or more foreign keys for the table. A foreign key is a column, or a combination of columns, that refer to
the primary key of another table. Foreign keys are used by the database to enforce integrity, i.e., that there is a row in the referenced table with a
primary key that matches the foreign key value when a new row is inserted or updated, and can optionally declare rules for what to do when a
referenced primary key is removed or updated in the referenced table.

| Columns | Primary Key | Foreign Keys | Unigue Constraints | Check Constraints

Constraints

Constraint Mame Columns 0On Delete Action On Update Action a
FK_DEPT DERPARTMENT_ID

Referenced Table
Database Schema Table
- | [’ ~ | DEPARTMENTS .
Constraint Columns
Column Include Referenced Column aa
EMPLOYEE_ID -
DEPARTMENT_ID DEPARTMENT _ID 3
NAME
EMAIL v

Figure: Foreign Keys tab
The tab has the following sections:

e Alist of foreign keys.
* Controls for selecting the table the currently selected foreign key refers to, including the database (catalog) and/or schema for the table.
¢ Alist of all columns for the table being created.

142(260)

To declare a new foreign key constraint, click the Add button next to the list of foreign keys. You can then enter a name for the foreign key in the first
field in the list, and select On Delete and On Update actions from the pull-down menus. The pull-down lists include all actions that the database
support, typically CASCADE, RESTRICT, NO ACTION and SET NULL. The Columns field is read-only and gets its value automatically when you
select which columns to include in the key later.

Next, use the Referenced Table controls to select the table that the foreign key refers to.
Finally, check the Include checkbox for all columns in the column list that should be part of the foreign key and then select the corresponding column
in the referenced table from the pull-down menu in the Referenced Column field. You can change the column order for the key with the Up and

Down buttons.

To remove an existing foreign key, select it in the list in the top section and click the Remove button.

Unique Constraints tab (database-specific)

The Unique Constraints tab is only available for databases that support this constraint type. A unique constraint declares that the columns in the
constraint must have unique values in the table.

| Columns | Primary Key | Foreign Keys | Unique Constraints | Check Constraints|

Constraints
Constraint Mame Columns 0
1¥_DEPT DEPARTMENT_ID @
Constraint Columns
Column . Include .
EMPLOYEE_ID
DEPARTMENT_ID
NAME
EMAIL
ROOM
SALARY
PHOTO

Figure: Unique Constrains tab

The top portion of the tab holds a list of all unique constraints, and the lower portion holds a list of all table columns.

To create a constraint, click the Add button and optionally enter a constraint name in the Constraint Name field. The Columns field in the constraints
list is read-only, filled automatically as you include columns in the constrain. Select the columns to be part of the constraint by clicking the
checkboxes in the Include field in the columns list.

You can change the order of the columns in the constraint by selecting a column and move it using the Up and Down buttons.

To remove an existing constraint, select it in the list in the top section and click the Remove button.

Check Constraints tab (database-specific)

The Check Constraints tab is only available for databases that support this constraint type. Check constraints declare that a column value fulfills a
certain condition when a row is inserted or updated. Some databases uses check constraints to enforce nullability rules, so when you alter a table
(as described later), you may see auto-generated check constraints for columns that you marked as not allowing null values in the Columns tab.

143(260)

| Columns | Primary Key | Foreign Keys | Unique Cmstrahtg| Check Constraints |

Caonstraint Mame Condition 0

Figure: Check Constrains tab

To create a check constraint, click the Add button and optionally enter a constraint name in the Constraint Name field. Enter the condition for the
column in the Condition field. You can use the same type of conditions as you use in a SELECT WHERE clause.

To remove an existing constraint, select it in the list and click the Remove button.

Indexes tab (MySQL only)

The Indexes tab is only used for the MySQL database, as a replacement for the Unique Constraints tab. The reason is that for MySQL, the CREATE
TABLE statement can be used to declare both unique and non-unique indexes. MySQL also does not make a clear distinction between a unique

constraint (a rule, most often enforced and implemented as an index by the database) and a unique index (primarily a database structure for

speeding up queries, with the side-effect of ensuring unique column values), as most other databases do.

| Columnns I Primary Key I Fareign J(E'I_fsl Indexes |

Constraints

Constraint Mame Columns

X_DEPT

DEPARTMEMT_ID

Unigue

Constraint Columns

Column

EMPLOYEE_ID
MAME

EMAIL

ROOM
SALARY
PHOTO

Include

5 o T =

bl Bp

Figure: Indexes tab

The top portion of the tab holds a list of all indexes, and the lower portion holds a list of all table columns.

To create an index, click the Add button and optionally enter a name in the Constraint Name field. The Columns field in the constraints list is read-
only, filled automatically as you include columns in the constrain. If you want the index columns to have unique values for all rows in the table, click

the checkbox in the Unique field.

144(260)

Select the columns to be part of the index by clicking the checkboxes in the Include field in the columns list. You can change the order of the columns
in the constraint by selecting a column and move it using the Up and Down buttons.

To remove an existing constraint, select it in the list in the top section and click the Remove button.

SQL Preview

The SQL Preview area is updated automatically to match the edits made in the assistant. The preview is read only, but you can copy the SQL to the
SQL Commander and flip between formatted and unformatted views using the two buttons in the toolbar above the preview area.

Execute

When you are satisfied with the table declaration, click the Execute button to create it.

Alter Table

To alter a table, select the table node in the objects tree and launch the Alter Table assistant from the Database->Selected Object main menu, the
Database Objects tree right-click menu, or from the Actions menu button in the object view.

145(260)

M

Object Details
Database Connection: |Drade

Database: | |
Schema: |HR |
Table: [EMPLOYEES |
Storage Area: | - |
Columns | primary Key | Foreign Keys | Unigue Constraints | Check Constraints|
Mame . Data Type . Size . Scale . Mullable . Default 0
_ EMPLOYEE_ID INTEGER
DEPARTMENT_ID INTEGER
iz MAME VARCHARZ 30
EM.:“.JL VARCHARZ 30
\l".ﬁRCHhRZ
‘_-_
F'H'DT'D EIL'DEI
Show 5QL Execute l [Cancel

S0L Preview

ElERE

1 RALTER TABLE
2 HE.EMPLOYEES MODIFY (3ALLRY NUMBER(S,:2))

Figure: The Alter Table assistant

The Alter Table assistant has exactly the same layout as the Create Table assistant, with all information about the table you wish to alter shown when
you launch it. As you make changes, such as adding a column, the SQL Preview area shows the corresponding ALTER TABLE statements. See the
Create Table section for descriptions of all parts of the assistant.

The controls, such as the fields, pull-down menus and buttons, in the assistant are only enabled if the ALTER TABLE statement for the database
holding the table provides a way to alter the corresponding table attribute. For instance, for a database that only allows the size of a VARCHAR
column to be altered, the Size field in the Columns tab is disabled for all columns with other data types. If you find that you can not make the change
you want, it is because the ALTER TABLE statement does not allow that change to be made.

146(260)

Edit Table Data

Introduction

The table data editing feature mimics how editing is performed in standard spreadsheet applications; just click a cell value and edit. Edits are saved
in a single database transaction which ensures that all or no changes are committed. The editing feature supports saving binary and large text data
and it even presents common data formats in their respective viewers, such as image viewer, XML, HEX, etc.

Ablock of data can easily be interchanged via standard copy and paste operations between the grid editor and other applications, such as Microsoft
Excel, StartOffice and OpenOffice.

Editing is primarily performed in the grid editor. For some data, such as binary or large formatted text data, editing in the grid editor is not optimal, so
for these situations, we recommend that you to use the form or cell data editors. The form editor presents a single row of data in a separate window,
organized as a form with the column name in the first column and the data in the second column. All editing capabilities in the grid editor are also
available in the form editor. The cell editor is used to edit a single cell value in a separate window. This is useful when editing formatted text data or
to browse binary data.

Most of the editing functions have a key binding assigned. Check the right-click menu in the data grid to find out what they are.

Features that support editing

Editing of table data can be performed in the Database Objects->Data tab and in a result set generated by a SELECT statement in the SQL
Commander.

There are a few conditions that must be fulfilled for editing to be enabled in the SQL Commander:

Itis a result set

The SQL is a SELECT command

Only one table is referenced in the FROM clause

All current columns exist by name (case sensitive) in the identified table

Pobh2

The editing tool bar is hidden if these rules are not met.

Update and Delete must match one table row

The editing features in DbVisualizer ensure that only one row in the table will be affected by update and delete edits. This prevents the user from
doing changes in one row that might also silently affect data in other rows. DbVisualizer uses the following strategies to determine the uniqueness of
the edited row:

1. Primary Key
2. Unique Index
3. Manually Selected Columns

The Primary Key concept is widely used in databases to uniquely identify the key columns in tables. If the table has a primary key, DbVisualizer will
use it. There are situations when primary keys are not supported by a database or when primary keys are supported but not used. If no primary key
is defined, DbVisualizer will check if there is a unique index. If there are several unique indexes, DbVisualizer will pick one of them. If there is no
primary key or any unique indexes defined for the table, you need to manually choose what columns to use. The key column chooser is automatically
displayed if the key columns can't be determined automatically.

Edit Multiple Rows

The grid editor supports editing multiple rows and saving all changes in one database transaction. Edited rows are indicated with an icon in the row
header:

& Cell(s) in the row has been edited
+ Row is new
% Rowis duplicated from another row

147(260)

¥ Row is marked for deletion (edit is not allowed)

Edits are saved when explicitly saving changes via the Edit Table Data->Save Edit(s) right click menu choice or via the Save button in the tool bar.

Data Type checking

When leaving an edited cell the new value is validated with the data type for the column. If there is an error, the following dialog is displayed.

HIRE_DATE 4 EMPLOYEE_ID FIRST_NAME LAST_MAME EM

1 |1991-05-21 00:00:00 104 Bruce Ernst BERN
2 |1998-02-05 00:00:00 106 Valli Pataballa VPAT#
3¢ [1093-02-03a | 102 Lex De Haan LDEH.

19874 Error Alert @

|: ﬁ\) The entered value doesn't match the format for the column.
1994+ Kat
41994-| Value: "1993-02-03a00:00:00"
Valid Timestamp/Datetime Format: yyyy-MM-dd HH:mm:ss

9 1994
10 |19944 Correct the value or press ESC key to revert the edit.
11 |1989+
13 19974
44 AAAA MM AT AA-OAA-An AATIMG | v =YY

Figure: Data type error

New Line and Carriage Return

If a cell in the grid editor or form editor contains new line, carriage return or tab characters, these are not visually represented in the grid. Instead a

warning will be displayed whenever you try to edit such value:

0:00:00 102 ML R D e Haan LDEHAAN 515.123.4569 AD_VP
0:00:00 198 Donald OConnell DOCOM... 650.507.9833 SH_CL
X Confirmation Alert @

e The data in this cell contains formatting characters (newline, carriage return or tab).
W' Itis not recommended to edit this data in the inline editor as it automatically removes any

farmatting characters. Instead you should use the designated multilined Cell Editor.

|Editin Cell Editor | | Edit Anyway | | Cancel

Figure: Warning when editing a value containing a carriage return, line feed and tab characters

You may chose to edit the value in the Cell Editor, which we recommend, as the control characters will then be preserved. The other choice is to

edit the value anyway and risk loosing the control characters. This is not recommended.

The Cell Editor is a designated multi-line text editor suitable for editing large chunks of text:

148(260)

.

| 8 Cell Form (Editable) - "FIRST_NAME" [==]

9E PR =D

Use Wrapped Editor (automatic word wrap)

1l Lex
2 bdvisor

FIRST_MAME VARCHARZ (20)
Allowe MULL
Text, 11 Bytes, text/plain

Figure: Editing multi lined text data in the cell editor

Grid Editor

The grid editor tool bar is decorated with buttons for editing and the right-click menu contains all related operations.

|Edit{Row/lin|Form
|DElEte) |Edit{€elllin|Form
Dupllcate InsertiValue
Insenty MakejasiEhanged
Save.|Edrt(5) Unded:ts
%0|@E|?v EICA . Ea|f!'-
HIRE_DATE a@' EMF‘LDYEE_IDIFIRST_NAMEILAST_
1 1891-05-21 00:00:00 104 Bruce Ernst
1998-02-05 00:00:00 106 Valli Patah
a2 4007 N4 49 nn-nn-nn ANl mvidhsicnr Ma U
|Boublezclickirow/headeritojopen)row/iniForm

Figure: Toolbar buttons to control the grid editor

Cells that have been edited are indicated by a yellow background color. Only these columns will be updated when the changes are saved in the
database. All cells in the edited row are highlighted with a yellow border to indicate that some cell(s) in the row has been edited.

Insert row

To insert a new row, choose the Edit Table Data->Insert New Row right-click menu choice or press the Insert toolbar button. The new row will be
inserted after the selected row or at the top if no row is selected. You can now start editing the cells in the grid or open the form editor to insert

values.

149(260)

Update row

To update a row, just double-click in the target cell and modify the value.

Delete row(s)

One or multiple selected rows are marked for deletion via the Edit Table Data->Delete Row(s) right-click menu choice or by pressing the Delete
toolbar button. Each deleted row will be highlighted with a red background color and no further editing of the content is allowed.

Deleting a row that has been updated will automatically undo all edits and show the original values. This is done so that it is obvious which data will
be deleted. Deleting a row that has been inserted (or via duplication) will be removed from the grid.

Duplicate row(s)

Duplicate a row or several rows by selecting the cells in the rows that should be duplicated, then choose Edit Table Data->Duplicate Row(s) or
press the Duplicate tool bar button. All cells in the new row will be marked as being edited (yellow background color). The exception is any Auto
Increment field, which should be assigned a value by the database.

Copy/Paste

Copying selected cell values is accomplished via the Copy Selection right-click menu choice. The data on the clipboard may then be pasted either
into DbVisualizer or any external application. The copy and paste operations in the grid editor are defined by the Grid->Copy category in Tool
Properties. The default setting for column and newline delimiters are sufficient for most uses.

Paste data from Excel and OpenOffice
The grid editor supports pasting data from the major spreadsheet applications. The grid editor support pasting single data as well as block of data.

Copy from Excel Paste into DbVisualizer Grid

The selected cell is pasted into one selected target cell
A single cell is copied in Excel

4 EMPLOYEE_ID |FIRST_MAME LAST_MAME

Al B | €] D

1| 98/ Roger Wruck jsewell@hotmail co L 104 Elrupe Emst E
2 104 Stesve Heer gertveters@hotmail e 106/vail _ Pataballa__ 1Y
Z 105 Marc Meller mintegeni@hotmail. 3 102|LexAdvisor De Haan L
4 | 102 Bernhardg}{esaler _!brian@yahnn_cnm 47 198 Donald Kessler [
5 1193 Luci Y oung stephen@osp edu 2 200 Jennifer Whalen d
6 185 Robert | Austad kathleen@hbto.com B 202 Pat Fay F
7 | 183 Pawan |Yucel michael@ware.de = I 203 Susan Mavris £
8 | 181 Hong Graff mail1235@yahoo.de = 8 204 Hermann Baer H
9 174 Rick Stewart jay@tuny.com g 9 205 Shelley Higgins g
10 [171 Michael |Palm mike@gmail com 10 206 William Gietz v

11 [154 Peter Pullabhotla [dsimmonsi@at 123 11 101 Meena Kochhar I
A single cell is copied in Excel The selected cell is pasted into multi selected target cells

150(260)

A B C D
1| 98/ Roger Wruck jsewell@hotmail co
2 104 Steeve |Heer gertveters@hotmail.
3 105 Marc Meller mintegen@hotmail.
ﬂ 102 Eiernhardgl{essler _!hrian@yahnn.cm‘n
5 193 Luci Young stepheni@osp edu
6 | 185 Robert |Austad kathleen@bto com
7 1183 Pawan |Yucel michael@ware. de
8 | 1581 Hong Graff mail1235@yahoo.d
9 174 Rick Stewart jay@tury.com
10 | 171 Michael |Palm mike@gmail.com
111154 Peter FPullabhotla ' dsimmonsi@at 123

A block of cells is copied from Excel

D
jsewell@hotmail co

gertveters@hotmail.

mintegen@hotmail.
brian@yahoo. com
stepheni@osp.edu
kathleen@bto com

A block of cells copied from Excel

A B | c |
1| 98/ Roger Wruck
2 | 104 Steeve Heer
3 | 105Marc Meller
4 (102 Bemhard Kessler
5 | 193] Luci Young
6 | 135|Robet Austad
7 [183 Pawan |Yucel
8 | 181 Heong Graff
9 1174 Rick Stewart
10 1 171 Michasl Palm
111154 Peater

michael@ware. de
mail1235@yahoo.d
jay@tury com
mike@gmail com

|Pullabhotla [dsimmons@@at 1230

A B | C D
1| 98/ Roger Wruck jsewell@hotmail co
2 104 Steeve |Heer gertveters@hotmail.
3 | 105)Marc Meller mintegen@hotmail.
4 | 102{Bemhard Kessler brian@yahoo.com
5 | 193]Luci Young stepheni@osp edu
6 | 155 |FRobert Austad kathleen@bto com
7 1183 Pawan |Yucel michael@ware. de
8 | 1581 Hong Graff mail1235@yahoo.d
9 174 Rick Stewart jay@tury com
10 | 171 Michael Palm mike@gmail com
11 1154 Peter Fullabhotla ' dsimmonsi@at123.i

Voo

Voo

¢ EMPLOYEE_ID FIRST_NAME LAST_NAME

1 104 Bruce Ernst E
2 106 Valli Pataballa W

3 102 LexAdvisor De Haan L
4 7 192 Donald O
5 &7 200 Jennifer Kessler
[V 202 Pat F
i 203 Susan Kessler g
87 204 Hermann Kessler

9 205 Shelley Higains g
10 206 William Gietz v
11 101 Meena Kachhar I\

The block is pasted into the selected region

& EMPLOYEE_ID |FIRST_MAME LAST_NAME
1 104 Bruce Ernst E
2 106 Valli Pataballa
3 102 LexAdvisor De Haan L
47 198 fetier [
57 ElBernhard _ [Kessler M
67 Edluci fvoung [l
77 EEIRobert Jaustad G
8 204 Hermann Baer y
9 205 Shelley Higgins 3
10 206 William Gietz \
11 101 Meena Kochhar r
The block is pasted into a non equal number of target cells
4 EMPLOYEE_ID FIRST_MNAME LAST_NAME ~ EMAIL PHONE_NL
1 104 Bruce Ernst BERMNST 590.423.456
2 106 Valli Pataballa VPATABAL 590423.456
3 102 [EEEGLNEL S De Haan LDEHAAM 515.123.456
4 al:i i Donald OConnell DOCONMEL 650.507.983:
q Netification Alert (=] l:
=

You have requested to paste 4 rows into the selection of 2 target raws.

[Add Rows J [Don'tﬁ\dd Rows] [Cancel l

Do you want to Add Rows in the grid so that all rows in the dipboard are pasted?

Insert pre-defined values (Set Selected Cells)

The Edit Table Data->Set Selected Cells right-click menu choice or the Set Selected Cells tool bar button lists a few pre-defined functions that will

fill the selected cells with data.

151(260)

m -

|

:| Insert Current Date (yyyy-MM-dd) |_

Inzert Current Time (HH:mm:ss)

Insert Current Tirmestamp (yyyy-MM-dd HH:mim:ss)
Set to Empty String
Sette MULL " {null} "

k

[R s TR e Y s TR o]

Figure: Set Selected cells functions

Use these to insert data into the selected cells. Note that the target column type must accept the selected value type; nothing will happen if if you
choose, for example, "Insert Current Time" for a DATE data type cell.

Undo Edit(s)

The Edit Table Data->Undo Edit(s) operation is used to revert all edits in the selected cell(s). Reverting all cells in a row that are marked as Insert
or Duplicate will remove the complete row from the grid while a Delete marked row is cleared from its delete state. Undoing updated cells simply
reverts the changes to the original values.

Key Column(s) Chooser

Normally database tables have a primary key or at least one unique index. If this is the case, editing is no problem. If there is no way to uniquely
identify rows in the table, you need to manually define what columns DbVisualizer should use. While saving the changes DbVisualizer will check that

there is a way to identify unique rows in the table. If it cannot be accomplished, the following window is displayed.

EMPLOYEE_ID FIRST_MAME LAST_MAME EMAIL PHOM

1 104 Bruce Ernst BERMNST 590423
2 106 Yalli Pataballa VPATABAL 590423
3 102 Lex De Haan LOEHAAN 515123
4 [- 7
5 |8 Key Column(s) Chooser @ I3
G Select the column(s) that will be used to form the where dause for 13
7 update and delete edits. This is used by DbVisualizer to ensure that only 12
5 one row in the target database table will be affected by each edited row. I

(If there is a primary key or unigue index for the table then the Key

g Column is automatically set). 2
10 13
11 Key Column Column Mame Data Type I3
12 EMPLOYEE_ID MUMBER - I3
13 0o FIRST_MAME VARCHARZ @ I3
14 0o LAST_MAME VARCHARZ I3
15 0o EMAIL VARCHARZ 4
16 [T PHOME MUMBER VARCHARZ i 4
17 Close 4
1a 4
14 T 4

Figure: Key Column(s) Chooser

The key column chooser can be manually opened via the Edit Table Data->Key Column Chooser right-click menu choice.

If the database request to save the edits cannot uniquely identify the single row that should be changed, the error dialog is displayed and the editing
state is kept for that row in the grid editor.

152(260)

Preview Changes

You may preview the SQL statements that will be executed when choosing to Save the edits. It is displayed via the Edit Table Data->SQL Preview
right-click menu choice.

37 102 Lex De Haan LDEHAAM 515.123.4569 1993-01-13 00:00:00 AD_VP
47 198 Ronald OConnell DOCOMMEL 650.507.9833 1999-06-21 00:00:00 SH_CLERK
3 200 Jennifer Whalen JWHALEM 515.123.4444 1987-09-17 00:00:00 AD_ASST
6 X Pat ___JFay __JPFAY __|5031236666 [1997-08-1700:00:00 [MK REP |
i 45 Pat Benatar patbenatar MNIA 2009-12-16 16:18:42 (null}
g8 203 Susan IMavris SMAVRIS 515.123.7777¢ 1994-06-07 00:00:00 HR_REF

9 X HBAER 515.123.8888 1994-06-07 00:00:00 |PR_REP]
10)

11 [E SQL Preview @

4 Thisis a preview of the SQL that will be executed when the table data edit(s) are saved.

14 1 update "HE"."EIO0" set "FIRST NAME™ = 'Lex' where "EMPLOYEE _ID" = 102;
1F 2 update "HE"."EIO" set "FIRST HNAME™ 'Fonald' where "EMPLOYEE _ID™ = 1595:
3 delete from "HR"."BIN" where "EMPLOYEE_ID" = Z02:

16

17 4 insert into "HR"."BIO™ ("EMFLOYEE ID", "FIR3T NAME"™, "LAST NAME"™, "EMAIL™, "PHONE NUMEER™, "HIERE
1 5 delete from "HE"."EI0” where "EMFLOYEE ID" = Z04

18 4| 1 | 3

[*T]
.
a)
e 1T

Figure: SQL Preview

(The listed SQL statements may not be 100% compliant as the save process use variable binding to pass values to the database).

Saving Changes

To save table data edits, select the Edit Table Data->Save Edit(s) right-click menu choice or click the Save toolbar button. If there are rows that
have been edited or deleted, these are first checked so that there is only one database table row affected by each edited row. If this pass is
successful, DbVisualizer will save the changes in the table. The progress is displayed in the status bar and Save may be interrupted by pressing the
Stop button in the toolbar. While save is in progress, no other operation may be performed in DbVisualizer, i.e., the rest of the application is locked.

Transaction Control

DbVisualizer use the physical root connection for the actual database connection when saving table data. Once save is requested, DbVisualizer will
implicitly set the auto commit state to off and reset it to what it was prior to requesting save when saving is completed. If the Use Single Shared
Physical Database Connection is enabled in connection properties, DbVisualizer will check whether there are any uncommitted updates in the
database when save is requested. If there are uncommitted changes you must first commit or rollback these changes before save is started.

Saving table data edits are batched in a single transaction. There is no DbVisualizer restriction on the number of edits that may be saved in a single
save operation, but the database server may put either explicit or implicit restrictions. The connection property Physical Connection->Transaction-
>Commit Batch Size specifies how many edits should be performed in the database table until commit is automatically initiated. If you, for example,
are saving 150 edited rows and an error occurs while saving the 121:st row, then the first 100 rows will have been committed and the rest are left
unchanged. The visual indication in the grid after a incomplete save operation is that rows that weren't saved keep their original editing state
indicator. Rows that were saved properly are indicated with a green checked cylinder icon.

153(260)

£ EMPLOYEE_ID |FIRST_MAME LAST_NAME ~ EMAIL PHONE_NUMBER | HIRE_DATE

1| ﬂ 104 Bruce1 Ernst BERMNST 590.423 4568 1991-05-21 00:00:0(
2| ﬂ 106 Valli1 Fataballa VPATABAL 590.423.4560 18993-02-05 00:00:0(
3l E 102 Lexe De Haan LDEHAAN 515.123.4569 1993-01-13 00:00:0(
4 4 102 Lexe De Haan LDEHAAN 515.123.4569 1993-01-13 00:00:0(
5 . 102 Lexe De Haan LDEHAAN 515.123.4569 1993-01-13 00:00:0(
6 e 102 Lexe De Haan LDEHAAN 515.123.4569 1993-01-13 00:00:0(
7 & 102 Lexe De Haan LDEHAAN 515.123.4569 1993-01-13 00:00:0(
8l ﬂ 1938 Donaldt OConnell DOCOMMEL 650.507.9333 1999-06-21 00:00:0(
9 200 Jennifer Whalen JWHALEM 515.123.4444 1987-09-17 00:00:0(
10 200 Jennifer Whalen JWHALEM 515.123.4444 1987-09-17 00:00:0(
11 202 Pat Fay PFAY 603.123.6666 1997-08-17 00:00:0(
12 203 Susan lMavris SMAVRIS 515123.7777 1994-06-07 00:00:0C
13 204 Hermann Baear HBAER §15.123.58888 1994-06-07 00:00:0¢

Figure: Saved rows state

The cylinder icon with the green check mark indicates that the row was saved in the database table. Normally the grid is reloaded after a successful
save operation and there is no cylinder icon displayed. It only appears if the save operation was partly successful. Rows that weren't saved are still
represented with the original editing state icon and you may request save one more time.

Rows that have been properly saved (indicated with the cylinder icon) cannot be edited until all rows are saved properly or the grid is reloaded.

Permissions

All of the insert, update and delete requests performed by the grid editor may require confirmation before being executed by the database server.
Specify in Tool Properties->Permissions which operations should require confirmation. The default behavior is that delete operations must be
confirmed while insert and update need no confirmation.

Errors

If a database error occurs while saving changes, details about the errors are displayed in a window along with the actual SQL that was executed.

Form Editor/Viewer

The Form Viewer is available in the right-click menu (Browse Row in Form) for all grids in DbVisualizer. It is used to browse information and to
present binary data in viewers.

The Form Editor adds editing capability to the form viewer. This editor is useful when inserting new rows and when it is important to get a more
balanced overview of all the data.

The form editor "rotate" the data in one row and presents it as a vertical form with the column name as a label. All edits made in the form editor are
reflected in the grid with the edited state icon being updated along with new values. Saving edits in the database is always done with the Save
Edit(s) control in the original grid editor.

Open the form editor via the Edit Row in Form right-click menu choice, via the button in the toolbar or by double-clicking the row number header.

4 EMPLOYEE_ID |FIRST_MAME LAST_NMNAME EMAIL ~ PHONE_NUMBER PHOTO

1 104 Bruce Ernst BERMST 5890.423.4568 (nully

2 106 Valli FPataballa VPATABAL 590.423.4560 (nully

2 102 Lexe De Haan LDEHAAN 515.123.4569 * BIMNARY, 5 888 Bytes
4 98
= 200 Jennifer Whalen JWHALEM 515.123.4444 (nully

] 202 Pat Fay PEAY 603.123.6666 (nully

I 203 Susan Mavris SMAVRIS 515.123.7777 * BIMARY, B 620 Bytes
g 204 Hermann Baer HBAER 515.123.58388 * BIMARY, & 719 Bytes
a 2NE Shallaw Hinnin SHIRRINS B4E 427 8nan Rl

154(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498

Figure: A row in the grid

Here is the same row as selected in the previous screen shot displayed in the row form window.

| 8 Row Form (Editable) [=]

SEPE» e -8 o
Keyl Mame . Value
£ EMPLOYEE_ID 198

FIRST_NAME Donald

LAST_MAME oConnell

EMAIL DOCONNEL

PHONE_NUMBER 650.507.9833

HIRE_DATE 1999-06-21 00:00:00

JOB_ID SH_CLERK

SALARY 2600

COMMISSION_PCT (null)

MANAGER_ID 124

DEPARTMENT_ID 50

PHOTO

BIMNARY, 10 630 Bytes, imageiqgif
RESUME {rull}

Figure: Form viewer

The Key field optionally contains an icon for primary key columns and the Name field corresponds to the column name in the grid. None of Key or
the Name fields can be edited. You can edit the values in the form in the same way as you edit values in the grid editor.

The form viewer presents images as thumbnails. The size of these is controlled in Tool Properties->Form Viewer->Image Thumbnail Size. To see

the original size of an image, open the cell in the cell viewer either by selecting Edit in Cell Window in the right-click menu, the toolbar button or by
double-clicking on the image.

Cell Editor/Viewer

The Cell Viewer is available in the right-click menu for all grids in DbVisualizer. It presents the data for a single cell (column in a row) in a window. If
the data is of a recognized type, it is presented by a corresponding viewer:

* Image viewer

* XML viewer

* Serialized Java object viewer
* Hex viewer

e Text viewer

The cell viewer allows saving data to a file and to print it.

The Cell Editor adds editing capability to the cell viewer. You may import data from a file or manually change the text in a text editor.

155(260)

Opening an image in the cell editor will display the following window.

F -

| 8| Cell Form (Editable) - "PHOTO" <l

SE|F R D2

Image Viewer | Hex Viewer

PHOTO BLOB
Allow MULL
BIMARY, 906 119 Bytes, image/png, size: 634697

Figure: Cell editor

The tabs at the top shows the available viewers for the current data. When you load a file into the cell editor, the tabs may change to reflect the
newly loaded data. To nullify the cell value, press the Set Value to NULL toolbar button.

Read more about binary and formatted text data in the following chapters.

Binary/BLOB

Due to the nature of binary/BLOB and CLOB data, cells of these types can only be fully modified and viewed in the cell editor. (There is partial
support in the form editor to view image data and to load from file). Editing binary data can be done by importing from a file or via the text editor.

Binary data in DbVisualizer is the generic term for several common binary database types:

* LONGVARBINARY
* BINARY
* VARBINARY

156(260)

» BLOB

Image Viewers

The image viewer supports displaying the full size images for the following formats:

e GIF

. JPG

« PNG

. TIFF

« BMP
XML Viewer

The XML Viewer shows the content of an XML document in a tree with color highlighting. You can switch to an editable text view by pressing the Edit

value in text editor toolbar button.

.

| 8 Cell Form (Editable) - "RESUME"

YR ™D
XML Viewer

2]

b Document
B~ | <apichanges >

= | <apidefs»
= | <apidef name ="editor”>
L. # Editor API

= <changes =

= | <change id ="deprecating-settings">

- # <api name ="editor"=

[+ | <SUMMaEry =

- 4 gyersion major ="1" minor ="41"»

- ¢ <date day ="4"month ="6" year ="2008">
- 4 <author login ="vstejskal "=

- | <description

- 4 <issue number ="90403">

(= |; <change id ="NbBaseDocument-+itClass-deprecations™>
- M <api name ="editor™=

[H- | <sUmmary >

- M gyersion major ="1" minor ="40"

- 4 <date day ="26"month ="5" year ="2008">

- # <author login ="vstejskal ">

- | <description

- 4 <igsue number ="114747">

(= |; =change id ="editor. actions. from. folder™>

- M <api name ="editor™=

[+ [<summary >

- 4 gyersion major ="1" minor ="39"

- % <date day ="21"month ="5" year ="2008">
- 4 <author login ="vstejskal "=

« | n |

- 4 <compatibility binary ="compatible™ source ="incompatible”™ semantic ="incompatible” addi

- 4 <compatibility binary ="compatible™ source ="compatible” semantic ="compatble”™ additior

m

RESUME CLOB (4000)
Allow NULL
CLOB, 22 490 Bytes, text/xml

-

Figure: XML viewer

157(260)

Serialized Java Objects Viewer

The serialized Java object viewer renders a java object in a tree style. All aspects about the object may be browsed.

.

| & Cell Form (Editable) - "PHOTO"

Y|P R(»DE

=]

Java Object Viewer | Hex Viewer

5| COLOR_REMDERING
java.lang.Long

EH &3 java.lang.Long

e O long value 0

L java.lang. Mumber
AMTIALIASIMNG
java.lang.Long
FRACTIOMAL_METRICS
java.lang.Long
BACKGROUMND_REGEM
java.lang.Boolean
SELECTED_COLOR
java.awt. Color
HILITE_COLOR
java.awt. Color
TEXT _ANTIALIASING
java.lang.Long
STROKE_CONTR.OL
java.lang.Long
MATIVE_LOOKFEEL
java.lang.Boolean
CENTER_ON_SCROLL_WHEEL
java.lang.Boolean
BACKGROUND _COLOR.
- java.awt. Color

=} =3 java.awt.Color
O float falpha 0.0
0O intvalue -1
O java.awt.color.CalorSpace cs null
- O float]] frgbvalue nul

‘e D float(] fvalue null

—_

m

PHOTO EBLOB
Allowe MULL

BIMARY, 3 350 Bytes, application/x-java-serialized-ohject

-

Figure: Binary data viewer for serialized Java objects

Hex Viewer

The generic Hex/ASCII viewer shows the hexadecimal representation of every byte in the data and its text representation. This is the default viewer

for unknown data.

158(260)

.

| & Cell Form (Editable) - "PHOTO"

I PR > D
Hex'ﬂewer

00000000: 30 50 4E 47 0D OR 1& 0B -
00000001: OO0 00 02 7R 00 00 02 B9 -
00000002: 16 00 00 14 FD 69 43 43 -
00000003: &6 &9 &C 65 00 00 78 01 -
00000004: DD 13 22 15 74 CE 3% E7 -
00000005: 4B 19 24 22 12 24 11 50 -
00000006: 1A 08 22 OR 48 10 01 41 -
00000007: 18 20 BT D1 F2 BB B7 3E -
0000000&: E9 55 FB EC D9 E7 4C EF -
00000009: BE 26 1E 04 CO 00 AC CO -
0000000&: 7B 07 2E DC 28 20 02 &6 -
0000000B: A2 &9 61 61 1 BE FC 14 -
0000000C: 7B Bl FE 3% D3 7F 33 53 -
0000000D: 74 3E BF Bl E7 1E 76 FF -
0000000E: C4 E7 CC 1E F& FO 75 43 -
0000000F: 6A 23 BE OF 00 3C C% E7 -
00000010: F5 CC 1E 7& 73 OB F5 01 -
00000011: 92 &0 16 BRA DF D& 7D OF -
00o0000l2: OB B2 07 2C 4D FD AT 5F -
00000013: 26 79 00 20 50 20 F8 BE -
00000014: FO B7 CO CO &0 &4 5E 70 -
00000015: 26 D8 10 CC BT 77 EF FD -
00000016: A0 14 FF Be BS C& 00 DO -
00000017: 09 00 FD FD 3D 3F E4 FD -
0000001&: 06 C2 BC 65 &5 TE 26 92 -
00000019: 08 00 &C CB 02 &0 ET7 FC -

a0
08
50
ED
33
41
45
D5

40
a0
Bl
21
FD
Ea&
17
AC
4B
10
78
15
2B
EB
B7
48

ule}
0a
43
SA
04
10
04
FD
3k
FO
03

22
A3
2l
26
F3
ED
62
20
Cl
32
1E
[
5L

a0
a0
43
a7
ca
1D
14
F5

50
21
1z
1))
Fé
22
1B
1B
El
42
79
42
c2
FC
C5
a0
56

oD
a0
43
50
39
40
25
DE
F&
4B
40
40
0z
FO
04
D3
EzZ
43
D&
04
1E
FD
a5
Fz
a0
]

43
jul}
20
14
45
13
4n
BF
Sh
D
Ez
7B
aa
Dl
339
C3
CF
oF
Ccao
0z
21
58
C5
D7
DE

43
28
50
DD
15
14
30
E7
a0
2D
Es&
53
59
FO
26

E5
1F
AR
20
41
2R
7F
FD
EF

44
D&
72
Bé&
24
a5
R0
A3
08
ZE
11
92
20
FD
5R
BF
E&
24
7B
Ca
ca
ca
LB
1E

4E

52
az
aF
3D
39
435
44
a6l
[
3B
la
E2
0E
70
5B
30
Es
3E
TR
48
aF

78
13

file..X..29F...=
wesela®....91.59

e Y T - -3
we-,M.. .BB...{z
.¥. P...x.¥.. .F

wree d*P..B.l..0
..... We.t2. . H¥..
............. WX
T
weaBB~, JHEL T
..... T Vel W)

PHOTO BLOB
Allowe MIULL
BIMARY, 906 119 Bytes, image/png, size: 634697

Figure: Hex/ASCII viewer

Large text data/CLOB

Large text data and CLOB data types are typically edited in the multi line text editor. For formatted data (that includes new lines), the default editor is
useful. If editing a large chunk of non-formatted data, enable the Use Wrapped Editor setting and DbVisualizer will then automatically wrap the text

for easy editing.

159(260)

.

| g Cell Form (Editable) - "RESUME"

S|P > DR

[] Use Wrapped Editor (automatic word wrap)

1 DENTAL A33T3TANT

Offering the following select gqualifications:

Prowide compassionate care to patients and educate in post-procedure care.
fkilled in taking impressions, bite registrations and fabricate models.
Maintain the highest degree of patient confidence.
Ensure compliance with 0%HA and M3D3 quidelines.
10 prowvide personal oral care instructions.
11 Deliwver community dental health presentations and manage health fair booths.
12 PROFESSIONAL EXPERIENCE
13

&
3
4
5 Experienced in dental procedures for oral examination and routine restoration.
[
7
g
a

14 Compaty, Town, XX Date - Preszent

15 Dental Assistant

la

17 Proficiently arrange dental instruments and materials £or chair side travy.

15 Azzgist in dentist in conducting four-handed chair zide dentistry procedures.

19 Perform intra-oral procedures such as placing amalgam, polishing and remowing dental cem
20 5killfully prepare restoratiwve materials and dental cement.

21 Expertly construct models of teeth/mouth and polish wodels of plastic and plaster impres
Za Sterilize instruments using autoclawes and chemical disinfectants to maintain accepted =
23

24 Compary, Town, XX Date - Date

25 Jdob Title

26

A A el el A i Zen memenmommm Amamama]l mme il mem A2 mm 1 e mememmen = m

1| 1] b

m

RESUME CLOB (4000)
Allowe MULL
CLOE, 2 148 Bytes, text/plain

Cloze

Figure: The text viewer and editor

Import from File

Importing data from a file can be done in the form and cell editors. Imported binary data of a recognized type is displayed by the corresponding

binary viewer. Import is supported for both binary and text data.

Export to File

Export can be made in the grid, form and cell editors for binary and text data.

160(260)

Table Data Navigation

Introduction

A powerful way to study database data is to navigate between the tables in a schema by following table relationships declared by primary and foreign
keys. DbVisualizer includes a Navigator feature for this purpose, visualizing the relationships graphically while making the data for each navigation
case easily accessible in a data grid.

To launch the Navigator, select the table you want to start the navigation from in the Database Objects Tree, and then open the Navigator tab in the
Object View.

B Table: DEPARTMENTS

Oracle | Schemas | HR | Tables | DEPARTMENTS

A2 Grants |) Columns Comment |] Constraints | (@) Triggers | 4 Dependences | _MpDL | DDL with Storage
ﬁNavigator

@ nfo | [§]Cokmns | FHData | ERow Count | 2 Primarykey | <7 Indexes | Rowld | o References

BOSFYRPLLLEED @

DEPARTMENT_ID
DEPARTMENT_NAME Human Resources [HR .EMPLOYEES]
.

Eaill
|@@ DEPARTMENT_ID 40 |

HR.DEPARTMENTS]: DEPARTMENT_ID
DEPARTMENT_NAME IT

%
*.|§ﬁ|p v|'|Re|atedTab|e: -
4 EMPLOYEE_ID . FIRST_MAME . LﬂST_N.ﬂMEI EMAIL IF'HDNE_NUMBERI HIRE_DATE . JOB_ID IS.I“&L.I“&RY IDDH.
1 103 Alexander Hunold AHUNOLD 590423 4567 1990-01-03 00:00:00 IT_PROG 8000
2 104 Bruce Ernst BERMNST 590423 4568 1991-05-21 00:00:00 IT_PROG G000
3 105 David Austin DAUSTIN 590423 4569 1997-06-25 00:00:00 IT_PROG 4800
4 106 Valli Pataballa VPATABAL 590423 4560 1998-02-05 00:00:00 IT_PROG 4300
5 107 Diana Lorentz DLOREM... 590 423 5567 1999-02-07 00:00:00 IT_PROG 4200
1| i a 3
Max Rows: | 1000 | Max Chars: [0 | |0.000/0.016 sec | 5/11 | 1-5|

Figure: The Navigator tab showing the initial table

The Navigator has two parts: a graphical view and a data grid. Initially, the graphical view shows just the selected start table, and the data grid shows
the data for the start table.

The data grid is a read-only grid of the same type as you encounter in other parts of DbVisualizer, but extended with a Related Table list and a Tag
button. You can learn more about the general data grid in the Data Grid section of the Getting Started chapter. The Navigator specific extensions are
described in detail in the following section.

161(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Data Navigation

Data navigation in DbVisualizer means following table relationships declared by primary and foreign keys, using a unique key value. In the example
schema shown in the screenshots in this section, there is a table named DEPARTMENTS with a primary key named DEPARTMENT _ID. Another
table named EMPLOYEES has a foreign key constraint, declaring that values in its DEPARTMENT_ID column refer to primary key values in the
column with the same name in the DEPARTMENTS table.

F %
B0 S5 P - ;"_-:;ﬂ._"|F‘.elatedTable:| —

& DEPARTMENT_ID DEPARTME

-= EMPLOYEES (EMPLOYEE_ID)

L 10 Administratiy .. | o aT10NS (LOCATION_ID)

2 20 Marketing ey =)

3 30 Purchasing |- J0B_HISTORY (DEPARTMENT_ID)

4 40 Human Resources 203 2400

5 50 Shipping 121 1500

6 60 102 1400

7 70 Public Relations 204 2700 .
Max Rows: | 1000 | Max Chars: [0 | |0.000/0.000 sec | 27/4 | 16 |

Figure: The Related Table list

If you use DEPARTMENTS as you start table, you can easily navigate to the EMPLOYEES table for different DEPARTMENT_ID values. In the data
grid, select one or more columns in the row that holds the DEPARTMENT_ID you want to use for navigation. In the figure above, the
DEPARTMENT_NAME column in the row for DEPARTMENT _ID = 60 is selected.

Next, bring up the Related Table list. It lists all tables the DEPARTMENTS table is related to through primary and foreign keys, with the key columns
within parenthesis. A forward arrow (->) in front of the table name means that the DEPARTMENTS table has a foreign key relation to the named
table. A backward arrow (<-) means that the named table has a foreign key relation to the DEPARTMENTS table.

|R.e43ted Table:

DEPARTME!
-> EMPLOYEES (EMPLOYEE_ID)

P Administratiy | e ations (LOCATION_ID)
MLEWLCUNIN . £\ OYEES (DEPARTMENT ID)

I Purchasing (=- 10B_HISTORY (DEPARTMENT ID)
I Human Resources DEPARTMENTS (DEPARTMEMNT I <- EMPLOYEES (DEPARTMENT _IDY)

P2 hinminn 474 A Rnn

Figure: Tooltip for a Related Table list entry

The Related Table list shows only the table name and columns of the related table, because there is not room for more when a key contains many
columns with long names. Sometimes this information is not enough to understand what the relation really means. To make it easier to figure out,
you can let the mouse hover over a list entry. A tooltip then shows you the other end of the relation as well, e.g., in the figure above, the tooltip shows
that "<- EMPLOYEES (DEPARTMENT_ID)" represents a foreign key from the EMPLOYEES DEPARTMENT_ID column to the DEPARTMENTS
DEPARTMENT_ID column.

162(260)

Table: DEPARTMENTS

Oracle | Schemas | HR | Tables | DEPARTMENTS

2 Grants | /) Columns Comment |] Constraints | () Triggers | | Dependences | A opoL | j'm:;nsuwgg
Mavigator

[gnfo | [§]Coumns | FHpata | EgRow Count | 2 Primarykey | 7 Indexes | Rowld | o References

BOASFYRLPLLLEHER S

DEPARTMENT_ID
DEPARTMENT_NAME T

| rrempiovess |
r[? DEPARTMENT_ID iI:IJ

[HR.DEPARTMENTS]

4| m 3
re. .
$.|$Jﬁ|p- .|R.eJatedTablE: -
£ EMPLOYEE_ID . FIRST_MAME . LJ"IST_NNU!EI EMAIL IF"H‘:l'f\JE_f\J|..JF.I|E|E|'_1".I HIRE_DATE . JOB_ID .S'MY ICDH.
1 103 Alexander Hunold AHUNOLD 590423 4567 1990-01-03 00:00:00 IT_PROG a000
2 104 Bruce Ernst BERMST 590423 4568 1991-05-21 00:00:00 IT_PROG 6000
& 105 David Austin DAUSTIMN 590423 4569 1997-06-25 00:00:00 IT_PROG 4200
4 106 Valli Pataballa VPATABAL 590423 4560 1998-02-05 00:00:00 IT_PROG 4200
5 107 Diana Laorentz DLOREM... 590423 5567 1999-02-07 00:00:00 IT_PROG 4200
1| i | 3
Max Rows: | 1000 | Max Chars: [0 | 0.000/0.016 sec || 5/11 [1-5 |

Figure: Navigation from DEPARTMENTS to EMPLOYEES for DEPARTMENT_ID = 60

When you select "<- EMPLOYEES (DEPARTMENT_ID)" in the Related Table list, a node is added to the graph for the EMPLOYEES table, with an
arrow from the DEPARTMENTS table node to show the navigation direction. We call this a navigation case.

The EMPLOYEES node contains the key columns (just one in this example) and their values.

The arrow betwwen the nodes is labeled with the key column name. In addition, the arrow label also shows the name and value of the column that
you selected in the DEPARTMENTS table when you created this navigation case, i.e., the DEPARTMENT_NAME column. If you select multiple
columns when you create a navigation case, all non-key column names and values are included in the arrow label. This can make it easer to see at a
glance what a navigation case represents.

The grid is also updated when you create a navigation case, to show all rows in the table you navigated to that has a key value corresponding to the
selected key value in the table you navigated from. In this case, it shows all rows in the EMPLOYEES table with DEPARTMENT _ID equal to 60.

You can continue to create more navigation cases from any node in the graph. For instance, if the schema contains a table with job history
information for employees, you can navigate to the history for an employee from the EMPLOYEES node. Or, you can select the DEPARTMENTS
node in the graph to navigate to the EMPLOYEES table for a different department. Just click on the DEPARTMENTS node, select another row in the
data grid and then the same Related Table list entry.

163(260)

B# Table: DEPARTMENTS

Oracle | Schemas | HR | Tables | DEPARTMENTS

2 Grants | /) Columns Comment |] Constraints | (&) Triggers | 4 Dependencies | M pDL | ™ DDL with Storage
;?'Nauigat::r

[gnfo | [§]Coumns | FHpata | EgRow Count | 2 Primarykey | 7 Indexes | Rowld | o References

BASTYRLPLLLEHED @

DEPARTMENT_ID
DEPARTMENT_NAME Human Resources | HR_.EMPLOYEES |
.

Fal
l 4 DEPARTMENT_ID 40 J

HR.DEPARTMENTS]: DEPARTMENT_ID
DEPARTMENT_NAME IT

.
¥

BO S5 P -

= |Related Table: -

£ EMPLOYEE_ID FIRST_MWAME LAST_MNAME EMAIL PHOMNE_MUMBER HIRE_DATE JOB_ID |SALARY | COM
1 103 Alexander Hunold AHUNOLD 590423 4567 1990-01-03 00:00:00 IT_PROG 8000
2 104 Bruce Ernst BERMST 590423 4568 1991-05-21 00:00:00 IT_PROG 6000
3 105 David Austin DAUSTIN 590423 4569 1997-06-25 00:00:00 IT_PROG 4200
4 106 Valli Pataballa VPATABAL 590423 4560 1998-02-05 00:00:00 IT_PROG 4200
5 107 Diana Lorentz DLOREM... 590423 5567 1999-02-07 00:00:00 IT_PROG 4200
4| m | 3
Max Rows: | 1000 | Max Chars: [0 | 0.000/0.016 sec | 5/11 | 1-5 |

Figure: Two navigation cases

If you want to create multiple navigation cases from one table to another using the same relationship, you can select columns in multiple rows in the

first table. When you make a selection in the Related Table list, one navigation case per row is created.

Every time you select a node in the graph, the data grid is updated to show the corresponding data. The grid settings for one node are independent
of the settings for another node. For instance, if you define a filter for one node, the filter is only associated with the grid for that node.

Adding Context Information to the Graph

The navigation node always shows the key columns and their values, but sometimes you may want to add other columns to the node to better
describe what it represents. This is called tagging the node. There are two ways to do so: drag and drop cells from the grid to any node, or use the
Tag button in the grid toolbar to tag the currently selected node with the currently selected cells in the grid.

To drag and drop cells to a node, select one or more cells in the grid. With the left mouse button pressed and the mouse positioned over one of the
selected cells, drag the cells over a node in the graph and release the mouse button. The cells are added to the node.

164(260)

Table: DEPARTMENTS

Oracle | Schemas | HR | Tables | DEPARTMENTS

2 Grants | /) Columns Comment |] Constraints | () Triggers | | Dependences | A opoL | j'm:;nsuwgg
Mavigator

[gnfo | [§]Coumns | FHpata | EgRow Count | 2 Primarykey | 7 Indexes | Rowld | o References

BOASFYRLPLLLEHER S

CEPARTMENT_ID (HR _EMPLOYEES]
DEPARTMENT_NAME Human Resources
— - @Q DEPARTMENT_ID 40
FIRST_NAME Susan
LAST_NAME Mawris

[HR.DEPARTMENTS]:
DEPARTMENT_ID

.

DEFARTMENT_NAME IT HR .EMPLOYEES]

.

4 DEPARTMENT_ID &0 J

r % 4
EMPLOYEE_ID FIRST_NAME LAST_NAME| EMAL PHONE_NUMBER HIRE_DATE | JOB_ID |SALARY COMI
1 203 N [E S sVAVRIS 5151237777 1994-06-07 00:00:00 HR_REP 6500

& |R.e43ted Table:[-

1| 1 3
Max Rows: | 1000 | Max Chars: [0 | |0.000/0.000 sec || /11 || 1-1|

Figure: A node tagged with additional column values

Alternatively, you can select the cells in the grid and click on the Tag button (r"'-.'il-) to add the cell values to the currently selected node.

Arranging the Graph

As you add navigation cases, you may find that you need to move nodes around, remove selected nodes, zoom and move around in the graph, etc.

You can rearrange the layout of the graph by selecting a node and, with the left mouse button pressed, drag it around. The arrow and its label moves
with the node.

The toolbar for the graph offers a number of tools to help you with other tasks.
BOSIFRNLLLLEE B S

Figure: The graph toolbar

All these tasks can also be accessed through the graph popup menu.
ﬁ Clicking the Reload button removes all navigation cases, leaving just the node for the table you started with.

E] You use the Show/Hide Controls button to control the display of an Overview control, see below.

ﬁ The Zoom In button lets you zoom into the graph, one step per click.

165(260)

The Zoom Out button zooms the graph out one step with each click.

Clicking the Zoom 100% button zooms the graph so that all items are shown with their standard size.

Y ® YW

Toggle the Magnifying Mode. When enabled, the content around the mouse pointer is magnified

=]

Use the Fit button to make all graph items fit in the graph display area.

The Relayout button lays out all graph item with standard positions, distances between items, etc. This can be useful after making manual
changes, such as removing nodes or tagging nodes.

o =

The Remove Node button removes the selected node. It is only enabled when a navigation case node is selected.

Toogle between Navigation and Edit Modes. Whith Navigation Mode enabled, you can move the graph content with the left mouse button
depressed.

The Overview control is useful for large graphs that do not fit into the display area.

POSFRP,PLALLEEH D@

* | Owverview - Docked:

#iomm e em
10B_TITLE Accounting Manager

ES . | HRJOB_HISTORY
m 5o EMPLOVEE_ID o emPLOYEE_ID 101 £
FRST NAME Hoena
— LAST_MAME Kochhar :ll Ej
ES
-
m 40
ES
I ED -

L 3

£

Figure: Graph with the Overview Window displayed

The gray area in the Overview control indicates the portion of the graph that is currently shown in the display area. You can drag the gray area
around to study other portions of the graph.

To get a larger graph display area, you can put the Overview control in a separate window. Just uncheck the Docked checkbox.

Exporting and Printing the Graph

You can also export the graph to an image file or print it. Use the corresponding toolbar buttons to do this.
@ Export the graph to a file in JPG, GIF, PNG, SVG or PDF format.

@ Print the graph

ﬁ Show a preview of how the graph will be printed

When you print the graph, you are prompted for information about what to print (the Graph or the View, i.e., just the portion visible in the display area)
and how many rows and columns to split the printing over (one page is used for each row/column). See the Export and Import chapter and the Print
section in the Getting Started chapter for details.

166(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportImport/exportImport.html

Procedure Editor

Introduction

Many databases offer the capability to store custom code in the database, primarily as functions and procedures, where a function has a return value
but a procedure does not (a procedure may instead have output parameters). In addition, some databases offer a package concept, which means
that a collection of functions and/or procedures are grouped together in one unit. A package is the interface describing the functions and procedures,
while the package body contains the implementation. Many databases also support triggers: code that is executed when triggered by an event such
as deleting a row in a table. You can use DbVisualizer actions to create and drop procedural object of these types, and use the procedure editor to
browse, edit and compile these object types. Procedures and functions can also be executed in the SQL Commander, with return values and
parameters bound to DbVisualizer variables.

The examples throughout this document refer to the procedure object type, but all described features can also be applied to the other types of
custom code objects. The screenshots show the interface for the Oracle profile, but it is very similar for other profiles.

Create Procedure

To create a new procedure, simply select the Procedures node in the objects tree and choose Create Procedure from its action menu.

Connections
EIB Oracle
E}g Schemas
=4 HR (Default)
G- Tables
Ij Wiews
& Synonyms
& Indexes
E’ﬂ Sequences
i Materialized Views
Functions

@ Refresh Objects Tree F5
Reconnect Ctrl+5Shift+R

Show in Window...

Add to Favorites...

Show/Hide Tree Filter

Show/Hide Table Row Count

5

F scheduler

Q Database L Clear Visited State
-/t Invalid Objects

Session Properties

[(5) DBA Views

Copy Mame Ctrl+C

Figure: The actions menu for the Procedures node

Next, a dialog is displayed in which you enter the procedure name and the parameters for the new procedure. This data forms the interface for the
procedure.

167(260)

g Create Procedure E

Object Details
Database Connection: |Drade

Procedure Ownier: [HR -]
Procedure Name: |UPDATE_STATUS |
@ Parameters

Mame Direction Type Default

tatus IN VARCHAR2Z 'CLOSED'

LS]
rder_id_end N NUMBER -1 @
[~]

W

[¥] Show 5QL [EWEGJE][Cancel]

50L Preview

ElERE

1 CRERTE

Z PROCEDURE "HE'".UPDATE 5TATUS

3 !

4 order_id_start IH NUMEBER DEFAULT -1,

5 order_id end TH NUMEEE DEFRULT -1,

& status IN VARCHARZ DEFAULT 'CLOSED')

7 RS

& BEGIH

a DEMS_OUTFUT. PUT_LINE('Sauple output'];
10 EHD ;

Figure: The create procedure dialog

Use the buttons to the right of the parameter list to insert, remove and move the parameters. For every parameter, you must supply its Name, the
Data Type and the Direction (typically one of IN, OUT or INOUT).

The action uses this information together with a simple sample body to compose a CREATE statement. You can not enter the real code in the action
dialog. The real code is often complex and large, so DbVisualizer provides a more powerful editing environment than what would fit in an action
dialog via the Procedure Editor, described below. What you create with the action should be seen as a template that you then complete and work
with in the editor.

Click Execute in the dialog to create the new procedure.

168(260)

File Edit View Database Scripts 5QL Toeols Window Help

SGHB s B0 6k®

* | <Drop your favorite objects here =
|§ Da‘mbase5§| Q'Scrpts| Object View | b sq_mm|

DO P LY T #" Procedure: UPDATE_STATUS

E'E Oracle Sl Oracle | Schemas | HR | Procedures | UPDATE STATUS
= i} Schemas gk :
E‘ﬁ HR (Default) E Procedure Editor

o T s GO PACEE P IR RS @ status: VAL
-] DEPARTMENTS 1 CRERTE OR REPLACE PROCEDURE "HR"."UPDATE STATUS™ |
"El EMPLOYEES 2 order_id start TH NUMEER DEFARULT -1,
-[7] J0B_HISTORY 3 order_id_end IN NUMBER DEFAULT -1,
e-{] JoBS (| a status IN VARCHARZ DEFAULT 'CLOSED')
-] LOCATIONS - .
(-] ORDERS_ORG
: & BEGIH

[}--ELRSEGIDNS 7 DEMS_OUTPUT. PUT_LINE (' Sanple output'):

& & Synonyms & EHD ;

[Indexes

[}- Seguences | M

[+ e Materialized Views

[Functions

=53 Procedures
- ADD_JOB_HISTORY
P SECURE_DML
- JUpDATE_STATUS|

[+ Packages

[}--g Package Bodies - 1:1 s | | [ontitiea

Figure: The newly created procedure

Selecting the newly created procedure in the tree will show the source for it in the Procedure Editor.

Edit and Compile

The editor has a toolbar with various actions to save/compile the procedure, save and load the source to/from file and perform common editing
operations. The Status indicator shows whether the procedure is valid or invalid based on last compilation (not available for all databases).

Edit the source code and save/compile the procedure when you are happy with the code, using the Save toolbar button.

169(260)

File Edit View Database Scripts 5QL Toeols Window Help

SGHB s B0 6k®

* | <Drop your favorite objects here =
SDa’mbases Q'Scrpts Dbjectﬁew|bsq_mm|

DO P LY T #" Procedure: UPDATE_STATUS

EIE (éradl: bl Oracle | Schemas | HR | Procedures | UPDATE_STATUS
=l &) Schemas | _ -
E‘ﬁ HR (Default) E Procedure Editor

-[] Tables - :
e CEILAAEST =R SET= Y €9 status: IWVALD
"E| DEPARTMENTS 1 CRERTE OR REPLACE PROCEDURE "HR"."UPDATE_STATUS"
e[7] EMPLOYEES 2 order id_start TN NUMEER DEFAULT -1,
fel-[7] JOB_HISTORY 3 order_id end IN NUMEER DEFAULT -1,
g JOBS (| a status IN VARCHARZ DEFAULT 'CLOSED')
[#-[7] LOCATIONS
: 5 RS
&[] ORDERS_ORG ———
&[] REGIONS .

[T Views

G- & Synonyms g set current status = status

-4 Indexes 3 where id >= order_id start amd id <= order_id end;

-l Sequences | | |10 EHD:

[+ e Materialized Views

& Procedures 10 Jovs] [Joutitiea
g ADD_JOB_HISTORY | Frrors
P SECURE_DML Line Column Text
@ UpDAT_ngUS i 12|PL/SOL: ORA-00942: table or view does not exist

[+ Packages T 5PL/SQL: SQL Statement ignored

[+t Package Bodies -

Figure: Compiling procedure with errors

If errors occur during compilation, the error list appears below the editor. It shows the row/column number for the error in the source editor and an
error message. When you click the error in the list, the corresponding row is highlighted in the editor. Note, however, that some databases do not
provide row/column information, only an error message. You then have to locate the incorrect statement yourself based on the description of the
error.

In addition to the Status indicator in the editor, the object icon in the tree shows a little red cross for invalid procedures, for databases that provide
this information. You can see this for the UPDATE_STATUS procedure node in the figure in the previous section.

The figure below shows the result after correcting the errors and recompiling the procedure:

170(260)

File Edit View Database Scripts 5QL Toeols Window Help

SGHB s B0 6k®

* | <Drop your favorite objects here =
s Databases Q‘ Scripts Obiject View | D s0L Gmmmda|

DO P LY T #" Procedure: UPDATE_STATUS

E'E Oracle Sl Oracle | Schemas | HR | Procedures | UPDATE_STATUS
- &) Schemas |
gﬁ HR (Default) E Procedure Editor

-[] Tables - .
£ 7] COUNTRIES LS =idh yEEi Y) lesmms
"E| DEPARTMENTS 1 CRERTE OR REPLACE PROCEDURE "HR"."UPDATE_STATUS"
e[7] EMPLOYEES 2 order id_start TN NUMEER DEFAULT -1,
fel-[7] JOB_HISTORY 3 order_id end IN NUMEER DEFAULT -1,
g JOBS = status IN VARCHARZ DEFRULT 'CLOSED')
-] LOCATIONS
: 5 RS
[] ORDERS & BEGIH
&[] REGIONS

[}-ﬁgws 7 update orders

G- & Synonyms g set current status = status

-4 Indexes 3 where id >= order_id start amd id <= order_id end;

-l Sequences | ff |10 END:

[+ e Materialized Views

~{u3 Functi . :

E P“” °”5"5 1:1 |ns| | | |ontitiea
g ADD_JOB_HISTORY | Frrors: :
P SECURE_DML Line | Column | Text
= -JUPDATE_STATUS

[+ Packages

[+t Package Bodies -

Figure: Compiling procedure with successful result

The status indicator now shows that the procedure is VALID.

Execute in SQL Commander

You can also test the procedure. First, click the Execute button in the Procedure Editor. DbVisualizer then generates a script for executing the
procedure, using variables for all parameters, and executes it in the SQL Commander as shown in the next screenshot.

171(260)

e

lﬂ DbVisualizer Personal - Untitled E@

File Edit View Database Scripts 5QL Toeols Window Help

S 1= WulloR di=

* | <Drop your favorite objects here =

S Databases g Scripts :J[_a Object l.ﬁew| b SOL Commander |

- Y Al BT PORR@ISHE D RER/¢<> T BES

EI% (éras:;e * | Datal Connection Sticky Database Schema Macxx Rows Maxx Chars

=- mas :

©- HR (Default) [orade = - 8w > 1000 | D |
=1-[7] Tables 1 @oall HR.UPDATE_STATIS (§{ORDER_ID_START| | (null) | |BigDecimal | [nullshle d

- cou i:§
[7| DEPARTN | & Enter Data for Variables () o
-] EMPLOYE E
S| ¥B|O B[- 2
wios | YEPD® oe -8 YK =
w-{7]LOCATId [Key Variable Value

] ORDERS 'ORDER_ID_START [

-] REGIONS

£ T Views ORDER_ID_END 2000 b
- & Synonyms STATUS - o] [untitied
G-« Indexes ORDER_ID_START MUMERIC
[l Sequences Allow NULL
[+}- =g Materialized
[#-488 Functions Show 5QL Continue] [Em]
£G4 Procedures RT] | (..
E @ ADD_JOH SQL Preview
----- 4P SECURE

UPDATE LS
..gifm-es EERE o

i [f@ Package Bod| |1 @call HR.UPDATE STATUS (1000, 2000, HULL);
(-G Java Sourced |z
B Java Classes|
8 Triggers 1
it- 5% Object Types = T | painis]

[+

Figure: Running the procedure in SQL Commander

Because the script contains variables, the Variable Prompt dialog pops up. Enter values for all parameters and click Continue to execute the
procedure.

In the example shown in the figure, all parameters are input parameters but DbVisualizer also support execution of procedures with output
parameters and functions returning a value:

@call ${STATUSIICnull)|IStringlInoshow dir=out}$ = "HR"."GET_STATUS"(1002);
@echo STATUS: ${STATUS}$;

In this example, the result value from the GET_STATUS function is assigned to a variable named STATUS. Note that is has an option dir=out. This
is a requirement for a variable that is assigned a value at runtime, whether it is used for a return value from a function call or for an output parameter
in a procedure call. It also has the noshow option, to avoid getting prompted for a value for the variable. The value of the STATUS variable is then
written to the log using the @echo command.

You can also use the output from one function or procedure as input to another, or even as a value in a SELECT or other SQL statement:

@call ${STATUSIICnull)|IString!Inoshow dir=out}$ = "HR"."GET_STATUS"(1002);
@call "HR"."UPDATE_STATUS"(1000, 2000, ${STATUSIIIIStringlInoshow dir=in}$);

Note that dir=in is specified for the STATUS variable when it is used in the UPDATE_STATUS procedure call. When you use a variable first for
output and then as input with another @call command, you must change the direction option like this.

The @call command is described more formally in the Client Side Commands section of the SQL Commander chapter, and the full variable syntax is
described in the Variables section of the same chapter.

172(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId803385
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId322587

Script CALL to Editor

As an alternative to using the Execute button in the Procedure Editor to generate a @call script, you can use the Script Object to SQL Editor right-
click menu choices for a procedure or function object in the Objects Tree.

-3 Procedures

. G ADD_IOB_HISTORY
. -G SECURE_DML

R JUPDATE_STATUR

- Packages ﬁ Drop Procedure..,
[+ Package Bodies #) Compile Procedure...
[H-@@@ Java Sources - = =
’ Java Classes | Secript Object to SQL Editor » |
Triggers Script Object to New SQL Editor »
" g:ﬁjg;ies @ Refresh Objects Tree Fs
Jobs @ Reconnect Ctrl+Shift+R
'0 Scheduler] Show in Window...
@ Database Links i _
/1y, Invalid Objects 54k Add to Favorites...
session Properties 5 Show/Hide Tree Filter
DBA Views
QL P Show/Hide Table Row Count
@ Copy Name Ctrl+C
Clear Visited State

B ca.

Figure: Creating a @call script for a procedure

173(260)

Tool Properties

Customizing DbVisualizer

DbVisualizer is highly customizable. You can control formatting, layout and the way DbVisualizer interacts with databases. The default settings are
good enough for normal use, but sometimes it is necessary to modify these properties. This chapter guides you through all the properties.

The Tool Properties window divides properties into two groups:

* General Settings
These settings controls DbVisualizer in general, such as fonts, colors, data formats, etc.

¢ Database Settings
These settings are per supported database type and defines properties that are used in database specific operations. When you set a
database property in Tool Properties, it applies to all database connections defined for that database type. To set a property for one specific
connection, use the Connection Properties, available in the Object Details area when you select a connection.

The user preferences (XML) files

All properties are saved in XML files. The exact location of these files is platform dependent. The location on your system is listed in the first,
General category, in the Tool Properties window. These files contains, in addition to all properties, also the information about drivers, database
connections, bookmarks, etc. We recommend that you do not edit these files manually; even though it is quite easy to do so, even a simple typo of
an element name may cause problems. It's safer to edit all properties from the DbVisualizer GUI.

DbVisualizer automatically creates a backup copy of the XML files when the application is started. The location of these files is the same as for the
standard XML files, but a .bak suffix is appended to the filename. The standard XML file might get broken for various reasons not in control by
DbVisualizer. If you see a warning message that the XML file can not be read when you launch DbVisualizer, simply copy the backup file to the
standard location and restart the application. If you move the XML file from its standard location, or if you remove it, DbVisualizer will automatically
create a new one.

Tip: the -prefsdir command line argument is used to identify an alternative directory for your user settings.

Export Settings

Sometimes it may be necessary to migrate all your settings for DbVisualizer and import them in second setup of DbVisualizer. This is very handy if
you are migrating from one machine to another, or if you want to setup an exact copy on your home computer, etc. Another key reason is for backup
purposes. Loosing all database connection due to various reasons can be really frustrating. The Export Settings feature is available from the File-
>Export Settings main window menu choice.

174(260)

Ia Check all settings to export @
Check all settings to export
Tool Froperties

[F] General
&) Key Bindings
| §f Database

Default Settings For Expaort

Default Settings For Schema Export
Bookmarks

Monitors

History

Favorites

Driver Definitions

IDBC Drivers

Database Connections

i) Connections

§# crM ahoa
=] L Orade servers
il crade prod
Orade test
Orade stage
Orade; $5Aliasss
DBZ LUW

MySQL
MySQL{IMDT)
JavalE/Derby

Excude: || Folders Object Filters [Passwords
Table Data (WHERE) Filters

Column Visibility Definitions

Export settings to
|c:‘|,tem|:|‘l,setﬁngs.jar |E]

Figure: Export User Settings window

The default layout of the Export Settings window is that all settings will be exported. Once you're done press OK and all settings will be saved in the
specified file. The structure of this JAR file is the same as the content in your DbVisualizer settings directory.

All settings can be exported except JDBC driver files.

Import Settings

The Import Settings feature is used to import settings as previously exported via the Export Settings feature. Import will examine the content of the
specified file and present the choices available. Consider the previous screenshot and that we export the settings for the Database Connections only.
Here is how the Import Settings window will look:

175(260)

L -

I_ﬂ Check all settings to import @

Check all settings to import
[¥] Database Connections
. 7] i) Connections

¥ @ 7 crM ahoa
. [:] Orade servers

DB2 LUwW
MyS0L
MySQL{IMDIL)
JavalE/Derby

Table Data (WHERE) Filters

Column Visibility Definitions

Target Location: ‘0 Connections - ‘

Figure: Import User Settings window

Use the Target Location button to set where the imported database connections will appear in the objects tree.

General Settings

The General settings tab collects all categories that are used to control the general aspects of DbVisualizer.

Use the buttons at the bottom of the window when you have made some changes: Click OK to save the changes and close the window, the Apply
button to save the changes but keep the window open, and the Cancel button to revert all changes. To reset the properties to the factory defaults,
use the Defaults button.

Changes are tracked on a per category basis. If you have made changes and click on another category, you are asked whether the changes should
be applied or not. When you click Defaults (for both the General and the Database properties), you can reset either all properties or just the
properties for currently selected category.

This is a screenshot of the General category tree.

176(260)

.

E]' Tool Properties

m General [__ﬁ Database

=@ =]

Ellceneral

|_:_| Appearance

aﬁ Fonts

{2 Key Bindings

[_ Database Connection
5 Driver Manager

2 Permissions

-4 3 Time Zone

- File Encoding

-4 Form Viewer
=-{7] Grid
[} Copy
Colors

= 5QL Editor
-[& statement Delimiters
E} 50L Formatting
=| Align and Indent
=| Line Breaks
=| Whitespace
N Auto Completion
-/ Comments
Variables
z Proxy Setting

Binary,/BLOB and CLOB Data

Tool Properties

The Teol Properties dizleg is used to modify properties that are used in DbVisualizer. Your
settings, Bookmarks, Monitors and SQL History are saved in the user preferences directory.
The command line argument -prefsdir can be used to specify an alternative directory.

User Preferences Directory: |Z:\Jsers\rogge'\myprefs

Browser
Salect the browser that is used to browse the Users Guide and FAQ web site,

Browser: |System Default -

Confirm Exit of DbVisualizer
Check this property to confirm exit of DbVisualizer.

Confirm Exit of DbVisualizer: [

Defaults

]l Cancel

-

Figure: The Tool Properties window showing the tree with General categories

Appearance
Property

Look and Feel

Description

Controls which look and feel to use.

Note 1: You must restart DbVisualizer after you have selected a new look and feel.
Note 2: Some look and feels are platform specific and do not appear on all OS'es

Metal (Ocean)

177(260)

File Edit View Database Scripts SQL Tools Window

-2 Noll-p i
7 ¢ | <Drop your favorite objects here>

| W Databases | L] Scripts | ¥ [[d] Object View

it al Xl — Database Connec
i mﬂﬁe{:{;?lﬂlsﬂma CRM Ahoa
9 Q) Oracle servers @ Connection | Datal
| comecn
Cracle stage Alias: CRM Al
Ll nugr?ﬁ!ﬁ: sRAlasEs B Database Type: |Oracle

Windows
File Edit View Database Scripts 5QL Tools Window F

g HB &8 0k@

‘3‘% | <Drop your favorite objects here =

20 P B3 F

CRM Ahoa

47 Connection I 0=izbase Infio

E@ Orade servers

Oracle prod
Oracle test Connection
i |l Orade stage i
| Alias: CRM Ah
¢ e[l Orade: sspliasss = II

Alloy
File Edit Yiew Database Scripts S0L Tools Window

WSEHB &8 D OXD

. o | <Drop your favorite objects here=

W Databases m : LE Object Wiew

2O P> 8IS - Database Connect
Connections C as
@ % crM Ahoa _
) Oracle servers @ Cannection | i Datahé
e cometon
Cracle stage Alias: CRM Ah
Oracle: $3Alias§s : _
CuE | i : Database Type: |Oracle
GTK+

178(260)

Icon Sizes

Show Tab Icons Specifies whether an icon will appear in the header of all object view tabs.

Fonts

Databases [# Scn’ptsgl
0P RS @ |

Connections

— & Oracle servers

Oracle prod
Oracle test
Oracle stage
Oracle: $%Aliasts

E L ¥ o o T N LWL

File Edit WView Database Scripts SQL Tool

egEB e« A OKO

7 ¢ | <Drop your favorite objects here=

Object View SOL Comm

: Database Conne

CRM Ahoa

Connection & | Database In

Connection

Alias: CRM 4

—

Mac OS X

aSHBada

HAOAX@

< | <Drop your favorite objects here>

,E) Databases = '] Scripts L : 1

2O P EIH

@) Connections
CRM Ahoa

v & Oracle servers
Oracle prod
Oracle test
Oracle stage
Oracle: 55Alias55

= WaT-FRET

Connection

Alias:

The Menus, Main Tool Bars, Sub Tool Bars settings are used to control the size of the

icons.

Individual fonts can be defined for SQL Editors, Grids and Text output data. The Application Font settings is used to control the font for all other
components in the user interface, such as labels. Increasing the application font size is useful at demos or presentations. Anti-Aliased Fonts is

supported by some look and feels and when enabled it gives a much smoother appearance of text in the application. Anti-Aliased font is not

supported by the SQL editor.

Key Bindings

You can define key bindings for almost all operations and editor commands in DbVisualizer. Key bindings are grouped in Key Maps. DbVisualizer
includes a set of predefined key maps targeted for the supported operating systems. These key maps cannot be deleted or modified. To customize
key bindings, copy an existing key map and make your changes.

179(260)

Key Bindings

Linux-UNIE {read-only)
Mac Q5 X (read-only)

SQL Query Analyzer (read-only)

Use these settings to define the key bindings in DbVisualizer. You must make a copy of an existing
key map to ater key bindings. The active indicator highlights the current key map.

Keymaps

Default (active, read-oniy) Set Active

AN (read-nnlv) v | Remove |
Keymap Settings
(e (read-only)
Action Key Bindings
K All Bindings »
[~ | Editor Commands
=k | Main Menu
- | File
15 Open Ctrl O =
Cirl+Alt O
- Save Cirl S
- jig Save As Cirl+Skift 5
----- H Create SQL Editor CirlT
----- ’_% Close Current SQL Editor Ctrl F4
----- | -3¢ Close All 5QL Editors Ctrl+Alt W
----- Close All But Current
{3 Close Ctrl W
----- Mew Window Ctrl+Alt M
----- Exit Ctrl s
Key Bindings:
| Add Key Binding... |
| EditKeyBinding... |
| Remove |

Figure: The key binding editor

All user defined key maps are stored in your $HOME/.dbvis/config70/keymaps directory. A key map file contain only the differences between the

copied key map and the current.

To create a new key map, select the map you want to copy and click the Make Copy button. Set a name on the new key map and activate it with the
Set Active button. The newly created key map now has the exact same key bindings as the parent key map.

Key maps must be uniquely named.

Key Bindings
Use these settings to define the key bindings in DbVisualizer. You must make a copy of an existing
key map to aiter key bindings. The active indicator highlights the current key map.

Keymaps

Cnux-ORIE (read-only)

SQL Query Analyzer (read-only) H Make Copy
QAD (read-only)
- Remove

My Keys (active)

Keymap Settings

Keymap: My Keys Based on: Default

= Set Active
Mac 05 X (read-only)

Figure: User defined key map

The action list is organized in folders. The Editor Commands folder lists all actions available in the SQL Commander editor and their current key
bindings. The Main Menu folder contain sub folders, each representing a main window menu. The other folders group feature specific actions, such

as actions to control the references graph, form editor, etc.

180(260)

To modify the key bindings for an action, select the action from the action list. The current key bindings are listed in the Key Bindings list.

Keymap Settings

Keymap: My Keys Based on: Default

Action Key Bindings
% All Bindings o~
[~ | Editor Commands
=~ || Main Menu
File
15 Open Ctrl O £
w2 Quick File Open Cirl+Alt O
—f= Save Ctrl 5
~fg Save As Cirl+Skift 5
H Create SQL Editor Ctl T
|'§ Close Current SQL Editor Ctrl F4
3 Close All 5QL Editors Ctrl+Alt W
Close All But Current
~{ 3 Close Ctrl W
Mew Window Ctrl+Alt M
Exit Ctrl .
Key Bindings:
[Add Key Binding. ..]
| EditKey Binding... |
[Remove]

Figure: User defined key map

To add an additional key binding, press Add Key Binding or press Edit Key Binding to edit the selection.

g ™

m Key Stroke(s) @

First Keystroke

D |

Second Keystroke
| |

Conflicts

Assigned to [Set Default Values)
[Duplicate Row(s)]

Lok |[cond][Cear |

Figure: Key stroke dialog

The key stroke dialog controls whether a key binding is already assigned somewhere else. If there is a conflict with another binding, the Conflicts are
shows the names of the actions that are conflicting. The modifier keys Shift, Alt, Ctrl and Command can be used to form the final key binding.

Menu items and tooltips shows the first defined key binding in the list.

Database Connection

Peroperty Description

181(260)

Ask When Creating Database Connection If enabled, you will be asked if you want to use the Connection Wizard to create new connections.

If enabled, the Connect All operation is automatically run when you launch DbVisualizer, connecting
Run "Connect All" at Startup all Database Connections marked as being included in the Connect All operation (see the Database
properties further down for more on this).

If enabled, a dialog to be displayed before disconnecting all current database connections when using

Confirm "Disconnect All the Disconnect All operation.

Execution Timeout Value (seconds) Specify here how many seconds after which a database call that locks the GUI will time out

Driver Manager

The Driver Manager searches specified folders for JDBC drivers and helps you make them available for use by DbVisualizer, see the Load JDBC
Driver and Get Connected section for details. In the Driver Manager properties category, you can specify if you want the Driver Manager to run
automatically at start-up, when new files are discovered in the specified driver folders, or when driver related errors are encountered. You can also
specify the folders to search and files to exclude, if any.

Permissions

The Permission functionality is a security mechanism, where you can specify that certain database operations must be confirmed. You configure
permissions per connection mode (Development, Test and Production) for feature areas described in the following sections.

Note: The permission feature is part of DbVisualizer and does not replace the authorization system in the actual database.

SQL Commander Permissions

For the SQL Commander, you can pick the permission type from a drop-down list for each SQL command:

Permission Type Description
Allow This permission type means that you can run the SQL statement without any confirmation
Deny This permission type means that the SQL statement is not executed at all.

This permission type means that when executing an SQL statement, or a script of statements, the SQL Commander asks you

Ask whether the actual SQL command(s) should be executed.

182(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

SQL Commander Permissions

Defing here whether the SQL Commander should allow (execute), deny (not execute) or ask

before executing the following SQLs organized per connection mode.

[The connection mode for a database connection is set sither in the Tool Properties->Database

tab or in Connection Properties).

Development Test Production
SELECT: [D Allow vl [D Allow v] [D Allow v]
INSERT: |[B» Allow ~| [P Allow v | | ask -
UPDATE: |[B» Allow ~| | Allow v | | ask -
DELETE: [D Allow v] [D Allow v] [a Ask v]
TRUNCATE: | [B» Allow > | ask ~ | D ask -
CREATE: |[B» Allow ~ | B Allow > | B ask -
ALTER: [D Allow v] [D Allow v] ’ﬂ Ask v]
DROP: |8 Allow v | B ask v | B ask -
COMMIT/ROLLBACK: | [Allow | [Allow v | | ask v
Other: [D Allow vl [a Ask v] [a Ask v]

Figure: SQL Commander Permissions

Table Data Editing Permissions
The permission types for the inline editor are:

Permission Type Description

Confirm A confirmation window is displayed, and you can accept the operation or cancel it

No Confirm The SQL operation is performed without any confirmation

Table Data Editor Permissions
Define here if insert, update and delete must be confirmed in the tzble data editor.

Development Test Production

INSERT: [D Mo Confirm v] ’D Mo Confirm v] [a Caonfirm -]
UPDATE: [D Mo Confirm -] [a Confirm -] [ﬂ Confirm - l
DELETE: [D No Confirm] [a Confirm -] [a Confirm - l

Figure: Table Data Editor Permissions

Time Zone

In the Time Zone properties category, you can change the time zone for the DbVisualizer process, and thereby how date and time data is interpreted.

DbVisualizer uses the OS time zone by default, which is usually what you want to use.

Changing the time zone is only of interest if you work with a database running with a different time zone than the time zone set on the client where

you run DbVisualizer. One example is when working with a database that uses the UTC/GMT time zone to normalize all date/time data.

File Encoding

In the File Encoding category, you can set which file encoding DbVisualizer uses by default when reading and writing files, e.g., SQL scripts loaded
into the SQL Commander or files with exported data. By default, DbVisualizer uses the default encoding for your operating system, and this is

183(260)

typically what you want. You only need to change this setting if you often work with files in another encoding, or if DbVisualizer can not find the
default encoding for your operating system.

Data Formats

Property

Date Format

Time Format

Timestamp Format

Numbers Format
Decimal Number Format

Boolean/BIT Format

Null String

Description

Specifies the date format to use throughout the application (i.e., in grids, forms and during editing). More information
below.

Specifies the time format to use throughout the application (i.e., in grids, forms and during editing). More information
below.

Specifies the timestamp format to use throughout the application (i.e., in grids, forms and during editing). More_
information below.

Specifies how numbers will be formatted.
Specifies how decimal numbers will be formatted.
Specifies the textual representation of boolean values (true/false).

Specifies the string representation of the null value. This string is the readable form of null and appears in grids, forms,
exports and during editing.

Date, Time and Timestamp formats

The lists for date, time and timestamp format contain collections of standard formats. If these formats are not suitable, you can enter your own format
in the appropriate field. The tokens used to define the format are listed in the right-click menu when the field has focus.

(3 - Era Designator
y - Year

M - Month in year
w - Week in year
W - Week in month
D - Day in year

d - Day in month

E - Day in week
a - AM/PM marker

F - Day of week in maonth

H - Hour in day (0-23)

k - Hour in day (1-24)

K - Hour in AM/PM (0-11)
h - Hour in AM/PM (1-12)
m - Minute in hour

s - Second in minute

5 - Millisecond

z - Time zone

Z - Time zone

Figure: The date and time right click menu

184(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/toolProps.html#mozTocId854888
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/toolProps.html#mozTocId854888

The complete documentation for these tokens is available at the following web page: SimpleDateFormat.

Number formats

The lists for number and decimal number contain collections of standard formats. If these formats are not suitable, you can enter your own format in
the appropriate field. The tokens used to define the format are listed in the right-click menu when the field has focus, and complete documentation for
these tokens is available at the following web page: DecimalFormat.

Table Data

Property Description

Specifies if the number of rows in a table will be displayed in the header of the table in the Database Objects-
Show Table Row Count >Data tab. Enabling this property will cause an extra round trip to the database (i.e., a minor performance
penalty)

Specifies if Primary Key columns will be indicated in the Database Objects->Data tab, Variable Substitution

Highlight Primary Key Columns window, SQL Commander result grids and in the References graph.

Specifies if the right-click menu operations in the Data tab will create SQL statements that include DbVisualizer
variables or if the generated statements are plain SQL. Letting DbVisualizer generate statements with variables

Include Variables in SQL results in the Variable Substitution window being displayed when these statements are executed in the SQL

Commander.
Max Rows at First Display Set the number of rows that will be fetched for a table in the Data tab when a table is first displayed.
Transaction
Property Description

Pending Transactions at Disconnect Specifies what DbVisualizer does on exit from the application, when the auto commit setting is disabled.

Scripts
Property Description
Default Editor when Double-click Define what target editor should load the file when double-click Bookmark, Monitor or History script files.

Define what target editor should load the file when Alt+double-click Bookmark, Monitor or History script

Default Editor when Alt+Double-click files

Monitor
Property Description

Start Monitors Automatically Check to enable start of monitors automatically when database connections are established.

Form Viewer

Property Description

185(260)

http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

Right Aligned Numbers If enabled, numbers are displayed as right-aligned in the Form Editor/Viewer.

The number of pixels for the widest side of an image (represented by binary data) when shown in the Data Form Viewer.

Image Thumbnail Size The value is used to scale the image proportionally. The default is 150.

Grid
Property Description

If Auto Resize is enabled, DbVisualizer automatically sizes each grid column based on the widest cell value. If
Auto Resize Column Widths Consider Column Header is also enabled, the header widths are also considered when calculating the column
widths.

Show Grid Row Header If enabled, a row header is shown also for read-only result set grids, such as monitoring result set grids.

This setting is used only when Auto Resize Column Widths is enabled and specifies a maximum visual column

Max Column Separator Width width for grids.

The Max Chars property in the Database Objects Data tab and in the SQL Commander is used to control the
max number of characters for text values. If the number of characters for a text column is more than this setting,
the column is colored in a light red color and the value is truncated as specified by this property:

¢ Truncate Values
Meaning of setting Max Chars Truncate the original value to be less then the setting of Max Chars.

Note: This affects any subsequent edits and SQL operations that use the value since it's truncated. This
setting is only useful to save memory when viewing very large text columns.

* Truncate Values Visually
Truncate the visible value only and leave the original value intact. This is the preferred setting since it will
not harm the original value. The disadvantage is that more memory is needed when dealing with large
text columns.

Copy

The Copy category groups properties that control the result of using Copy Selection and Copy Selection (With Column Header) via the grid right-
click menu, the corresponding key bindings, and drag and drop.

Property Description
Column Delimiter Specifies the delimiter between columns in a multi column copy

End of Line Delimiter Specifies the new line control characters for multi row copy requests

Colors

The Colors category is used to define alternatnve background, foreground and grid colors for grid components.

Binary/BLOB and CLOB Data
Property Description

BLOB Specifies how BLOB and binary data values are represented in grids. Setting this property to By Value results in performance penalties
and the memory consumption increases dramatically.

186(260)

Specifies how CLOB data values are represented in grids. Setting this property to By Value results in performance penalties and the

CLOB - .
memory consumptionincreases dramatically.

SQL Editor

The editor category controls various settings specific for the SQL Commander editor.

Property Description

Specifies settings for the tab keyboard key: Tab Size (the number of characters a tab character corresponds
to), Whitespace(s) per Tab (by how many characters to indent when the tab key is pressed), and Expand Tab
to Whitespace (if enabled, always insert space characters when the tab key is pressed).

Tabs
If Expand Tab to Whitespace is disabled, a tab character is inserted when the tab key has been clicked as
many times as it takes to indent to the value specified by Tab Size, i.e., if Whitespace(s) per Tab is set to 4
and Tab Size is set to 8, clicking the tab key twice results in a tab character.

Recent Files Limit Specifies the max number of files listed in the File->Open Recent sub menu.

If enabled, DbVisualizer asks you whether to save the text in an SQL editor with modified content (any editor;

Confirm Close of Unsaved Edltors not only editors loaded from file) when you close the editor.

If enabled, the Sticky flag is automatically set for all new SQL Editors, which means that the database

Set "Sticky™ for SQL Editor(s) connection details only can be changed manually.

Statement Delimiters
Statement delimiters define how a script should be divided into specific SQL statements in the pre-processing phase.

Property Description
SQL Statement Delimiter 1 Defines the character(s) used to delimit one SQL statement from another in a SQL script

Defines the additional character(s) used to delimit one SQL statement from another in a SQL script. If there is no need
for more then one SQL statement delimiter, set this one to the same as delimiter 1.

SQL Statement Delimiter 2
Allow "go" as Delimiter Specifies whether go as the first word on a single line should be interpreted as a statement delimiter.

Begin Identifier Defines the character(s) that identifies the start of an anonymous SQL block.

End Identifier Defines the character(s) that identifies the end of an anonymous SQL block

SQL Formatting

The SQL formatting category groups properties to control the SQL formatting feature in the SQL Commander. To see the effect of each property,
modify it, press Apply and format the SQL in the SQL Commander.

Auto Completion
These category is used to define the visual appearance of the auto completion popup in SQL Editors.

Property Description

Sort Tables List Enable this to always present tables sorted in the auto completion popup

187(260)

Sort Columns List Enable this to always present column names sorted in the auto completion popup

Display Automatically Enable this and the auto completion popup is automatically displayed whenever possible

Instant Substitution Enable this and the auto completion feature substitutes directly if there is only one matching entry

Display Delay Specifies the time in milliseconds until the auto completion popup is displayed automatically
Comments
Property Description
Single Line Identifier 1 Specifies the character(s) that identifies the beginning of a one line comment
Single Line Identifier 2 Specifies the additional character(s) that identifies the beginning of a one line comment

Block Comment Begin Identifier Specifies the character(s) that identifies the start of a multi line comment block

Block Comment End Identifier Specifies the character(s) that identifies the end of a multi line comment block

Variables

Variables can be used in the SQL executed in the SQL Commander. Before executing an SQL statement or connecting a database connection, a
dialog is displayed, asking for replacement values.

These settings define a character sequence that identifies a variable and another sequence that delimits different parts of a variable.
Example: ${variable}$.

Property Description
Variable Identifier Prefix The start identifier for a variable. Default is ${.
Variable Identifier Suffix The end identifier for a variable. Default is }$.

Variable Delimiter The delimiter used to identify the parts of a variable. Default is ||.

Proxy Settings

The Check for Updates feature requires HTTP access to the internet. If you access the internet through a proxy, you must specify the proxy settings
in order to use this feature.

Property Description
Proxy Type Specifies the type of proxy you use: HTTP or SOCKS
Proxy Host Specifies the name or the IP address for the proxy host
Proxy Port Specifies the proxy port number
Proxy User If the proxy requires authentication, specifies the proxy user account name. Leave blank for a non-authenticating proxy

188(260)

Proxy Password

If the proxy requires authentication, specifies the password for the proxy user account name. Leave blank for a non-
authenticating proxy

Database Settings

Database settings extends the General settings with properties that may have different values per supported database type. You specify the
database type for a connection by choosing the appropriate type from the Database Type list in the Connection tab. If there is no matching entry,
use the Generic database type.

The database type specific properties in the Tool Properties apply to all connections of the specific database type. You can also override these
properties in the Connection Properties tab for a specific connection, in case you need to use different values for connections of the same database

type.

.

E]' Tool Properties

[_ﬂ Database

=& =]

ﬂ _Ebase
=i
Authentication
Delimited Identifiers
[£ Qualifiers
[+ g Physical Connection
[-] 50L Statements
¢ Connection Hooks
-|iZ) Objects Tree Labels
SQL Editor
EE Query Builder
Cache
Daffodil DB
DB2 LUW
DB2 z/05
FrontBase
Informix
HP Meoview
HSQLDE
JavaDB/Derhy
IJDataStore
MaxDE
Mirmer SQL

[+-
[+
[H-
[H-
[+
[H-
[+
[+
[H-
[+-
[+
[H-

EEEEEEEEEEEEI

s

m

Connection Mode

Usa this setting to define what type of databass the database connection represent. For type Test
and Production, DbVisualizer renders a border around the SQL editor, editable result sets and form
editor to catch your attention.

Use the Permission tocl properties category to define rules for specific festures and database
operations.

[Development][Test][Froduction |

Show only default Database or Schema

Check to enable that only the defaut database and/or schema will appear in the Database Objects
tree and throughout the application.

Show only default Database or Schema: [

Connect when "Connect All"
Defines whether this database will be connactad when the Connect All operation i sslected.

Connect when "Connect Al™: [7]

Defaults

o] [rewy_] [t

Figure: The Tool Properties window showing the tree with Database categories

The following properties are displayed when selecting a database type in the tree.

Property

Connection Mode

Show only default Database or Schema

Connect when "Connect All"

Description

Specifies the connection mode for the database connection: Development, Test or Production.
Permissions are based on connection mode. For the Test and Production modes, DbVisualizer displays
a border around areas where database content can be edited, to bring your attention to the fact that you
are connected to a database where others may be affected by your changes.

Enable this if you only want the default database or schema listed in the database objects tree.

The Connect All feature allows you to connect to multiple database connections with a single click.
Enable this property to include database connections of this type when using the Connect All feature.

189(260)

Authentication
Property Description

If enabled, DbVisualizer saves the password for the database connection between invocations. (The password is
saved encrypted)

Save Password
Clear Password at Disconnect If enabled, the password is cleared at disconnect

Require Userid If enabled, you are asked to enter a userid whenever the database connection is established

Require Password If enabled, you are asked to enter a password whenever the database connection is established

Delimited Identifiers

Delimited identifiers are identifiers which do not need to follow the rules of regular database object identifiers. Usually, delimited identifiers are used
when you need to use SQL reserved words, spaces and mixed case sequences in an identifier.

Property Description
Begin Identifier Defines the start character for a delimited identifier. Normally, this is a double quote as in "...".
End Identifier Defines the end character for a delimited identifier. Normally, this is a double quote as in "...".
Scripting Enable this to use delimited identifiers in the Scripting features

Auto Completion/Query Builder Enable this to use delimited identifiers in the auto completion and query builder features

Qualifiers
These properties control whether table and column names should be qualified when DbVisualizer generates SQL statement.
Property Description

Enable this to qualify object names with the schema/database in the Scripting

Qualify with Schema/Database: Scripting features

Enable this to qualify object names with the schema/database in the auto

Qualify with Schema/Database: Auto Completion/Query Builder completion and query builder features.

Enable this to qualify object names with the schema/database in the graphs

Qualify with Schema/Database: References/Navigator Graphs shown in the References and Navigator tabs.

Enable this to qualify column names with the table name in the auto
completion and query builder features.

Note: When you specify a table name alias, it is always used as a column
name qualifier, regardless of this property setting.

Qualify Columns: Auto Completion/Query Builder

Physical Connection

The Physical Connection category controls whether DbVisualizer should use only one physical connection with the database server or if physical
connections will be acquired when needed. The Use Single Shared Physical Database Connection is disabled by default. If enabled then briefly it
means that whenever establishing a connection DbVisualizer will assign one physical database connection for the objects tree and one per every
SQL editor in the SQL Commander. The physical connection for a SQL editor is not acquired directly when the editor is created but rather when

190(260)

doing the first execute in it.

If enabling Use Single Shared Physical Database Connection then only one physical connection will be used for that database. DbVisualizer will
then share the physical connection among all features communicating with the database. If using a single physical connection and auto commit is off
then a confirmation dialog may appear when launching features that require transaction control and if there are uncommitted changes in the

database.

Transaction

Property

Auto Commit

Ask when Auto Commit is Off

Transaction Isolation

Commit Batch Size

SQL Statements

Description

Defines if each executed SQL statement will be auto committed or not. This setting applies for all SQL statements
that are executed in the SQL Commander.

If auto commit is off then this setting when enabled will show a confirmation dialog if there are uncommitted
changes produced by the last execution in the SQL Commander.

Attempts to change the transaction isolation level for all database connections.
Note: If this property is changed during a transaction, the result is JDBC driver specific.

Specifies after how many rows DbVisualizer commits the transaction when saving a batch of changes in the table
data editor and when inserting rows in table data import.

This category controls the SQL templates that DbVisualizer uses internally throughout the application. Each SQL template is composed of the
standard SQL and variables. Variables are identified with ${...}$. DbVisualizer relies on a number of predefined variables, listed in the SQL

Templates area right-click menu:

catalog
catalogseparator
schema
schemaseparator
table
table-name

where-columnsz

columns

values
column-values
create-columns
index-type

index

unigue
index-columns
create-primary-key
DbVis-Date
DbVis-Time
DbVis-Exec-Time
DbVis-Fetch-Time

quoted-where-columns

Figure: All predefined variables

A specific predefined variable can be used in one or more of the SQL templates. Using a variable that is not valid for a specific SQL statement will

191(260)

result in the variable appearing as-is when the statement is executed.

There is normally no reason to modify the SQL templates, nor the variable identifier or delimiter settings. There might however be circumstances
when edits are needed, for instance to modify the appearance of the where clause or the list of columns.

Property Description
SELECT ALL Command used when selecting all rows for a table
SELECT ALL WHERE Command used when selecting some rows for a table
SELECT COUNT Command used to get the number of rows in a table
INSERT INTO Command used to insert a new row into a table
UPDATE WHERE Command used to update an existing row in a table
DELETE WHERE Command used to delete a specific row in a table
DROP TABLE Command used to drop a specific table
CREATE TABLE Command used to create a new table with an optional primary key
CREATE INDEX Command used to create an index for a specific table
Monitor Row Count Command used to get the number of rows in a table and the current time stamp

Command used to get the row count difference in a table compared to the previous execution. The calculated row

Monitor Row Count Change count and the current time stamp is returned

Connection Hooks

Connection hooks defines optional SQL commands that are sent to the database at connect and just before disconnect. They are typically used to
initialize the database session with custom settings and to clean up various resources at disconnect.

Property Description
Run SQL at Connect Defines the SQL to be executed just after the connection has been established

Run SQL at Disconnect Defines the SQL to be executed just before the connection will be disconnected

Objects Tree Labels
Property Description

Here you can define custom tree labels for the data nodes in the database objects tree. The Object Type must match

Custom Object Tree Labels the corresponding type in the actual database profile, see more below.

The label for a data node (e.g., a table or view node, as opposed to a node that just groups nodes, such as the Tables node) is typically the name of
the database object the node represents, e.g., the table or view name. In some cases, you may want to extend the label to include other information,
such as the name of the schema that the object belongs to. To do this, you can use a custom tree label, defined in the Objects Tree properties
category.

You need two pieces of information to define a custom label: the Object Type name for the data node, and the names of the variables that hold the
information you want to use in the label. You find this information in the <ObjectsTreeDef> element in the database profile XML file (described in

192(260)

detail in the Database Profile Framework section) for the database type you want to modify. Using the database profile for the JavaDB/Derby
database type as an example, a stripped down version of the <ObjectsTreeDef> element looks like this:

<ObjectsTreeDef id="derby">
<GroupNode type="Schemas" label="Schemas">
<DataNode type="Schema" label="${derby.getSchemas.Schema}">
<SetVar name="schema" value="${derby.getSchemas.Schema}"/>
<SetVar name="schemald" value="${derby.getSchemas.Schema Id}"/>
[...]
<GroupNode type="Tables" label="Tables">
<DataNode type="Table" label="${derby.getTables.Table Name}" islLeaf="true">
<SetVar name="objectname" value="${derby.getTables.Table Name}"/>
<SetVar name="rowcount" value="true"/>
<SetVar name="acceptInQB" value="true"/>

[...]
</DataNode>
</GroupNode>
[...]
</DataNode>
[...]
</GroupNode>
[...]
</0ObjectsTreeDef>

In this example, there is one <DataNode> element with a type attribute set to Schema, with a nested <DataNode> element with a type attribute

set to Table. These two elements represent data nodes, for the schema and table node, respectively, and the type attribute value is the Object
Type name you need to bind the custom label to an object type.

Each <DataNode> element also has a number of nested <SetVar> elements, declaring the variables you can use in the custom label value. All

variables declared for the object type node and those declared for a parent <DataNode> element can be used in the label. So, if you want the label
for table nodes in the tree to show both the schema name and the table name, you add a custom label declaration like this:

e

=

E] Tool Properties EI@
i Datab
lﬂ E—— Custom Object Tree Labels

Ell_ﬂ JavaDB/Derby -
Authentication

Here you can define custom labeks for the nodes presanted in the objects tree,
These labels will appear only for this database connection.
Delimited Identifiers Mote: The Object Type must match the type attribute in the database profile,

-| F'F Qualifiers -
Object Type Label
A T ot & ' £
|~ 0L Statements I S{schema} ${objectname} | [E]

- # ¥ Connection Hooks
B
- |4 SO Editor

-8 Query Builder

@ Data Types

+1-| & IDataStore

'Ellj MaxDEB

m

) (o) [

Figure: Custom label declaration

SQL Editor

Property Description

193(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

If enabled, changing the schema in the SQL Commander also changes the default schema for the database connection, so

that unqualified table names in any SQL statement are associated with the selected schema. If this property is not enabled,
Set Current Schema changing the schema only affects the schemas used for auto-completion.

Note: Only a few databases supports setting the default schema for an opened connection. This property is only shown for

database types that support it.

Query Builder
Property Description

With auto-join enabled, the Query Builder automatically joins tables as they are included in the query,
Query Builder Auto-Join Properties based on the specified column matching rule: FK/PK declarations or columns with matching names in
different tables.

Specifies whether the Query Builder generates joins as JOIN clauses or WHERE conditions.
JOIN clause:

SELECT o

FROM HR.EMPLOYEES emp

INNER JOIN HR.DEPARTMENTS dept

ON (emp .DEPARTMENT_ID = dept.DEPARTMENT_ID)

Generate JOIN clauses in Query Builder

WHERE condition:

SELECT *
FROM HR.EMPLOYEES emp,
HR.DEPARTMENTS dept
WHERE (emp.DEPARTMENT_ID = dept.DEPARTMENT_ID)

Database Specific settings

DbVisualizer provides more support for some databases than for others, and so requires extended configuration capabilities for these databases.

Data Types (Oracle)

With Oracle, the DATE data type should sometimes be handled as TIMESTAMP. Enable Handle DATE as TIMESTAMP and DbVisualizer will
convert DATE into TIMESTAMP objects.

Data Types (DB2 and JavaDB/Derby)

DB2 and JavaDB/Derby supports a data type named CHAR FOR BIT DATA. If you want to see values of this type as text, enable this property.

Explain Plan (Oracle, SQL Server and DB2)
The explain plan feature supported for Oracle, SQL Server and DB2 can be configured to highlight certain threshold levels.
Property Description

Color Critical Nodes [f enabled, critical nodes in the explain plan are highlighted.

194(260)

Critical Threshold Specifies the threshold for when a node should be handled as critical

Warning Threshold Specifies the threshold for when a node should be handled as a warning

Explain Plan (Oracle)

The explain plan feature for Oracle can be configured to define the management of the underlying plan table in which the explain plan result is
stored.

Explain Plan (DB2)

The explain plan feature for DB2 can be configured to define the management of the underlying plan tables in which the explain plan result is stored.

Objects Tree (Oracle)
Property Description

Show Empty Schemas If disabled, only schemas that contain database objects are shown in the tree.
pty Note: Only disable this if you have DBA permissions, otherwise no schemas as listed,

Select here whether the database profile for Oracle should retrieve database information from the DBA or ALL system

System View Prefix tables.
Note: If choosing DBA, make sure the appropriate privileges are granted for the user you are connecting as.

195(260)

Export and Import

Introduction

You can export both schema objects and data from DbVisualizer to a file. With the Export Schema feature, you can export the DDL and/or data for all
or selected objects in a database schema. The Export Table feature offers the same options as Export Schema but for a single table.

The Export Data feature writes different types of data presented in DbVisualizer, such as text and graphs, to a file. The Export Data Wizard dialog
looks different depending on whether grid, graph or chart data is being exported.

The following sections describe the options available for each of these cases. There are major differences between DbVisualizer Free and
DbVisualizer Personal when exporting objects and data. This document explains the complete functionality in the Personal edition, some of which is
not available in DbVisualizer Free.

Exporting very large result sets using the standard Export Data feature may fail due to running out of memory, since all data must first be presented
in DbVisualizer. The @export client side command in the SQL Commander solves this problem, since it exports the data on the fly while it is fetched
from the database.

The Import Table Data feature reads data stored in CSV (Character Separated Values) format from files.

Export Schema

Sometimes you may need to copy a schema from one database to another, or compare two similar schema to see how they differ. The Export
Schema feature can help you with tasks like these. This feature writes the DDL and/or the table data for all or selected database objects in a schema
to a file or another destination.

196(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515

QOutput Format

T1CSY (CHTML @ 5QL (7 XML () MLS Encoding: {7 Cp1252 -
Output Destination

i@ File |C:‘,L.Isers\.|’13ns |E]

() SQL Commander (Target editor)

) Clipboard

Object Types

T
§

G- Views =

e Functions

2 Procedures

E Packages

[Package Bodies L

e Triggers -
Options

Generate CREATE Statements:

Generate DROP Statements:

Indude Table Indexes:
Indude Table Data:

Statement Separator: E]

| Data Format Settings... |

Settings 7 Export] [Close

Figure: The Export Schema dialog

You launch the Export Schema dialog by selecting the schema you want to export in the object tree and choosing Export Schema either from the
right-click menu or from the Actions menu.

The following sections describe the different options you can use. When you are happy with all the settings, click Export to start the process. Log
messages are displayed during the export process.

Output Format

You can export the schema objects in a number of formats. With the SQL or XML formats you can export the DDL for all supported object types as
well as the data for tables, while the other formats only apply to table data.

If you choose SQL, the objects are exported as DDL statements (CREATE TABLE, CREATE VIEW, etc.) and, if you choose to include table data, as
INSERT statements. This is the format to use if you want to recreate the schema somewhere else.

197(260)

If you want to compare one schema to another, you may want to pick the XML format instead. The object declarations are then exported as XML

documents, like this example:

<?xml version="1.0" encoding="MacRoman"?>

<TABLE>
<SCHEMA>
HR
</SCHEMA>
<NAME>
JOBS
</NAME>
<COLUMNS>
<COLUMN>
<NAME>
JOB_ID
</NAME>
<DATA_TYPE>
VARCHAR(10)
</DATA_TYPE>
</ COLUMN>
<COLUMN>
<NAME>
JOB_TITLE
</NAME>
<DATA_TYPE>
VARCHAR(35)
</DATA_TYPE>
</ COLUMN>
<COLUMN>
<NAME>
MIN_SALARY
</NAME>
<DATA_TYPE>
INTEGER
</DATA_TYPE>
<NULLABLE/>
</COLUMN>
<COLUMN>
<NAME>
MAX_SALARY
</NAME>
<DATA_TYPE>
INTEGER
</DATA_TYPE>
<NULLABLE/>
</COLUMN>
</COLUMNS>
<CONSTRAINTS>
<CONSTRAINT>
<NAME>
JOB_ID_PK
</NAME>
<TYPE>
PRIMARY KEY
</TYPE>
<COLUMNS>
<COLUMN>
<NAME>
JOB_ID
</NAME>
</COLUMN>
</COLUMNS>
</CONSTRAINT>
<CONSTRAINT>
<NAME>

198(260)

JOB_TITLE_NN
</NAME>
<TYPE>

CHECK
</TYPE>
<EXPRESSION>

"JOB_TITLE" IS NOT NULL
</EXPRESSION>

</CONSTRAINT>
</CONSTRAINTS>
</TABLE>

The encoding choice specifies which character encoding to use for the data when you export to a file, and it is also used as the encoding in XML
header when you use the XML format. The default choice is based on your systems default encoding.

The table data is exported in the same format as described for Export Grid Data below.

Output Destination

Destination Description
File This option outputs the data to the named file.
SQL Commander This option writes the export data to an SQL Commander editor. It is primarily useful when exporting with the SQL output format.

Exporting to the (system) clipboard is convenient if you want to use the exported data in another application without the extra

Clipboard step of exporting to file first.

Object Types

In the Object Types area, you select the object types or individual objects you want to export. Checking the check box for a type, e.g. Tables, selects
all objects of that type. Expand the type node to select individual objects instead, e.g. just a few tables.

Options

The Options area contains different options depending on the selected Output Format. Most options are the same as for Export Grid Data, but for the
SQL format you can also choose to Generate CREATE and DROP Statements and to Include Table Data and Table Indexes for the exported tables.
Similarly, with XML format you can choose to include the DDL, table indexes and table data.

If you choose to include table data, you can also change how the values for different data types are formatted in the output by clicking the Data
Format Settings button.

199(260)

Tomrma =

Data Format
Date: |yyyy-MM-dd - ‘ Example: 2008-12-15
Time: |HH:mm:ss | - ‘ Example: 18:20:58
Timestamp: |1rm—f~"ll'~"|—dd HH:mm:ss | - ‘ Example: 2009-12-15 18:20:58
Mumber: |Unﬁ:rmatted | - ‘ Example: 9126183

Dedmal Mumber: |Unﬁ:rmatted

| - ‘ Example: 9126183.531815

Boolean,BIT: [mfﬁse -]
Binary/BLOB: ISizE -] Dil':| |E|
CLOE: ’52& ~] Dir:| -]
Mull Value: |{null} |

Quote Text Data

() None (@) Single () Double Duplicate Embedded Ex: ©Learys "steaks™ -> "O”Learys "steaks™

ok || Cancl

Figure: The Data Format Settings dialog

Settings
Clicking the Settings button reveals a a menu with options for saving and loading settings to and from a file.

* Save as Default Settings

Saves all format settings as default. These are then loaded automatically when DbVisualizer is started
¢ Use Default Settings

Use this choice to initialize the settings with default values

e Load
Use this choice to open the file choose dialog, in which you can select a settings file
* SaveAs

Use this choice to save the settings to a file

¢ Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL Commander to define the settings for
the @export editor commands.

Logging

By default, log messages about the export process are shown in the Log tab. If you instead want to write the messages to a file, open the Log tab
and specify the file before clicking Export.

Export Table

When you select a table node in the objects tree, you can open the Export Table dialog from the right-click menu or the Actions menu. It has exactly
the same options as Export Schema, except that it only exports the selected table.

200(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

>

| & Export Table EMPLOYEES

Settings

() S0L Commander :New Editor

() Clipboard

Output Format

(C)CSV (JHTML @ SQL () XML (D) ¥LS Encoding: ﬁ Cp1252 -
Qutput Destination

(@) File C:\Usersthans E]

- (Target editor)

Options
Generate CREATE Statements: [

Generate DROF Statements: ||
Indude Table Indexes: [l
Indude Table Data:
Statement Separator: ,

[Data Format Settings...

-

[Export d [Close

Figure: The Export Table dialog

Export Grid data

The Export wizard is launched using the Export button in the grid toolbar (@) or from the grid's right-click menu. If you want to export just some of
the grid rows and columns instead of all data in the grid, select the data to export and launch the wizard with the Export Selection right-click menu

choice.

Settings page

The first wizard page is the Settings page, containing general properties for how the exported data should be formatted. All settings in the settings

page can be saved to a file for later use in the export wizard or in the SQL Commander when exporting result sets using the @export editor

command.

201(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

e

| 8 Export Grid

[Export Grid

=]

Settings

Output Format
@ CsY OHML @ 50L @) XML () XS

Encoding: | {7 Cp1252

<]

Data Format
Date: |ww-MM-dd | - | Example: 2005-12-15
Time: |HH:mm:55 | - | Example: 18:34:18
Timestamp: |ww-MM-dd HH:mm;ss | - | Example: 2009-12-15 18:34:18
Mumber: |Ur1ﬁ:rmatted | - | Example: 9126183

Decimal Mumber: |Ur1ﬁ:rmatted

| - | Example: 9126183.531815

Boolean,BIT: [m.be!ﬁﬂse

g

@ MNone (7) Single (7) Double [/] Duplicate Embedded

Binary,BLOB: [Size = I Dir:| |_|
CLOB: [Size - I Dir| =)
Mull Value: |{nu||','| |

Quote Text Data

Ex: OfLearys “steaks” -» O'Learys “steaks™

Row Comment Identifier: |:|

Remaowve Newline Characters:

Indude Qriginal 5QL:

Options
Column Delimiter: TAB -
Row Delimiter: UNIX/Linux/Mac OS X -LF |
Indude Column Names:

Setlings =

< Back |[Mext =][Cancel

Figure: The grid export wizard

Read the sections below for detailed information about each field and the settings you can use.

Output Format
Grid data can be exported in the following formats.

Format

Description

Csv The CSV format (Character Separated Values) is used to export the grid of data to a file in which each column is separated with one or
more characters. You may also specify the row delimiter (aka newline sequence of characters).

5,Hepp, 59248
15, Hopp, 41993

202(260)

16,Hupp, 44115

The above example use a "," as the column delimiter and a "\n" sequence as the row delimiter (invisible above).

HTML The data is exported in HTML format using the <TABLE> and associated tags.

The SQL format simply creates an SQL INSERT statement for each row in the grid. It also uses the column names from the grid to define
the column list in the SQL statement.

saL insert into tablel (Columnl, Column2, Column3) values (5, 'Hepp', 59248);

insert into tablel (Columnl, Column2, Column3) values (15, 'Hopp', 41993);
insert into tablel (Columnl, Column2, Column3) values (16, 'Hupp', 44115);

The XML format is handy when importing or using the exported data in an XML enabled application. The default structure of the XML
format is:

<ROWSET>
<ROW>
<Columnl>5</Columnl>
<Column2>Hepp</Column2>
<Column3>59248</Column3>
</ROW>
<ROW>
<Column1>15</Columnl>
<Column2>Hopp</Column2>
<Column3>41993</Column3>
</ROW>
<ROW>
<Columnl>15</Columnl>
<Column2>Hupp</Column2>
<Column3>44115</Column3>
</ROW>
</ROWSET>

XML

Alternatively, you can choose between the commonly used XmIDataSet and FlatXmlDataSet formats.

XLS Use the XLS format if you want to work with the exported data in Microsoft Excel or a compatible spreadsheet application, such as Open
Office.

Encoding

The encoding choice specifies which character encoding to use for the data. It is also used to set the encoding in the HTML and XML headers. The
default choice is based on your systems default encoding.

Data Format

The data format settings define how the data for each of the data types will be formatted.

Quote Text Data

Defines whether text data should appear between quotes. Use the Duplicate Embedded option to properly deal with text that contains the quote
character when you export as SQL or CSV.

203(260)

Options

The options section is used to define settings that are specific for the selected output format.

Csv
Options
Column Delimiter: |'I'AE - |
Row Delimiter: UNIX/Linux/Mac OS X -LF + |
Indude Column Mames:

Row Comment Identifier: |:|

Remove Mewline Characters:

Indude Original SQL:

Figure: CSV specific export options

HTML

Options

Tite: DbVisualizer export output

Description:

Incude Original SQL:

Figure: HTML specific export options

SQL

Options
Table Name: HR.EMPLOYEES

Statement Separator: E]
Row Comment Identifier: |:|

Indude Basic DDL:

Include Original SQL:

Figure: SQL specific export options

204(260)

XML

Oplions

¥ML Style: i@ DbVisualizer () XmiDataSet () Flat{miDataSet

Description:

Incude Original SQL:

Figure: XML specific export options

XLS
Options
Indude Column Names:
Tite: |Db'l.|"|5ualizer export output
Description:
Text Columns:
Incdude Original SQL:
Settings

Clicking the Settings button reveals a a menu with options for saving and loading settings to and from a file:

¢ Save as Default Settings
Saves all settings as default. These are then loaded automatically when DbVisualizer is started
¢ Use Default Settings
Use this choice to initialize the settings with default values. Some of the settings will be fetched from the general tool properties dialog.

* Load
Use this choice to open the file chooser dialog, in which you can select a settings file
* SaveAs

Use this choice to save the settings to a file

¢ Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL Commander to define the settings for
the @export editor commands.

Data page

Clicking the Next button in the wizards moves you to the Data page. Use the columns list to control which columns to export and how to format the
data for each columns. The list is exactly the same as the column headers in the original grid, i.e., if a column was manually removed from the grid
before launching the Export wizard, then it will not appear in this list.

205(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

-

| 4 ot Grid

[Export Grid Data
Columns
Export | Mame Type CIsText Value | A |
EMPLOYEE_ID BigDecimal Hvaluels
FIRST_MNAME String Bvaluels | v |
LAST_MAME String Fivalue}s
EMAIL String Fivaluels
PHOME_MUMBER String Hvaluels
HIRE_DATE Timestamp Bvaluels
JOB_ID String Fivaluels
SALARY BigDecimal Fivaluels
COMMISSION_PCT BigDecimal Hvaluels
MAMAGER_ID BigDecimal Fivaluels
DEPARTMEMT_ID BigDecimal Hvaluels
Table Rows
Total Number of Rows in Gn'd:
MNumber of Rows to Export:
Settings 7 <Back || Next> | | Cancel

Figure: The grid export wizard

The Table Rows fields show you how many rows are available and let you specify the number of rows to export. This setting along with the Add

Row button is especially useful when you use the test data generation feature described in the next section.

Here follows information about the columns in the list.

Field

Description

Export | Defines whether the column will be exported or not. Uncheck it to ignore the column in the exported output.

Name

The name of the column. This is used if exporting in HTML, XML, XLS or SQL format. Column headers are optional in the CSV output

format.
Tvpe The internal DbVisualizer type for the column. This type is used to determine if the column is a text column (i.e., if the data should be
yP enclosed by quotes or not).
Text Specifies if the column is considered to be a text column (this is determined based on the type) and so if the value should be enclosed in
quotes.
Value The default $$value$$ variable is simply be substituted with the column value in the exported output. You can enter additional static text

in the value field. This is also the place where any test data generators are defined.

Generate Test Data

The test data generator is useful when you need to add random column data to the exported output.

206(260)

The Value field specifies the data to be in the exported output. By default, it contains the s {value}$ variable, which is simply replaced with the real
column value during the export process. You can also add static values before and after the ${value}s$ field, to be exported as entered.

Alternatively, you can use test data generator variables in the Value field. The choices are available in the right-click menu when you edit the Value
field.

] Export Grid Data
Columns
Export | Mame Type | |5 Text | Yalue FY
EMPLOYEE_ID BigDecimal Sivaluelf
FIRST_NAME String ${valuel$
LAST _MAME String Fivalueld
EMAIL Str!ng Sivaluels @ A Rom
PHONE_NUMBER String Fivaluel
HIRE_DATE Timestamp Sivaluels
JOB_ID String Fvalueld
SALARY BigDecimal Fivalueld
COMMISSION_PCT BigDecimal Sivaluelf
MANAGER_ID BigDecimal Bvalue}s
DEPARTMENT_ID BigDecimal Sivaluelf
E_NewcoLuun (sing | @ |)
| Generate random number
Generate random string of random length

Generate random value from a list of values
Table Rows

Total Mumber of Rows in Grid:
Mumber of Rows to Export:

Settings & <Back || Mext> | | Cancel

Generate sequential number

Figure: Right-click menu with the test data generator functions

Function Name Function Call Example

Generate random number ${var| |randomnumber(1, 2147483647)%}$ 26192764{25%843 random number between 1 and

Generates random text with a length

Generate random string of random size ${varl lrandomtext(1l, 10)}$ between 1 an 10 characters

Picks one of the listed values in random

Generate random value from a list of values ${var| lrandomenum(vl, v2, v3, v4, v5)}$ order

Generates a sequential number starting from
1. The generator re-starts at 1 when

Generate sequential number ${varl Inumber(1, 2147483647, 1)}$ 2147483647 is reached. The number is
increased with 1 every time a new value is
generated.

Test data generator example

Here is an example of how to use the test data generators to try out planned changes to the data. Consider this initial data:

207(260)

£ EMPNO ENAME
1 ?369 Smith
2 7499 Allen
3 7521 Ward
4 TH66 Jones
5 7654 Martin
G 7698 Blake
T 7782 Clark
8 7788 Scott
g 7831 King
10 T844 Turner
11 7876 Adams
12 7900 James
13 7902 Ford
14 7934 Miller

Figure: Sample of grid data

JoB
Clerk
Salesman
Salesman
Manager
Salesman
Manager
Manager
Analyst
President
Salesman
Clerk
Clerk
Analyst
Clerk

MGR HIREDATE

17902 1980-12-17 00:00:00

7698 1981-02-20 00:00:00
7698 1981-02-22 00:00:00
7839 1981-04-02 00:00:00
7698 1981-09-28 00:00:00
7839 1931-05-01 00:00:00
7839 1981-06-09 00:00:00
7566 1987-04-19 00:00:00

231981-11-17 00:00:00
7698 1981-09-08 00:00:00
7788 1987-05-23 00:00:00
7698 1081-12-03 00:00:00
7566 1981-12-03 00:00:00
7782 1982-01-23 00:00:00

1600
1250
2975
1250
2850
2450
3000
5000
1500
1100

950
3000
1300

(null}
300
500

(null}

1400

(null}

(null}

(null}

23
a

(null}

(null}

(null}

(null}

SAL COMM DEPTNO
200

20
30
30
20
30
30
10
20
10
30
20
30
20
10

After the changes, the JOB column should not appear in the output and the new JOB_FUNCTION should contain abbreviated job function codes. To
test this, we simply uncheck the Export field for JOB entry and set the Value for the JOB_FUNCTION to use the Generate random value from a

list of values function.

>

| & Export Grid 55
E Export Grid Data
Columns

Expot =~ Name | Type IsText Value Y

EMPNO BigDecimal [Sjvaluels

ENAME String ¥ Svalue}s
Strlng ¥ $valuels

_ EI CODE |sting | E [Sivarlrandomenum(eng,adm,fin)$
& MG EHgDemmal [$valuels
HIREDﬁ.TE Timestamp [V ®jvaluel
SAL BigDecimal [$valuels
COMM BigDecimal [®jvaluels
DEPTHO BigDecimal = Sivaluels

Table Rows

Total Mumber of Rows in Grid: 14

Mumber of Rows to Export: | 14

<Back || Mext> | | Cancel

Figure: Customized columns list with a generator function

Previewing the data (or exporting it) in CSV format results in this:

208(260)

=

| & Export Grid (=3
[Export Grid Preview
Preview of the first 100 rows (or less)
1 EMFNO ENANME JOE_CODE HGER. HIREDATE S4L COMM DEPTHO
Z 7368 Smith adn 7902 1950-12-17 00:00:00 oo [mll) 20
3 74949 Allen adn 7685 1981-0Z-20 00:00:00 1&600 300 30
4 7521 Ward Eng 7695 1951-02-22 00:00:00 1250 L00 30
5 7566 Jones adn 7839 1951-04-02 00:00:00 2975 [mall) 20
6 7654 Martin £fin -k 1951-09-28 00:00:00 1250 1400 30
T 7698 Elake adn 7539 1951-05-01 00:o0:00 2850 [mll) 30
g 7752 Clark adn 7539 1951-06-09 00:00:00 2450 (fmall) 10
9 7764 Jcott fin 7566 1957-04-1%9 00:00:00 3000 [rmll) 20
10 75831 Eing e 23 1951-11-17 o0:00:00 L2000 Z3 10
11 7544 Turner eng TaR 1951-09-05 00:00:00 1500 0 30
12 7576 Adams fin 7758 1957-05-23 00:00:00 1100 (fmall) 20
13 7200 Janes [Sels) 7698 1081-12-03 00:00:00 950 (rmall) 30
14 7302 Ford fin 7566 1951-12-03 00:00:00 3000 [rmll) 20
15 7934 Miller eng - 1952-01-23 00:00:00 1300 (mll) 10
< Back] [Mext= | l Cancel

Figure: Result of generated test data

Preview

The third wizard page is the Preview page, showing the first 100 rows of the data as it will appear when it is finally exported. This is useful to verify
the data before performing the export process. If the previewed data is not what you expected, just use the back button to modify the settings.

Output Destination

The final wizard page is the Output Destination page. The destination field specifies the target destination for the exported data.

>

| & Export Grid

Output Destination

E Export Grid

[l

Output Destination

@) File C:\Usersthans\employee, csv E]
(71 SQL Commander :New Editor - (Target editor)

i) Clipboard

< Back][Export] [Cancel

Figure: The output destination and final page for grid export

209(260)

Destination

File

This option outputs the data to a named file.

SQL Commander This option writes the export data to an SQL Commander editor. It is primarily useful when exporting with the SQL output format.

Clipboard

Export Text data

The wizard for exporting result sets in Text format is very simple, as it is only possible to specify a file for the exported output. The dialog looks
slightly different on different platforms.

&=
<5

Recent Items

Metwark

ﬁ

Save in: [j_. hans

1 .dbvis

&5 Contacts
Bl Desktop

7| My Documents
& Downloads

L+ Favorites

P Links

W My Music

=] My Pictures
| Saved Games

U Searches
& My Videos

O

Hidden Files:

Show

Encoding:

3 cpiz52 -

File name: |resu|t.t|ct|

Files of type: [sq_sm(.s:i,dd]

Figure: Export window for text format result sets

Export Graph data

Exporting to the (system) clipboard is convenient if you want to use the exported data in another application without the extra
step of exporting to file first. CSV formatted data can even be pasted into a spreadsheet application such as Excel or StarOffice,
and the cells in the grid will appear as cells in the spreadsheet. Read more about the CSV format in the Format section.

When you export a References or Navigator graph, it is exported with the same zoom level as it appears on the screen. The Export wizard pages
when exporting a graph looks like this:

210(260)

ﬁﬁ

Bg Export Graph Settings % Export Graph Output Destination
Output Format Output Destination
§8& () GIF ()PNG () SVG () POF File |C:‘|I_.Isers‘|||'13ns‘|graph.jpg |E]
<gack | [MNext> | [Cancel <Back | [Export | | Cancel

Figure: Export window for graphs

The graph can be exported to a File in the JPEG, GIF, PNG, SVG or PDF formats.

Export Chart data

The options when exporting charts are similar to those for graphs, but in addition you can set the size and orientation to use for the chart in the file.

ﬁﬁ

E'q Export Chart Settings E‘;q Export Chart Output Destination
Qutput Format Output Destination

BBE (0 PNG File |C:¥Jsers‘|,‘13nskj'1art.jpg |[3
Layout

Orientation: Portrait () Landscape

Size: Asls -

Width:

Height: 314

| <Back | Next> | [Cancel <Back || Export | [Cancel

Figure: Export window for charts

A chart can be exported to a File in the JPEG and PNG formats. The optional Layout settings are used to control orientation and size of the image.
The default width and height are the same as the size of the chart as it appear on the screen. The Size list when clicked shows a list of well known
paper formats. The Width and Height are changed to match the selected size. Whether setting the width and height manually or selecting a
predefined size, the exported image is scaled accordingly.

Import Table Data

The Import Table Data feature is used to import files containing data organized as rows of columns with separator characters between them, such as
CSV files.

Note: The first row in the source file can be used to name the columns.

211(260)

The destination for the imported data can be a database table or a grid in DbVisualizer. The grid option is convenient for smaller files, as the features
available for a DbVisualizer grid can then be used to do various things with the data. An example is that a CSV file can easily be converted into an
XML file or a HTML document by importing the data to a grid and then use the Export Wizard in the grid to output the grid data in the desired format.

The Import Wizard can be used in two ways. To import data into an existing table, select the table node in the objects tree and launch the wizard via

the right-click menu or via the Actions menu.

E||:| Tables
[#-{77] COUNTRIES
-] DEPARTMENTS

R FMPLOYEES

{77 JOB_HISTOR %] Alter Table...

D 1085 Rename Table...
{7 LOCATIONS
-] ORDERS Empty Table...

w7/ REGIONS | €3 Drop Table..

Eﬂ--m Views

&- & Synonyms Copy Table...
¢ Indexes Comment Table...
Eﬂ"@ Sequences @@ Grant Privilege...

(- ool Materialized '\ﬁeu|

E}-$a Functions & Imnport Table Data...
-3 Procedures @ Export Table...

i L

Figure: Import Table Data action in the right-click menu for a table object

If you instead want to create a new table for the imported data, select the Tables node in the objects tree and then launch the wizard.

WG] Tabic

D cou Create Table...

S
-] DeP
7 EME ‘g Import Table Data...

Figure: Import Table Data action in the right-click menu for the Tables object

Source File

In the first wizard page, select the source file to import and then click the Next button.

-] 08| @ Refresh Objects Tree F5
E 108 @ Reconnect Ctrl+ Shift+R
- Lo
-7 ORE] Show in Window...
El REG| <l Add te Favorites..,
- Views
- Synonyrl P Show/Hide Tree Filter
Eﬂ--g Indexes| [} Show/Hide Table Row Count
- Sequen
4= Material @ Copy Name Ctrl+C
(-4 Function Clear Visited State
(- Procedules

212(260)

a Import CSV File Source File

Enter kecation and encoding of the file that should be imported.

Input File
File: |C:‘|}J5ers‘|,‘1ans‘|ﬁrnp.csu |E]
Encoding: {2 Cp1252 .

<gack | [MNext> | | Cancel

Figure: The Source File import wizard page

Settings

In the Settings page, you specify how the data in the file is organized. The Data section at the bottom of the page shows a preview of the parsed
data in the Grid tab and the original source file in the File tab. If a row in the Grid tab is red, it indicates that the row will be ignored during the import

process. This happens if setting any of the Options settings results in rows not being qualified.

In the Delimiters section, define the character that separates the columns in the file. If you enable Auto Detect, DbVisualizer tries the following

characters:
¢ comma","
¢ tab"TAB"

e semicolon";"
* percent "%"

Use the Options section to further define how the data should be read.

213(260)

=

& Import CSV File
Lg Import CSV File Settings

Specify options how the columns in the file should be identified. Use the Data Grid to verify that the file is properly read.

Delimiters

Column Delimiter: @ Auto Detect () String |TAB

Options
Header in First Row:
Skip Empty Riow{s):
Skip First Row(s):

Skip Rows Starting With:

Text Quoted Between: -

Data

EMPNO ENAME JOB MGR| HIREDATE SAL | COMM | DEPTNO
7369 Smith Clerk 7902 1980-12-17 00:00:00 800 (null) 20 '
7499 Allen Salesman 7508 1981-02-20 00:00:00 1600 300 30
7521 Ward Salesman 7508 1981-02-22 00:00:00 1250 500 30
7566 Jones Manager 7839 1931-04-0200:00:00 2975 (null) 20
7654 Marin Salesman 7598 1981-09-28 00:00:00 1250 1400 30
7608 Blake Manager 7839 1981-05-0100:00:00 2850 (null) 30
7782 Clark Manager 7839 1981-06-09 00:00:00 2450 (null) 10
7788 Scot Analyst 7566 1987-04-19 00:00:00 3000 (null) 20 -

»

m

Preview Rows: |20 Column Widths: | Fit |[Default]

<Back || Mext> | | Cancel |

Figure: The Settings wizard page

The following shows the preview grid with some rows in red. The reason is that the Skip First Row(s) and Skip Rows Starting With are set, i.e.,

the first two rows and the rows starting with 103 will not be imported.

214(260)

=

| &l Import CSV File

3 Import CSV File

Settings

Specify options how the columns in the file should be identified. Use the Data Grid to verify that the file is properly read.

Delimiters
Column Delimiter: @ Auto Detect () String |TAB
Options
Header in First Row:
Skip Empty Riow{s):
Skip First Row(s): 2
Skip Rows Starting With: |76
Text Quoted Between: -
Data
Grid | File
EMPMNO | EMAME . JOB . MGR . HIREDATE . SAL . COMM . DEPTMNO .
7369 Smith Clerk 7902 1980-12-17 00:00:00 800 (null) 20 o
7499 Allen Salesman 7698 1981-02-20 00:00:00 1600 300 30
7521 Ward Salesman 7698 1981-02-22 00:00:00 1250 500 30 E
7566 Jones Manager 7839 1981-04-02 00:00:00 2975 (nully 20
7654 Martin ~ Salesman 7698 1981-09-28 00:00:00 1250 1400 30
7693 Blake Manager 7839 1981-05-0100:00:00 2850 (null) 30
7782 Clark Manager 7839 1881-06-09 00:00:00 2450 (nully 10
it Scott Analyst 7566 1987-04-19 00:00:00 3000 (nully 20 S
Preview Rows: |20 Caolumn Widﬂ"ls:[] [Default]
<Back || Mext> | | Cancel |

Figure: The Settings wizard page

Data Formats

The Data Formats page is used to define formats for some data types. The first row in the preview grid contains a data type drop-down lists.

DbVisualizer tries to determine the data type for each column by looking at the value for the number of rows specified as Preview Rows. If this data
type is incorrect, use the drop-down lists to select the appropriate type.

215(260)

=

& Import CSV File
3 Import CSV File Data Formats

Define formats for the data types that appear in the file. Then use the drop down lists in the Data Grid to map data types
with the columns in the file,

Data Formats
Date: yyyy-MM-dd w | Example: 2008-12-15
Time: HH:mm:ss v | Example: 20:29:53
Timestamp: yyyy-MM-dd HH:mm:ss w | Example: 2008-12-15 20:39:54

Thousand Separator: |,

Decimal Separator:

Mull Values: (rully Example: {null}, NULL, nada
Boalean True: frue, yes, 1, on Example: true, 1, yes, on
Boolean False: false, no, 0, off Example: false, 0, no, off
Data
EMPMO ENAME JOB MGR HIREDATE SAL COMM DEPTMO
Number Sting Sting Number Timestamp Number Number Number

7369 Smith Clerk 7802 1980-12-17 00:00:00 800 (nully 20
7499 Allen Salesman 7698 1981-02-20 00:00:00 1600 200 30
7521 Ward Salesman 7698 1981-02-22 00:00:00 1250 500 30
Fialils Jones Manager 7839 1981-04-02 00:00:00 2975 (null} 20

m | »

= -
Preview Rows: |20 Column Widths: | Fit | [Default]
<Back || Mext> | | Cancel |

Figure: The Data Formats wizard page

The following is displayed when selecting the drop-down box in the preview grid.

MGR HIREDATE SAL
MTimestamp -
7902 | String ~ 800
oce XM | 1500
TE93 Time H 1250
7839 Timestamp ~||2975
lﬁLNumber 1980

Decimal Mumber
Boolean - [plumn Widt
BLOB .

Figure: The data type drop down

216(260)

Import Destination

The Import Destination page provides two options: Grid and Database Table. The Grid choice is used to import the data into a grid that will be

presented in its own window in DbVisualizer.

When the Database Table choice is selected, the page shows information about the table in which the data will be imported.

If you are importing into an existing table, the Map Table Columns with File Columns grid shows the columns in the selected database table and the

columns in the source file.

DbVisualizer automatically associates the columns in the source file with the columns in the target table in the order they appear. If the columns
appear in a different order in the file than in the table, but they are named the same, you can use the auto-mapping menu in the upper right corner of
the Map Table Columns with File Columns grid to automatically map the columns by name.

I

| & Import CSV File

s Import CSV File

Import Destination

Select the destination the file should be imported to. Use Database Table to import the data into a table. Choosing Grid
will import the file to a grid displayed in a separate window. You can then use the right dick menu in the window to
perform standard cperaticns on the data. (The Grid choice i recommend for smaller i.e 50,000 rows).

Import Into
|:::| Grid

(@) Current Database Table

Database Table
Database Connection: |Orade

Database:
Schema: HR
Table: EMP

Map Table Columns with File Columns

Map Columnzs |~

Key . Table Column Name . Table Data Type Map by Column MName
‘gﬁ' EMPMNO NUMBER Map by Colurmn Index
ENAME VARCHAR2 Clear Mappings
JOB VARCHAR2 IO
MGR NUMBER MGR
HIREDATE DATE HIREDATE
SAL NUMBER SAL
COMM MNUMBER COMM
DEPTHO NUMBER DEPTHO
<Back || MNext> | | Cancel

Figure: The auto-mapping menu for import into an existing table

If the column names are different between the file and the table and also appear in different order, you can manually map them using the drop-down

lists in the File Column Name field. Choose the empty choice in the columns drop-down to ignore the column during import.

217(260)

g Import CSV File Import Destination

Select the destination the file should be imported to. Use Database Table to import the data into a table. Choosing Grid
wiill import the file to a grid displayed in a separate window. You can then use the right dick menu in the window to
perform standard operations on the data. (The Grid choice is recommend for smaller i 50,000 rows).

Import Into
() Grid
@ Current Database Table

Database Table
Database Connection: |Drade

|
Database: | |
Schema: |HR |
Table: |EMP |

Map Table Columns with File Columns

Map Columnz -

Key . Table Column Mame . Table Data Type . File Column Mame
£ EMPMO NMUMBER EMPHNO
EMAME YARCHARZ ENAME
 Dos ARCHAR Jos -
MGR MUMBER -
HIREDATE DATE EMPNO
SAL MUMBER ENAME
col NUWEER
DEPTHNO MUMBER MGR
HIREDATE
SAL - [—

Figure: The column mapping drop down

When you import into a new table, you are presented with a field for the table name and a number of tabs for column and constraint declarations.

The Columns tab is filled out based on the source data and the data types from the Data Formats page.

218(260)

é Import CSV File Import Destination

Select the destination the file should be imported to. Use Database Table to import the data into a table. Choosing Grid
wiill import the file to a grid displayed in a separate window. You can then use the right dick menu in the window to
perform standard operations on the data. (The Grid choice is recommend for smaller i 50,000 rows).

Import Into

() Grid

@ Mew Database Table
Mew Table Details
Database Connection: |Drade |

Database: | - |
Schema: [HF‘. -]
Table: |EMP |

Columns | Primary Key | Foreign Keys | Unique Constraints | Check Constraints |

Name DataType | Size Scale Nullable Default =
EMPNO INTEGER -
ENAME VARCHAR2 B L J
J0B [VARCHAR2 I N o
MGR INTEGER —
HIREDATE DATE A
SAL INTEGER E'E
COMM INTEGER
DEPTNO INTEGER

| <Back || Mext> | | Cancel |

Figure: The table declaration form for importing into a new table

Note that it is not always possible to find a database specific type for the data format specified on the Data Format page. You must then pick the
correct type from the Data Type drop-down menu. The size for string column types may also need to be adjusted. By default, the size is set to the
maximum number of characters found for the column in the number of rows specified as Preview Rows. You can ignore certain columns by removing
them in the Columns tab. Keys and other constraints can be created using the other tabs.

You can go back to the Data Format page and increase the Preview Rows value if you believe that it will help DbVisualizer to pick better defaults. If
you do so, you need to click the Reload button when you come back to this page to rescan the source data and get new default values.

Import Process

The last wizard page is used to start and monitor the import process. Here you can select whether all rows in the source file should be imported or
only a portion. You can also specify that you want to log to the GUI or to a file, and that you want keep the window open when the import is
completed, so that you can see the log messages when logging to the GUI. If you want to stop the processing on the first error, check the Stop on
Error check box.

If any errors occur during the import process, error messages are presented in the log and the window stays open regardless of the Keep Window
after Import setting.

219(260)

=

& Import CSV File (23]
3 Import CSV File Import

This is the last page. Specify options for the import process and then press Import to start.

Options

) Import all Rows

(@ Import Only row(s)
Keep Window after Import

[] Stop on Error

@ Log to GUI

) Log to File []

Import Log

21:35:18 [Row: 9, File lines: 9-9] ORA-00001: unigue constraint (HR.5YS_C005703) violated

21:35:18 [Row: 10, File lines: 10-10] ORA-00001: unigque constraint (HR.SYS_C005703) violated
21:35:18 [Row: 11, File lines: 11-11] ORA-00001: unigue constraint (HR.SYS_C005703) violated
21:35:18 [Row: 12, File lines: 12-13] ORA-00001: unique constraint (HR.5YS_C005703) violated

21:35:18 [Row: 13, File lines: 13-13] ORA-00001: unigue constraint (HR.5YS_C005703) violated

m

21:35:18 [Row: 14, File lines: 14-14] ORA-00001: unigue constraint (HR.SYS_C005703) violated

21:35:18 [Row: 15, File lines: 15-14] ORA-00001: unigue constraint (HR.SYS_C005703) violated

. Import finished. 0 row(s) inserted and 10 failed.

4

<Back | [import | | Cancel

Figure: The import process page

Exporting and Importing Binary/BLOB and CLOB Data

Columns declared as Binary/BLOB and CLOB can be exported and imported using DbVisualizer as SQL or CSV files. The data for each such cell is
stored in a separate file, referenced from the SQL or CSV file as a DbVisualizer variable. Here's an example of an SQL INSERT statement with a
Binary/BLOB variable:

insert into "BLOB_TEST" ("COL1") values (${datal-@II1[BinaryDatal Inoshow vl=file}$);

Exporting Binary/BLOB and CLOB Data

All of the export dialogs described earlier in this section (Export Schema, Export Table, and Export Grid) can be used to export Binary/BLOB and
CLOB data. You enable this by choosing File as the data format for Binary/BLOB and/or CLOB data. Optionally, you can specify the directory for
the data files. If you do not specify a directory, the operating system's default directory for temporary files (e.g. C:\TEMP or /tmp) is used.

220(260)

Binary/BLOB: [He -] Dir:|C:‘ql_.lsers‘¢'|ans‘l.bIobs |B
CLOB: [He [] Dir:|C:‘\l..|sers‘\|'13ns‘l.b|obs |E]

Figure: Data format File for export of Binary/BLOB and CLOB data

Importing Binary/BLOB and CLOB Data

If you have exported Binary/BLOB and CLOB data as an SQL script, you just run the script in the SQL Commander to import it. When the SQL
Commander encounters a variable that refers to a file, it reads the file and inserts the content as the column value.

If you exported to a CSV file, use the Import Table Data feature to import it. On the Data Format page, ensure that the format for the source file
column is set to BLOB or CLOB.

Data

Grid | File

Hdata1-1/|C\Usersihans\blobs\divis 520222837 2370417084.bin[|BinaryDatal[noshow vi=file}h

Figure: Data format BLOB for import of Binary/BLOB data

Using Variables and Exporting to Multiple Files

You can use some of the pre-defined DbVisualizer variables (${dbvis-date}$, ${dbvis-time}$, ${dbvis-timestamp}$ and ${dbvis-object}$) in all
fields that holds free text (e.g. title and description fields) and as part of the file name in all export dialogs.

Use the ${dbvis-object}$ variable as part of the file name in Export Schema if you want to export the DDL and/or data to a separate file for each
object. The variable is replaced with the object type and object name, e.g. ${dbvis_object}$.sql becomes table_ COUNTRIES.sq! for a table named
COUNTRIES.

221(260)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId622224

Database Profile Framework

Introduction

This document and the Database Profile Framework in general is appropriate only when using the licensed DbVisualizer Personal edition.

This document explains the database profile framework which is the base for how DbVisualizer presents information in the Database Objects tree
and in the Object View. In addition, it is also used to define object actions, such as drop, rename, compile, create, comment, alter, etc.

What features in DbVisualizer relies on the database profile?

One of the most important and central features in DbVisualizer is the database objects tree, used to navigate databases, and the object view,
showing details about specific objects. The general problem exploring any database is that they are all different with respect to the information
describing what's in the database (also called system tables or database meta data). This basically means that it's rather complex to implement a
multi-database support product, such as DbVisualizer, since each database must be handled specifically. All databases also support different object
types, apart from the most common ones, such as table, view, index, etc.

The database profile framework is used to simplify the process of defining what information DbVisualizer will display and operate on for a specific
database. Technically, a database profile is an XML document with all of the logic, structure and actions easily mapped to the visual components in
DbVisualizer. Another great benefit of separating the database specific logic from the implementation of DbVisualizer is that anyone with some
degree of domain knowledge can create a database profile. All that is needed is a text editor (preferably with XML support) and some ideas of what
should be the final result.

A great source for inspiration (except for this document) is all the existing database profiles that comes with DbVisualizer. All database profiles are
(and must be) stored in the DBVIS-HOME/resources/profiles directory (this path is OS dependent).

The following figure illustrates which features in DbVisualizer are controlled by the database profile.

222(260)

.

| 8| DbVisualizer Personal - Untitled
File Edit View Database Scripts 5QL Tools Window Help

L LI el-R 4=

g | []B10 [EMPLOYEES (1] Statistics 4§® ADD_JOB_HISTORY (5} Locks | | Computers per Employee.sgl

Databases g Scripts

(g object view | B sqL Coma.-;der|

O > Ew T Table: BIO
b Connections -
=-[# CRM Ahoa
== ’ Schemas
- 4 HR (Default)
5 Tobles [ginfo |__[F]cotams._|
e
o= (o0 s5m
[#-{77] DEPARTMENTS
-] EMPLOYEES Mame Value |
G-{77] J0B_HISTORY OWNER HR e
w-{77] 10BS TABLE_NAME BIO
&[] LOCATIONS TABLESPACE_NAME USERS
-] REGIONS CLUSTER_NAME (nult)
- [] Views 10T_NAME (nult) =
- @ Synonyms STATUS VALID 1
T PCT FREE 10
-l Sequences =
- Materickzed Views PCT_USED (nult)
268 Functions INI_TRANS 1
% Procedures MAX_TRANS 255
& [Packages INITIAL_EXTENT 65536
B Package Bodies MEXT_EXTENT (nully
@ Java Sources MIN_EXTENTS 1
Ei;. w MAX_EXTENTS 2147483645
50 Object Types PCT_INCREASE (nult)
50 Recydle Bin FREELISTS (nulty
545 Jobs FREELIST_GROUPS (nully
-4 Scheduler LOGGING YES
-l Database Links BACKED_UP M
/1), Invalid Objects NUM_ROWS 107
(3] session Properties BLOCKS 5
[+ ﬂ DEA Views T | lcunTy pLacke I .

Figure: What the database profile controls in DbVisualizer

The red box at the left shows the database objects tree. This tree is used to navigate the objects in the database. Selecting an object in the

tree shows the object view (blue box) for the selected object type. An object view may have several data views (green), showing object information.
DbVisualizer shows these as labeled tabs. The green box in the screenshot shows the content of the data view labeled Columns. The type of
viewer that is presenting the data in the screenshot is the grid viewer. Read more about all data viewers in the Viewers section.

Common to both the database objects tree and the object view are the SQL commands that are used to fetch the information from the database.
The associated SQL is executed by DbVisualizer whenever a node in the tree is expanded (to expose any child objects) or when a node is selected
(to fill the object data views).

Right-clicking the mouse on an object in the tree or clicking the Actions button in the object view shows a menu with all valid actions for the selected
object. These are also defined per database profile and object type. Read more about the capabilities of actions in the Definition of user actions
section.

How does DbVisualizer know what database profile to use?

DbVisualizer automatically load the appropriate database profile (XML file) based on the following:

223(260)

1. The Database Type for the database connection is matched with the information in the DBVIS-HOME/resources/database-
mappings.xml file to find out if there is a database profile available. If it finds one, it is used.

2. |If there is no matching profile, the generic profile is used. This is very basic profile and shows only rudimentary information about the
objects in the database. This is also the profile used in the DbVisualizer Free edition for all databases.

A specific database profile can be selected manually for a database connection. This is done in the database connection properties. Manually
choosing a profile requires that the profile supports the actual database. If it doesn't, various errors will be reported once the database objects tree is
explored. (Whenever the profile is changed, you must reconnect the database connection).

The name of the loaded profile is listed in the Connection tab status bar when the connection has been established.You can click the profile link to
display the Database Profile list.

—

=@ Database Connection: CRM Ahoa

Connections{CRM Ahoa

.Q Connection Enaizbase Info | @ Data Types | nSEad'l|

Connection
Alias: |ERM Ahoa |
Database Type: |Drade - | 0
Driver (IDBC): | Orade Thin - | ‘
Database URL: |jdbc:oracle:thin: @192, 168, 1. 156:1521/ORCL e B

URL Format: jdbc:oracle:thin: @ <servers: < portl521=: <sid=

Authentication
Userid: |hr |
Password: |’* |

Connection Message

Orade Gurrentiprofile
Orade Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing option
Oracle IDBC driver

11.1.0.7.0-Production

Connection E] Properties

Figure: The status bar in the Connection tab when connected

GMT+01:00| Development | [Profie: orade Eﬁ Connected -00:07:26

XML structure

The mapping from the visual components in the user interface described earlier and the element definitions in the XML file is, briefly, as follows:

* The database objects tree (green box) is described by the ObjectsTreeDef root element. (The Database Connections node is mandatory
and its appearance cannot be controlled by the profile).

¢ The object views (green and blue boxes) are described by the ObjectsViewDef root element.

e The commands used to execute the SQL to get the information for ObjectsTreeDef, ObjectsViewDef and optionally ObjectsActionDef
definitions are defined by the Commands root element.

¢ All Actions for an object are defined in the ObjectsActionDef root element. (Actions are optional).

The XML for a database profile is quite simple, but there are a few things that need to be highlighted. All database connections loads a database
profile from an XML file. If there is no matching database profile, the generic profile is used. This profile uses the standard JDBC metadata calls in
order to obtain information about the structure and objects in the database. The generic profile is not one XML file, as the database specific profiles
are, but instead four files:

224(260)

* generic-commands.xml
¢ generic-actions.xml

¢ generic-tree.xml

¢ generic-view.xml

All these files a referred in the generic.xml file via include statements, i.e., each of the above files are included in the generic.xml file when it is
loaded. The reason for this file organization is that the four files above can also be included and extended in a specialized profile. See later for more
information.

The XML structure used to represent the database profile is as follows (click on the link to read more about each specific section):

* Commands
Defines the SQLs for the ObjectsTreeDef, ObjectsViewDef and optionally ObjectsActionDef.

e ObjectsActionDef (optional)
Defines actions for object types.

* ObjectsTreeDef
Defines the structure and what objects should be visible in the objects tree.

¢ ObjectsViewDef
Defines the object views for a specific object type.

XML skeleton

The following is a minimal database profile XML file, showing its structure.

<?xml version="1.0" encoding="UTF-8" 7>
<!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd" [
<!ENTITY generic-commands SYSTEM "generic-commands.xml">
<!ENTITY generic-view SYSTEM "generic-view.xml">
1>
<DatabaseProfile desc="Profile for Sybase ASE"
version="$Revision: 11720 $"
date="$Date: 2009-12-22 15:54:30 +0100 (Tis, 22 Dec 2009) $"
minver="6.5.7">

<l == e

<!-- Definition of the commands -->

<ll== ==
<Commands>

&generic-commands;

</Commands>

<ll== -=>
<!-- Definition of the object actions that are used by the tree -->
<l == ==
<ObjectsActionDef>
</0ObjectsActionDef>
<l]== ==
<!-- Definition of the database objects tree structure -->
<ll== -=>

<ObjectsTreeDef id="sybase-ase">

</0ObjectsTreeDef>
<l == ==
<!-- Definition of the database objects views -->
<l]== ==
<!-- Include the generic-view -->

&generic-view;
<ObjectsViewDef id="sybase-ase" extends="generic">

</0ObjectsViewDef>
</DatabaseProfile>

The name of the XML file (sybase-ase) and the values for the id attribute for the ObjectsTreeDef and ObjectsViewDef elements must be the same.

225(260)

The first rows in the XML defines external dependencies and their URIs. The DOCTYPE identifier defines the DTD that is used to validate the XML.
The ENTITY identifiers lists URIs for external references. In this case they identify the generic-commands.xml and generic-view.xml files. They
can then be referenced in the XML as &generic-commands; and &generic-view;, which simply means that the related XML files are included in the
final document when the profile is loaded.

The root of the database profile is the DatabaseProfile element. Continue to the next sections for information about the elements forming the
database profile.

Tip: If you are using an XML editor to edit the profile it is very convenient to load the DTD in the editor, as you will then get color and error
highlighting.

<DatabaseProfile>

The DatabaseProfile is the root element in the XML file. It is required and have the following attributes.

<DatabaseProfile desc="Profile for Sybase ASE"
version="$Revision: 11720 $"
date="$Date: 2009-12-22 15:54:30 +0100 (Tis, 22 Dec 2009) $"
minver="6.5.7">

</DatabaseProfile>

The attributes specified for the DatabaseProfile element appear in the Database Profile list when selecting the connection properties for a
database connection:

-~ Database Connection: Sybase ASE

Connections/Sybase ASE
47 Connection IE Database Info | @ Data Types | i) Saard:|

Connection Properties

atabase Profile Database Profiles

E----Driu’er Properties Database profiles controls what objects appear in the objects tree, what detailed views are
El Sybase ASE available for each object type and actions used to operate on ohjects. Database profiles are
Authentication database specific and here you can either decide to let DbVisualizer automaticaly pick

{recommended} the appropriate profile or manually choose one. If manually choosing a

Delimited Identifiers profile make sure it is compatible with the database you are connecting to. The generic

- L Qualifiers profile warks with any databese.
[_}.B! Physical Connection Mote: You must reconnect the datebase connection after changing profile.
ﬂ Transaction

. 50L Statements @ Auto Detect () Manually Choose () "Generic” Profile

“chmmm““ Profile | Version Date Description

sqbﬁ:;fe Labets db2 11709 2009-12-17 Profile for DB2 LUW

.2 Query Builder db2-zos 11708 2009-12-17 Profile for DB2 z/0S
derby 117049 2009-12-17 Profile for Apache DerbyllavaDB
generic 117049 2009-12-17 Generic profile for any database
infarmix 11709 2009-12-17 Profile for Informix IDS
mimer 11651 2009-12-07 Profile for Mimer SQL
mysql 117049 2009-12-17 Profile for MySQL
neoview 11504 2009-10-30 Profile for HP Neoview
oracle 11709 2009-12-17 Profile for Oracle
postgresql 117049 2009-12-17 Profile for PostgreS0L
postgresqld 11708 2009-12-17 Profile for Postgre S0L 8+
sqlserver 117049 2009-12-17 Profile for 3QL Server
sybase-ase 11708 2009-12-17 Profile for Sybase ASE

oefs
Properties

Figure: The list of available database profiles

226(260)

<InitCommands> - Initialization commands

The InitCommands section define commands that are executed when the database profile is first loaded. These commands are typically used to
determine characteristics of the target database. The result is stored in variables that can be used in conditions that are evaluated when the rest of
the profile is loaded. A common use case is to find out the authorization level of the current user as defined by the database. If the user have limited
privileges then make sure the supported object types, views and available actions in DbVisualizer matches the authorization.

Multiple commands may be defined in the InitCommands element and these are executed in serie from top. Conditional processing is also
supported.

The following sample is from the HP Neoview database profile. The main purpose with its InitCommands is to first determine the database version by
quering a system table (this information is not properly available by the Neoview JDBC driver). Based on the database version a condition controls
which of two queries will be executed to find out a property from the database. The result of the executed query is stored in a the METACAT variable.

<InitCommands>
<Command id="neoview.getDbVersion" method="runBeforeConditionsEval">
<SQL>
<! [CDATAL
SELECT SUBSTRING(SYSTEM_VERSION FROM 10)
FROM (GET VERSION OF SYSTEM) V(SYSTEM_VERSION)
11>
</SQL>
<Output id="DBVERSION" index="1"/>
</Command>
<Command id="neoview.getMaster">
<If test="#DBVERSION gte 2400">
<SQL>
<1 [CDATA[
SELECT MINCSYSTEM_CATALOGS) AS MASTER_CAT
FROM (GET SYSTEM CATALOGS) V(SYSTEM_CATALOGS)
WHERE SYSTEM_CATALOGS LIKE _IS088591'NONSTOP_SQLMX_%"
11>
</SQL>
</If>
<Else>
<SQL>
<! [CDATAL
SELECT "NONSTOP_SQLMX_${#dp .METACAT}"'
FROM (VALUES(1)) AS T1
11>
</SQL>
</Else>
<Output id="METACAT" index="1"/>
</Command>
</InitCommands>

Commands in InitCommands are processed in two phases, the first phase execute commands that have the method="runBeforeConditionsEval"
attribute set. After the first execution phase are all conditions evaluated and processed, the last execution phase will take care of all commands with
no method="runBeforeConditionsEval" attribute set.

Here is an example how the METACAT variable is used in the rest of the database profile:

<Command id="neoview.getCatalogs">
<SQL>
<! [CDATAL
SELECT
TRIMCCAT_NAME) AS CATALOG_NAME
FROM
${METACAT?}.SYSTEM_SCHEMA. CATSYS C
WHERE
CAT_NAME NOT LIKE _IS088591'NONSTOP_SQLMX_%"
AND CAT_NAME NOT IN (_ISO88591'NSMWEB', _IS088591'NVSCRIPT', _IS088591'METRIC',
_ISO88591'MATRIX"', _IS088591'GENUSCAT', _IS088591'MANAGEABILITY")
ORDER BY
CATALOG_NAME
FOR READ UNCOMMITTED ACCESS

227(260)

11>
</SQL>
</Command>

<Commands> - The SQLs used to interact with the database

This element contains all Command elements with SQL sub element. A Command element is identified by a unique id attribute, which is then
referred in ObjectsTreeDef, ObjectsViewDef and (optionally) ObjectsActionDef definitions.

<Commands>
&generic-commands;
<Command>

</Command>
</Commands>

The first statement in the <Commands> element is:
&generic-commands;

This means that the generic-commands entity defined at the top of the XML file is included in the XML i.e., all its definitions are accessible from
the ObjectsTreeDef, ObjectsViewDef and ObjectsActionDef. If you don't plan to use any of the generic command, simply ignore this include
statement.

<Command>

The Command element specifies the SQL associated with the command. In most cases, the SQL should return a result set with 0 or several rows.
(The exception is actions which not necessarily need to return a result set, e.g., a "drop" action). The following command queries for login information
in Sybase ASE.

<Command id="sybase-ase.getlLogins">
<SQL>
<! [CDATAL
select name "Name", suid "SUID", dbname "Default Database", fullname "Full Name",
language "Default Language", totcpu "CPU Time", totio "I/0 Time", pwdate "Password Set"
from master.dbo.syslogins order by 1
11>
</SQL>
</Command>

The id for this command is sybase-ase.getLogins. The reason for prefixing the id with the name of the profile is for maintainability. Since the
generic-commands.xml file is included in most profiles, it is good to use unique prefixes for all commands so that they do not conflict with the
commands in the generic-commands.xml file.

Result set

The result set for the previous query looks as follows:

name suid dbname fullname language totcpu totio pwdate

jstask 3 master (null) (null) 0 10 2009-12-22 09:53:50
probe 2 subsystemdb (null) (null) 0 0 2009-12-22 08:37:35
sa 1 master (null) (null) 182 168723 2009-12-22 08:36:54

228(260)

The way DbVisualizer handles the result set depends on whether the command is executed as a request in the database objects tree
(ObjectsTreeDef) or in the object view (ObjectsViewDef). If executed in the database objects tree, each row in the result set will be represented by
a new node in the tree. If executed in the object view, it is the viewer component that decides how the result will be presented. For more information
on how a result set is used in the ObjectsTreeDef or ObjectsViewDef, read the specific sections.

Another important difference between the database objects tree and the object view is that the tree is a hierarchical structure of objects while the
object view presents information about a specific object. An object that is inserted in the database objects tree is a 1..1 mapping to a row from the
actual result set. The end user will see these objects (nodes) by some descriptive label, as defined in the ObjectsTreeDef. However, all data for the
row from the original result set is stored with the object in the tree and may be used in the label, variables, conditions, etc. This is not the case in the
ObjectViewDef.

The following example put some light on this. Consider the previous result set and that it's used to create objects in the database objects tree. The
end user will see the following in DbVisualizer. The visible name for each row is the name column in the result set.

Ela Sybase ASE

- | #| Databases
i master (Default)
model
sybmgmtdb
sybsystemdb

| 8] sybsystemprocs

i - E tempdb
= (£} DBA Views

i [Server Info
=2~ Logins
ef;:il‘ probe
~ [#-&F Database Devices
E! Remote Servers
1’ Processes

-4 Roles
Transactions
- |of Lodks

Figure: Sample of the Logins node having two child nodes

Each of the sa and probe nodes have all their respective data from the result set associated with the nodes. The data is referenced as
commandld.columnName, i.e., sybase-ase.getLogins.name, sybase-ase.getLogins.dbname, etc. All associated data for the sa node in the
example is listed next:

sybase-ase.getlLogins.Name = sa

sybase-ase.getlogins.suid = 1

sybase-ase.getlogins.Default Database = master
sybase-ase.getlLogins.Full Name = (null)
sybase-ase.getlLogins.Default Language = (null)
sybase-ase.getlLogins.CPU Time = 182
sybase-ase.getlLogins.I/0 Time = 168716
sybase-ase.getlLogins.Password Set = 2009-12-22 08:36:54.576

The DataNode definition presenting sa and probe in the previous screenshot example use the associated data for the label as follows:

label="${sybase-ase.getLogins.name}"

<Input> - Setting command input

There are two types of Commands: with and without dynamic input. The difference is that dynamic input Commands accepts input data that is
typically used to form the WHERE clause in SELECT SQLs. The previous example illustrates a static SQL (without dynamic data).

To allow for dynamic input, just add variables at the positions in the statement that should get dynamic values. The following is an extension of the
previous example that allows for dynamic input.

<Command id="sybase-ase.getLogins">
<SQL>
<! [CDATAL

229(260)

select name "Name", suid "SUID", dbname "Default Database", fullname "Full Name",
language "Default Language", totcpu "CPU Time", totio "I/O Time", pwdate "Password Set"
from master.dbo.syslogins where name = '${name}' and suid = '${suid}’' order by 1
11>
</SQL>
</Command>

The example above adds two input variables: ${name} and ${suid}. Values for these variables should then be supplied wherever the command is
referred for execution via the Input element.

The following is an example from the ObjectsTreeDef and its use of the sybase-ase.getLogins command:

<GroupNode type="Logins" label="Logins">
<DataNode type="Login" label="${sybase-ase.getLogins.Name} isLeaf="true">
<SetVar name="objectname" value="${sybase-ase.getlLogins.Name}">
<Command idref="sybase-ase.getlLogins">
<Input name="name" value="sa">
<Input name="suid" value="${sybase-ase.getProcesses.suid}">
</Command>
</DataNode>
</GroupNode>

(Note that the Command element refers the command via the idref attribute which will be matched with the corresponding id for the Command).
There is no magic with this definition, since the ${name} variable in the final SQL will be replaced with string "sa".

The value for the ${suid} definition will in this case get the value of the sybase-ase.getProcesses.suid when the SQL is executed. So where is this
variable defined? As explained in the Result Set section, all the data for a row in the result set is associated with the objects in the database objects
tree. In addition, it is possible to use all the data kept by the current object and all its parent objects (as presented in the objects tree) in the input to
commands. So to evaluate the ${sybase-ase.getProcesses.suid} variable, DbVisualizer first looks for the variable in the current object. If it doesn't
exist, it continues to look through the parent objects until it reaches the root, which is the Connections object in the objects tree. If the variable is not
found, it will be set to the string representation for null, which is (null) by default. Whenever a matching variable is found, DbVisualizer uses its value
and stops searching.

<Output> - Redefine command output

As mentioned earlier, a specific column value in a result set row is referenced by the name of the column prefixed by the command id. Sometimes
this is not desirable and the Output definition can be used to change this behavior. The following identifies a column in the result set by its index
number, starting from 1, and then force its name to be set to the value of the id attribute.

<Output id="sybase-ase.getlLogins.Name" index="1">
<Output id="sybase-ase.getlogins.suid" index="2">

The Output element can also be used to alter the structure of columns in the result set by adding, renaming or removing columns.

<Output modelaction="add" index="THIS_IS_A_NEW_COLUMN" value="Rattle and Hum">
<Output modelaction="rename" index="ADDR" name="ADDRESS">

<Output modelaction="rename" index="2" name="PHONE">

<Output modelaction="drop" index="MOBILE_PHONE">

<Output modelaction="drop" index="4">

(The rename and drop actions accepts either the name of the column or index number starting from the left at index 1).

e The add operation adds a new column to all rows. The value attribute accepts variables using the ${...} syntax.
¢ The rename operation simply renames a column.
¢ The drop operation drops the specified column.

The rename operation is primarily used when building a custom command that is supposed to be used by a viewer that requires predefined input by
specific column names. Read more in the ObjectsViewDef section.

230(260)

<ObjectsTreeDef> - Definition of the Database Objects Tree

The ObjectsTreeDef element section controls how the database objects tree should be presented and which commands should be executed to form
its content (nodes). The mapping between the graphical representation in DbVisualizer and its ObejctsTreeDef XML is as straight forward as it can

be:

=8P
=+] Databases
Elli master (Default)}
-] Tables
E System Tables
m Views
-- a Users
@. Groups
User Defined Data Types
-- Triggers
[-53# Stored Procedures
= (£} DBA Views
o B Server Info

Elf_‘?il‘ Logins

[+-#5 Database Devices
----- E! Remote Servers
- Processes

[+- 4@ Roles

Transactions
..... Locks

<ObjectsTreeDef id="sybase-ase">

<GroupNode type="Databases">
<DataNode type="Catalog">
<GroupNode type="Tables">
<DataNode type="Table"/>
</GroupNode>
<GroupNode type="SystemTables">
<DataNode type="SystemTable"/>
</GroupNode>
<GroupNode type="Views">
<DataNode type="View"/>
</GroupNode>
<GroupNode type="Users"/>
<GroupNode type="Groups">
<DataNode type="Group"/>
</GroupNode>
<GroupNode type="Types"/>
<GroupNode type="Triggers">
<DataNode type="Trigger"/>
</GroupNode>
<GroupNode type="Procedures">
<DataNode type="Procedure"/>
</GroupNode>
</DataNode>
</GroupNode>
<GroupNode type="DBA">
<GroupNode type="ServerInfo"/>
<GroupNode type="Logins">
<DataNode type="Login"/>
</GroupNode>
<GroupNode type="Devices">
<DataNode type="Device"/>
</GroupNode>
<GroupNode type="RemoteServers"/>
<GroupNode type="Processes"/>
<GroupNode type="ServerRoles">
<DataNode type="ServerRole"/>
</GroupNode>
<GroupNode type="Transactions"/>
<GroupNode type="Locks"/>
</GroupNode>

</0ObjectsTreeDef>

Figure: The visual database objects tree and its XML definition

The screenshot shows all nodes representing the GroupNode definitions in the ObjectsTreeDef. One exception is the Logins object, which has
been expanded (jstask, probe and sa child objects) to illustrate what DataNode objects look like. The ObjectsTreeDef in the example has been
simplified to show only the type attribute. (The label of the nodes as they appear in the visual tree is not listed in the ObjectsTreeDef example). The
type attribute is primarily used internally in the profile as an identifier between the ObjectsTreeDef and the ObjectsViewDef. The type is also visible
in the DbVisualizer GUI, in the tooltip for a tree node and in the object view header. The type is also used to identify the icon used to represent the

object type.

There are no limitation on the number of levels in the ObjectsTreeDef. A good rule of thumb is, however, to keep it simple, clean and intuitive.

The DataNode definitions are the most important objects in the ObjectTreeDef. They also define which object tree filters are available for each

object type, if overlayed icons should appear (and the criteria), etc. Read the next sections for details.

231(260)

<GroupNode> - Static objects used for grouping

The GroupNode element is represents a static object in the tree. These don't have any associated SQL and appear only once where they are
defined. A GroupNode is primarily used for structural and grouping purposes. The GroupNode element have the following attributes.

<GroupNode type="SystemTables" label="System Tables" isLeaf="false">
</GroupNode>

The isLeaf attribute is optional and controls whether the GroupNode may have any child objects or not. It can always be set to true, but the effect in
the visual database objects tree is then that the expand icon to the left of the group node icon will always be displayed, even if it can never have any
child objects. The default setting for isLeaf is false.

If isLeaf is set to false and there are child Group and/or Data -nodes, these will not appear. The result may cause some frustration during the

design...

<DataNode> - Dynamic objects created via SQL

The DataNode element feeds the tree with nodes produced by a Command. The example in the Command section querying for all logins in Sybase
ASE look as follow in the ObjectsTreeDef:

<GroupNode type="Logins" label="Logins">
<DataNode type="Login" label="${sybase-ase.getLogins.Name}" islLeaf="true">
<Command idref="sybase-ase.getlLogins"/>
</DataNode>
</GroupNode>

First, there is a GroupNode element with the purpose to group all child objects in a Logins node. The DataNode has, in this example, the same
attributes as the GroupNode, the type is however "Login" instead of "Logins" (as it is for the GroupNode). This difference is important when the
user selects one of the objects, since the the Object View shows the appropriate views based on the object type.

The DataNode definition can be seen as a template, as the associated command fetches rows of data from the database and DbVisualizer uses
the DataNode definition to create one node per row in the result set.

The label attribute for the data node is somewhat different, as it introduces the use of a variable (or several). The real value for the label will, in this
example, be the value in the Name column produced by the sybase-ase.getLogins command, as you can see in the Command definition (variable
names are automatically prefixed with the command id).

The Command element uses the idref attribute to identify the command that should be executed. The command in this case and in the Result set
section produces a result set with 2 rows and 8 columns. The result will be two nodes each, with the label of the Name column in the result set.

EIE Sybase ASE

| & Databases

master ([Default)
model
sybmgmtdb
sybsystemdb
sybsystemprocs
i tempdb
DEBA Views

=

5% Server Info

.8

[+-&=9 Database Devices
E! Remote Servers
* Processes

-4 Roles
Transactions
- |of Lodks

Figure: Sample of the Logins node having two child nodes

232(260)

The label can be changed by setting it to any other valid variable or a combination of several variables. (It's even possible to specify static text in the
label):

label="${sybase-ase.getLogins.Name} (${sybase-ase.getlLogins.Default Database})"
The example above results in the following labels:

jstask (master)
probe (subsystemdb)
sa (master)

The complete set of attributes for the DataNode element is:

type="value" - The type of node (required)
actiontype="value" - Object type used for object actions (optional)
label="value" - The visual label (required)
isLeaf="true/false" - Specifies if the node can have child objects (default true)
sort="coll,col2" - A comma separated list of names/variables used for sorting
drop-label-not-equal="value" - Do not add the node if the label is not equal to this value
or variable
warnstate="condition" - If condition is true, show an overlay icon for the node
errorstate="condition" - If condition is true, show an overlay icon for the node
stop-label-hot-equal="value" - The node will be a leaf if the label doesn't match this value
or variable
is-empty-output="continue/stop" - If result set is empty, use this to control whether child

GroupNode/DataNodes should be added anyway or ignored

The Command definition in the example above is simple, since it doesn't use any variables in the SQL. Continue reading the next section for details
about passing input data to commands.

<Command>

Commands are referenced in the DataNode definition by the idref attribute. Sometimes it is required that a specific DataNode must supply input to a
command. This is done by adding Input elements as children to the Command.

<DataNode type="Login" label="${sybase-ase.getlLogins.Name}" islLeaf="true">
<Command idref="sybase-ase.getlLogins">
<Input name="name" value="sa">
<Input name="suid" value="${sybase-ase.getProcesses.suid}">
</Command>
</DataNode>

The value for a variable specified in an Input element is evaluated using the strategy outlined in the Result set section.

<Filter>

The Filter element is specific for Command elements that appear in the ObjectsTreeDef section. A filter define which data for a DataNode that is
allowed to use in filters. This filter functionality is commonly referred as the Database Objects Tree Filtering in DbVisualizer. The filtering setup
appears below the database objects tree, and the following example shows that filtering may be specified for these object types:

* Catalog

* Table

* System Table
e View

* User

¢ Group

e Trigger

¢ Procedure

For each of the Filter definitions, one or several columns can be as part of the filtering criteria.

233(260)

RSN

=

I_——_ILi master (Default)
{7 Tables

User Defined Data Types
t Triggers

[#-53# Stored Procedures
model

sybmgmtdh

sybsystemdb
sybsystemprocs

= (£} DBA Views
----- E Server Info
I_——_Iff;:'i' Logins

m

[+-#¥ Database Devices
----- Remote Servers
-offf Processes

-8 Roles

Transactions
..... Locks
Object Filter

4

Activate Filters:

Ohject Type:

F' catalog
Tahle
System Table
View

User

Group
Trigger
Procedure

Figure: Screen shot showing the filter pane

<DataNode type="Views" label="${sybase-ase.getViews.Name}" isLeaf="true">
<Command idref="sybase-ase.getViews">
<Filter type="View" name="View Table">
<Column index="TABLE_NAME" name="Name"/>
</Filter>
</Command>
</DataNode>

The previous filter definition specifies a filter for the View object type. The name specifies the name of the filter as it appears in the object type drop-
down list. The nested Column element defines the index, which should be either a column name in the result set or an index number for the column.
The name attribute specifies the name of the column as it appears in the filter pane.

Several Column elements may be specified for a Filter element.

<SetVar>

The SetVar element is needed in the ObjectsTreeDef for DataNode's. Some object types have special meaning in DbVisualizer. Two examples are
the Catalog and Schema object types. For DataNode objects, you must use SetVar elements to identify them, with name attributes set to "catalog™

234(260)

and "schema", respectively.

<DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}" isLeaf="false">
<SetVar name="catalog" value="${getCatalogs.TABLE_CAT}">
</DataNode>

All non Catalog or Schema DataNode's must use SetVar to set the "objectname" variable:

<DataNode type="Views" label="${sybase-ase.getViews.Name}" isLeaf="true">
<SetVar name="objectname" value="${sybase-ase.getViews.Name}">

<SetVar name="rowcount" value="true/false">
</DataNode>

The objectname variable is used to identify the object represented by the data node, so that it can be uniformly referenced in object views and
object actions. Its value should be the identifier for the object as it is identified in the database, e.g., a table name or view name.

The rowcount variable is optional and controls whether the object supports showing row count information when Show/Hide Table Row Count

right-click menu choice is enabled for the database connection.

Another optional variable (not shown in the example above) is named acceptinQB. If set to true, nodes of this type can be used in the Query
Builder. It should only be set to true for object types representing tabular data that can be queried with an SQL SELECT statement, such as tables,

views, materialized views, etc.

<SetVar> variables are by default invisible in for example the NodeFormViewer. If you want to override this behavior then add the action attribute
and set its value to show. If you want to drop a variable completely from the node simply set the action attribute to drop.

<ObjectsViewDef> - Definition of the Object Views

The ObjectsViewDef element defines all views for the object types in the objects tree. These views are displayed in the Object View area for the
selected object. Which views should appear when selecting a node in the tree is based on the object type for the tree node and the corresponding

object view definition.

When an object is selected in the tree (sa in the screenshot below), its complete information is passed to the object view handler (right in the
sample). This handler determines, based on the object type, which object view should be used to present the information. When the object view is
found, all data views are created as tabs in the user interface. The selected object and its information is passed to each of the data views for
processing and presentation. The following shows how the Object View look in DbVisualizer and its accompanying ObjectView definitions.

=

|?|.".|ﬁ 'wLngin:sa

®0

-1 model = 5/Sybase ASE/DBA Views/Logins/sa
sybmgmtdh
sybsystemdb g |[_i Dambasesl o R.oles|
sybsystemprocs
B3 e fo|s98
== DEA Views
@g Server Info Name i Value
=1L Logins Name sa
I jstask suid 1
- L probe Default Database master
452 Full Name (null)
(-5 Database Devices | = || |pefault Language (null)
% Eemnte Servers CPU Time 182
roCesses
5@ Roles D Time 168725
- Transactions - | |Password Set 2009-12-22 08:36:54.576
4 L 3

Figure: The visual database objects tree, object view and the XML definition

<ObjectView type="Logins">
<DataView type="Logins" label="Logins"
viewer="grid">
<Command idref="sybase-ase.getlLogins"/>
</DataView>
</0ObjectView>
<ObjectView type="Login">
<DataView type="Info" label="Info"
viewer="node-form"/>
<DataView type="Databases" label="Databases"
viewer="grid">
<Command idref="sybase-ase.getLoginDatabases"/>
</DataView>
<DataView type="Roles" label="Roles"
viewer="grid">
<Command idref="sybase-ase.getLoginRoles"/>
</DataView>
</ObjectView>

The screenshot shows both the Logins node and its child nodes, jstask, probe and sa. From the GroupNode and DataNode declaration examples
in the previous sections, we know that these nodes are instances of the object types Logins (the Login node) and Login (the two sub nodes, sa and

probe).

The ObjectView XML definitions shows the data views for these two types, Logins and Login. Clicking on the node labeled Logins in the tree will

235(260)

show the object view for the <ObjectView type="Logins"> definition while clicking on the node labeled jstask, probe or sa will show the object
view for the <ObjectView type="Login"> .

The example shows sa being selected. Its DataView definitions are (by label):

¢ Info
¢ Databases
¢ Roles

These views are presented in DbVisualizer as tabs. The label of each tab is the label defined in the DataView and the icons are defined by the
respective object type.

The ObjectsViewDef root element has the following attributes:
<!-- Include the generic-view -->

&generic-view;
<ObjectsViewDef id="sybase-ase" extends="generic" >

</0ObjectsViewDef>

The first statement for the ObjectsViewDef elements is:
&generic-view;

This simply means that the generic-view entity defined at the top of the XML file is included in the XML, i.e., all its definitions are accessible as is.
One example is the ObjectView definition in the generic-view.xml file for the Table object type. It contains a lot of DataView elements that identify all
viewers for the Table. If you now want to use the generic Table DataView's but add a new Abbreviations data view, then simply extend the generic
Table DataView. This is done by adding a extends="generic" attribute in the ObjectsViewDef element. By using the exact same object type in the
extended ObjectView, you will then get this behavior. Read more about extending ObjectView's in the Extending ObjectView section.

<ObjectView>

The ObjectView element is associated with an object type and groups all DataView elements that appear when the object type is selected in the
database objects tree. Here follows the ObjectView definition for the Login object type.

<ObjectView type="Login">
</0ObjectView>

This element is simple as its only attribute is the type attribute. The type attribute value is used when a node is clicked in the database objects tree
to map the object of the type clicked and its ObjectView.

<DataView>

The DataView element is as important as the DataNode is in the ObjectsTreeDef. It defines how the viewer should be labeled in DbVisualizer,
which viewer (presentation form) it should use, commands and other things. The following is the DataView definitions for the Login object type.
(The ObjectView element is part of the sample just for clarification).

<ObjectView type="Login">
<DataView type="Info" label="Info" viewer="node-form"/>
<DataView type="Databases" label="Databases" viewer="grid">
<Command idref="sybase-ase.getlLoginDatabases"/>
</DataView>
<DataView type="Roles" label="Roles" viewer="grid">
<Command idref="sybase-ase.getLoginRoles"/>
</DataView>
</ObjectView>

The elements are used to define how the object is presented in DbVisualizer, as described in the introduction of the ObjectsViewDef section. All
three data view elements have a viewer attribute, which identifies how the data in the view should be be presented, e.g., as a grid or a form. See the
next section for a list of viewers.

236(260)

Viewers

The viewer attribute for a DataView specifies how the data for the view should be presented. The following sections walk through the supported
viewers.

The following sample illustrates the viewer attribute.
<ObjectView type="Login">

<DataView type="Info" label="Info" viewer="node-form"/>
</0ObjectView>

DataView definitions may be nested and the viewers are then presented with the nested DataView in the lower part of the screen.

grid

The grid viewer presents a result set in a grid, with standard grid features such as search, copy, fit, export, etc. The result set is presented exactly as
it is produced by the Command and any optional Output processing.

Here is a sample of the XML for the grid viewer:

<DataView type="Columns" label="Columns" viewer="grid">
<Command idref="oracle.getColumns">
<Input name="owner" value="${schema}"/>
<Input name="table" value="${objectname}"/>
</Command>
</DataView>

And here is a screenshot of the standard grid viewer created from the previous definition.

RO SFH

COLUMM_ID . OWNER IT.HBLE_N.AME . COLUMM_MNAME | DATA_TYPE . DATA_LENGTH . D.HTA_F'REEI
1HR BIO EMPLOYEE_ID NUMBER 22 -
ZHR BIO FIRST_MAME YWARCHARZ 20
3HR BIO LAST_MAME YWARCHARZ 25
4 HR BIO EMAIL YWARCHARZ 25
5HR BIO PHOME_NUMBER VARCHARZ 20
i HR BIO HIRE_DATE DATE T
THR BIO JOB_ID YWARCHARZ 10
a8 HR BIO SALARY MNUMBER 22
9 HR BIO COMMISSION_PCT NUMBER 22
10 HR BIO MAMAGER_ID MNUMBER 22
11 HR BIO DEPARTHMENT_ID NUMBER 22
12 HR BIO PHOTO BLOB 4000
13 HR BIO RESUME CLOB 4000
i
4 1 3

0.125/0.016 sec || 13/31 || 1-13 |

Figure: The grid viewer

The nesting capability for grid viewers is really powerful, as it can be used to create a drill-down view of the data. Consider the scenario with a grid
viewer showing all Trigger objects. Wouldn't it be nice to offer the user the capability to display the trigger source when selecting a row in the list?
This is easily accomplished with the following:

<DataView type="Trigger" label="Triggers" viewer="grid">
<Command idref="oracle.getTriggers">
<Input name="owner" value="${schema}"/>
<Input name="table" value="${objectname}"/>
</Command>

237(260)

<DataView type="Source" label="Source" viewer="text">
<Input name="dataColumn" value="text"/>
<Input name="formatSQL" value="true"/>
<Command idref="oracle.getTriggerSource">
<Input name="owner" value="${OWNER}"/>
<Input name="name" value="${TRIGGER_NAME}"/>
</Command>
</DataView>
<DataView type="Info" label="Info" viewer="node-form"/>
</DataView>

¢ The first DataView definition defines the top grid viewer and the command to get the result set for it.

* The next DataView is the nested text viewer, specifying various input parameter for the viewer along with the command to get the source
for the trigger. The difference here is that the input parameters for this command reference column names in the top grid. Since this viewer
is nested, it will automatically be notified whenever an entry in the top grid is selected.

* The third nested DataView is presented as a tab next to the Source viewer, and presents additional information about the selected trigger.

The following screenshot illustrates the above sample:

RO I5H

OWMER TRIGGER_MNAME TRIGGER_TYPE TRIGGERIMNG_EVEMNT TABLE|]
HR UPDATE_JOB_HISTORY AFTER EACH ROW LPDATE HR
1 m 3

0.328/0.000 s=c || 2/13 | 12

BIFEY-

1 TRIGGEER secure_employees

2 BEFORE INSERT OR UPDATE OR DELETE OH euployees
3 BEGIH

! secure_dml;

5 EHD secure_employees;

Figure: Example use of nested DataViews

Adding custom menu items in the grid

The menultem parameter specifies entries that should appear in the right-click menu in the grid. The value for the menultem is the label for the
item, while the child Input element specifies the SQL command that should be produced for all selected rows when the menu item is selected. The
result of a custom menu item is that the grid viewer creates a statement that it copies to the SQL Commander; it will never execute the produced
SQL in the scope of the viewer.

The following is an example with two menu items:

e Script: SELECT ALL
¢ Script: DROP TABLE

The variables in the SQL statement should identify column names in the result set. The user may select any columns in the visual grid and choose a
custom menu item. It is only the actual rows that are picked from the selection as the columns are predefined by the menultem declaration.

The variables specified in these examples starts with ${schema=...} and ${object=...}. These defines that the first variable represents a schema
variable while the second defines an object. This is needed for DbVisualizer to determine whether delimited identifiers should be used and if
identifiers should be qualified, as defined in the connection properties for the database.

<Input name="menuItem" value="Script: SELECT ALL">
<Input name="command" value="select * from ${schema=0WNER}${object=TABLE_NAME}"/>
</Input>

238(260)

<Input name="menuItem" value="Script: DROP TABLE">
<Input name="command" value="drop table ${schema=0WNER}${object=TABLE_NAME}"/>
</Input>

Here is a sample:

B0 35H =
OWNER TABLE_NAME TABLESPACE_NAME CLUSTER_NAME IOT_NAME STATUS
HR BIO USERS (null) (null) VALID
HR COUNTRIES [N (null) (null) VALID
HR DEPARTHENT Es g Colen

HR EMPLOYEES |-
HR JOB_HISTORY
HR JOBS

=
HR LOCATIONS |f|] Copy Selection (With Colurmn Header) Ctrl+H
]

Select Row(s) Ctrl+Skift+)
Copy Selection Ctrl+C

HR REGIONS
Export... Ctrl+Alt+E

______ Export Selection...
Print...
Print Selection...

Print Preview...

Save Selected Cell... Ctrl+Skift+5
Reload Ctrl+R
Find... Ctrl+F

Browse Row in Window...

Browse Cell in Window...

Describe Data...

Aggregation Data for Selection.., Ctrl+ Skift+C

Script: SELECT ALL A
Script: DROP TABLE '

@@odrEIOEAERE

Figure: Custom menu items in grid viewer

The result of selecting a menu item defined as a menultem input parameter is that the specified command is copied to the current SQL editor.

Setting initial max column width

Some result sets may contain columns with very wide data. The following parameter sets an initial maximum column width for all columns in the grid.

<Input name="columnWidth" value=""/>

text

The text viewer presents data from one column in a result set in a text browser (read only editor). This viewer is typically used to present large
chunks of data, such as source code, SQL statements, etc. If the result set contains several rows, the text viewer reads the data in the column for
each row and present the combined data.

Here is a sample of the XML for the text viewer:

<DataView type="Source" label="Source" viewer="text">
<Input name="dataColumn" value="text"/>
<Input name="formatSQL" value="true"/>
<Command idref="oracle.getTriggerSource">
<Input name="owner" value="${schema}"/>
<Input name="name" value="${objectname}"/>

239(260)

</Command>
</DataView>

And here is a screenshot of the Source tab based on the previous definition.

VOS5 FU -

1 -
2 (CREATE TABLE "HE". EMPLOYEES" —
3 i "EMPLOYEE_ID" NUMEER(G,0),

4 "FIRST NAME™ VARCHARZ (0],

5 "L4ST NAME™ VARCHARZ (25) COMSTRAINT "EMP LAST NAME NN HOT HULL ENAE

& "EMAIL™ VARCHARZ (25) COMSTRAINT "EMP EMATL NN" HOT WULL ENABLE, 3
7 "PHONE_NUMEER™ VARCHARZ(Z0], 3
& "HIRE DATE™ DATE COHSTRATHT "EMP HIRE DATE HN" HOT WULL ENAELE,

g "I0B_ID" VARCHARZ (10) COMSTRATIHT "EMP_J0E_NN" HOT HULL ENAELE,

10 "SALARYT NUMEER (5,20,

11 "COMMISSTON PCT™ NUMBER(Z,Z), 8
1z "MANAGER_ID™ NUMEER(G,0),

13 "DEPARTHENT ID™ NUMEER(4,0],

14 COHSTRATHT "EMP SALARY MIN™ CHECK (salary > () ENAELE,

15 COHSTRATHT "EMP EMAIL UK UHIQUE [“EMAIL™)

16 USING INDEX PCTFREE 10 INITR&NS 2 MaXTRANS 255 NOLOGGING COMPUTE STATISTIC
17 STORAGE (INITIAL 65536 HEXT 1046576 MINEXTENTS 1| MAYEXTENTS 2147483645

18 PCTINCREASE 0 FREELISTS 1| FREELIST GROUPS 1 EUFFER_POOL DEFAULT)

19 TABLESPACE "EXAMPLE" ENAELE, il
on . | ANHTTDATHT "FMD FMD TT 'DV""':I'D'I'II'HW ERY _ (UEFMDTOVREER _Th' S | -

Figure: The text viewer

Specify what column to browse

By default, the text viewer uses the data in first column. This behavior can be controlled by using the dataColumn input parameter. Simply specify
the name of the column in the result set or its index (starting at 1 from the left).

<Input name="dataColumn" value=""/>

Enable SQL formatting of the data

The text viewer includes the SQL Formatting toolbar button, which when pressed formats the content in the viewer. The formatSQL input
parameter is used to control whether formatting should be enabled by default. If formatSQL is not specified, no initial formatting is made.

<Input name="formatSQL" value=""/>

form

The form viewer presents row(s) from a result set in a form. If several rows are in the result, they are presented in a list. Selecting one row from the
list presents all columns and data for that row in a form.

Here is a sample of the XML for the form viewer:

<DataView type="Info" label="Info" viewer="form">
<Command idref="oracle.getTable">
<Input name="owner" value="${schema}"/>
<Input name="table" value="${objectname}"/>
</Command>
</DataView>

And here is a screenshot of the Info tab based on the previous definition.

240(260)

LIRS
MName Value |

OWNER HR -

TABLE_NAME EMPLOYEES

TABLESPACE_NAME EXAMPLE

CLUSTER_NAME (null) =

I0T_NAME (null)

STATUS VALID

PCT_FREE 10

PCT_USED (null)

INI_TRANS 1

MAX_TRANS 255

INITIAL_EXTENT 65536

NEXT_EXTENT (null]

MIN_EXTENTS 1

MAX_EXTENTS 2147483645

PCT_INCREASE (null)

FREELISTS (null)

FREELIST_GROUPS (null)

LOGGING NO

Figure: The form viewer

node-form

The node-form viewer presents all data associated with the selected object (variables).

Here is a sample of the XML for the node-form viewer:

<DataView type="Constraint" label="Constraint" viewer="node-form">

<Input name="hidecolumn" value="oracle.getKeys.TABLE_OWNER"/>

</DataView>

And here is a screenshot of the Constraint tab based on the previous definition.

241(260)

LI el 4
Mame Value |

OWHNER HR -

TABLE_NAME EMPLOYEES]

CONSTRAINT_NAME EMP_EMAIL_MNMN

CONSTRAINT_TYPE Check

DDL_TYPE CONSTRAINT

SEARCH_CONDITION "EMAIL" 1S NOT MULL

R_OWMNER {rull)

R_CONSTRAINT_MNAME (null)

DELETE_RULE {rull)

STATUS EMABLED =

DEFERRABLE NOT DEFERRABLE

DEFERRED IMMEDIATE

VALIDATED WALIDATED

GENERATED USER MAME

BAD {null)

RELY {null)

LAST_CHANGE 2008-11-26 11:45:31

INDEX_OWHNER {rull)

INDEX_NAME {rull) =

INVALID {rull)

Figure: The node-form viewer

Hiding columns

There may be data associated with the object that you don't want to present in the node form for the user. The hidecolumn input parameter control
what data for the object that should be invisible and you may repeat the this option as many times you like to handle multiple hidden variables.

<Input name="hidecolumn" value="oracle.getKeys.TABLE_OWNER"/>

table-refs

The table-refs viewer shows the references graph for the current object (this must be an object supporting referential integrity constraints, such as a

Table),

Here is a sample of the XML for the table-refs viewer:

<DataView type="References" label="References" viewer="table-refs"/>

And here is a screenshot of the References tab based on the previous definition.

242(260)

PO D SR LL_LLHEHEIRS@ @ Headc -

EMPLOYEES

& EMPLOYEE_ID MUNIB ER(E)
FIRST_MAME VARCHAR2(20)
LAST_NAME AR CHAR2(25)
EMAIL AR CHAR2(25) JOBS
PHOME_NUMBER WARCHAR2(2D)
HIRE_DATE DATE _I—) & JoE_ID WAR CHARZ{D)
JOB_ID VARCHARZ(ID) JOB_TITLE WBRCHAR2{35)
SALARY NUMBER® 2) MIN_SALARY NUNBER(E)
COMMISSION_PCT NUMBER(Z,Z) MAX SALARY NUMBER®)
MANAGER_ID NUNIE ER(E)

DEPARTMENT_ID MUMEER(4) DEPARTMENTS
_|—> & DEPARTMENT_ID MUNIB ER(4)

DEPARTMENT_NAME 'W&RCHAR2(3D)
IMANAGER_ID NUNB ER(E)
LOCATION_ID NUNB ER($)

|9U% ||Tab|es: 3||Referen::es: 3

Figure: The table-refs viewer

tables-refs

The tables-refs viewer shows the references graph for several tables in the result set (the result set must contain objects supporting referential
integrity constraints, such as a Table).

Here is a sample of the XML for the tables-refs viewer:

<DataView type="References" label="References" viewer="tables-refs">
<Command idref="getTables">
<Input name="catalog" value="${catalog}"/>
<Input name="schema" value="${schema}"/>
<Input name="table" value="${objectname}"/>
<Input name="type" value="${tableType}"/>
</Command>
</DataView>

And here is a screenshot of the References tab based on the previous definition.

243(260)

BOOSFRILLILLEE M@ @ Heradc -

00 _WETORY
Foeonrn e [
Forwmoaw oem
s w m J
o
AT G asmER ¥ = - a8
T i = e [rrsr—
[res—— wammg | [T memRn s e s
LD ranmnry [s P—— U AT HARERS
LART b R A BALARY M
o
P AR VARSI
HRE AW o
o AR
I N [re——
CommIs FCT lasmERay
[—
PN asmERg
i T
d
Lo ATICNS
el * Locamoum L
AR AT VARSI
PIERYL R NRCHARDTY
e
Ewm R
3
s o ey [T
=T REGIORS
ra o B [y % - oo prre—ry
FHCEOH WM A RCHAROON
[
& meoae o
ot o v
L2 s ARCHAR
[rreree
e
HEE_DAW -5
e e
v ranmnray
COMMIIES FCT AMERDY
wwmRD esmnm
T
F mam o
raman am

|41%||Tab|e5: E”R.Eferences: 10

Figure: The tables-refs viewer

table-data

The table-data viewer shows the data for a table in a grid with editing features.

Information presented in the grid is obtained automatically by the viewer via a traditional statement, i.e., the object type

having this viewer defined must be able to support getting a result set via this SQL statement.

Here is a sample of the XML for the table-data viewer:

<DataView type="Data" label="Data" viewer="table-data">
<Input name="disableEdit" value="<true/false>"/>
</DataView>

And here is a screenshot of the Data tab based on the previous definition.

244(260)

BOSP| > | nEHEHB e -=»

& EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL = PHONE_NUMBER HIRE_L[Y|

1 104 Bruce Ernst BERNST 530 423 4568 1991-05-21 =«

2 106 Valli Pataballa ~ VPATABAL 530 423 4560 1998-02-05 | _

3 102 Lexe DeHaan LDEHAAN 515123 4569 199}01-13E
ix 03(Alexander |Hunold |AHUNOLD [590.423.4567_[1990-01-03
5 198 Donald OConnell DOCON.. 650507 9833 1999-05-21
B 200 Jennifer Whalen JWHALEN 515123 4444 1987-09-17
7 4 200 Jennifer Whalen JWHALEN 515123 4444 1987-09-17
8 202 Pat Fay PFAY 603 123 666G 1997-08-17
g7 203 Susanne [ETER sMAVRIS 5151237777 1994-06-07
10 204 Hermann Baer HBAER 5151238888 1994-06-07
11 205 Shelley Higgins SHIGGINS 515123 8080 1994-06-07
12 206 William Gietz WGIETZ 5151238181 1994-06-07
13 101 Neena Kochhar ~ NKOCHH._ 515123 4568 1989-09-21
14 105 David Austin DAUSTIN 530 423 4569 1997-06-25
15 107 Diana Lorenfz DLOREN . 530 423 5567 1999-02-07

16 108 Nancy Greenberg NGREEN. . 515124 4569 1994-08-17 =
1| m | 5

Max Rows: | 100000 |Max Chars: 0 | 0.032/0.109 sec || 108/13 || 1-17 |

Figure: The table-data viewer
Disable data editing

The default strategy for the table-data viewer is to automatically check whether the data can be edited or not. If editing is allowed a few related
buttons will appear in the toolbar. However, sometimes you may want to disable editing completely for the table-data viewer. Do this with the
following input element:

<Input name="disableEdit" value=""/>

table-rowcount

The table-rowcount viewer shows the row count for a (table) object.

The row count is obtained automatically by the viewer via a traditional statement, i.e., the object type having this

viewer defined must be able to support getting a result set via this SQL statement.

Here is a sample of the XML for the table-rowcount viewer:
<DataView type="RowCount" label="Row Count" viewer="table-rowcount"/>

And here is a screenshot of the Row Count tab based on the previous definition.

®

Number of rows: 107

245(260)

Figure: The table-rowcount viewer

<Command>

Please read the Command section above, as the capabilities of this element are the same when used with a data view.

<Message>

The Message element is very simple: it defines a message that should appear at the top of the viewer. The Message element is used to define the
text for a description of the data presented in the viewer. The text in the message may contain common HTML tags such as (bold), <i> (italic),

 (line break), etc.

Here is a sample of the XML for using the Message element in a grid viewer:

<ObjectView type="RecycleBin">
<DataView type="RecycleBin" label="Recycle Bin" viewer="grid">
<Command idref="oracle.getRecycleBin">
<Input name="schema" value="${schema}"/>
<Input name="login_schema" value="${dbvis-defaultCatalogOrSchema}"/>
</Command>
<Message>
<1 [CDATA[
<html>
These are the tables currently in the recycle bin for this schema. Right click on a bin
table in objects tree to restore or permanently purge it.

Note: The recycle bin is always empty if not looking at the bin for your
login schema (default).
</html>
11>
</Message>
</DataView>
</0ObjectView>

And here is a screenshot of the Recycle Bin tab based on the previous definition.

restore or permanently purge it.
Mote: The recycle bin is always empty if not looking at the bin for your login schema (default).

B0 |5 A

@ These are the tables currently in the recyde bin for this schema. Right didk on a bin table in objects tree to

OBJECT_MAME IDRIGINAL_NAMEIDF’ERATIDNI TYPE ITS_N.AMEI CREP\TEEI
BIN$3AlucxwhTbOgHcaFoBJ+5w==50 EMP DROP TABLE USERS 2007-10-15: =
4 n b

0.256/0.000 sec || 1/15 |

Figure: The appearance of a Message in a viewer

Extending ObjectView

An existing ObjectView definition in, for example, the generic-view.xml file can be extended in a database profile by using a few action attributes for
each of the DataView elements. To extend a definition, the object type specified in the ObjectView type attribute must match the type in the parent
profile. You have the following options when extending a definition:

246(260)

* Adding a DataView
Simply add the DataView definition and it will be added to the current list of DataView definitions
* Dropping an existing DataView
Add the <DataView type="xxx" action="drop"> to drop the dataview type named "xxx"
* Replacing a DataView
Just add the DataView with the exact same type as in the parent DataView. All the settings of the new DataView will replace the old one

<ObjectsActionDef> - Definition of user actions

The previous sections describe how to define which objects should appear in the objects tree, and which views should be displayed when selecting
an object in the tree. The ObjectsActionDef section in the profile defines which operations are available for the object types defined in the
ObjectTreeDef. Object actions are very powerful, as they offer an extensive number of features to define actions for almost any type of object
operation.

In DbVisualizer, the object type actions menu is accessed via the right-click menu in the objects tree or via the Actions button in the object view:

Table: BIO
Connections/CRM Ahoa/Schemas/HR/ Tables/BIC W] Alter Table..
:) = - Rename Table...
il Constraints I Triggers | }_d Dependendies I
o References A7 Navigator A2 Grants Empty Table...
[Lg Info | [F] columns | @Dam | sﬁnw Count | @@ Pri G Drop Table...
% . | lg @]ﬁ | Copy Table... k’ |
Comment Table...
Name i E f Grant Privilege...
OWHNER HR
TABLE_NAME BIO |§ Import Table Data...
TABLESPACE_NAME USERS & Eport Table...
CLUSTER_NAME (nully Create Index...
IOT_HAME (nully .
STATUS VALID ﬂ Create Trigger...
PCT_FREE 10 Analyze Table..,
PCT_USED (nully Script Object to SQL Editor b
INI_TRANS 1 Script Object to New SQL Editor »
MAX_TRANS 265 |
INITIAL_EXTENT 65536
NEXT_EXTENT (nuiry
MIN_EXTENTS 1
MAX_EXTENTS 2147483645
PCT_INCREASE (nully
FREELISTS (nully
EREELIET AROIIDE (ol i

Figure: The Actions menu for the selected object

All of the operations for the selected Table object in the figure above are expressed in the ObjectsActionDef section. The implementation for these
actions are either declared completely with XML elements via standard object actions, or via specialized action handlers. (The API for action
handlers is not yet documented). The following screenshot shows the dialog appearing when executing an action via the default action handler:

247(260)

L ™

I_ﬂ Create Trigger @
-
Object Details —
Database Connection: |CRI‘~"I Ahoa |
Schema: |HR |
Trigger: | |
Trigger Time: () BEFORE (@ AFTER. () INSTEAD OF
Trigger Event: (7) DELETE (@) INSERT () UPDATE
EI Trigger Type: (@ STATEMENT () ROW E
Table: LOCATIONS
Source
1 --
2 —-- Ingert wour own trigger code here
5 -
4 DEMS_OUTPUT. PUT_LINE('3ample output'):
s
[7] Show SQL Execute || Cancel

Figure: The default action handler

The first field in the dialog, Database Connection, is always present and shows the alias of the database connection the selected object is
associated with. At the bottom, there is a Show SQL control that, when enabled, displays the final SQL for the action. The bottom right buttons are
used to run the action (the label of the button may be Execute or Script based on the action mode), or to Cancel the action completely.

Variables

Variables are used to reference data for the object for which the action was launched, and the data for all its parent objects in the objects tree.
Variables are also used to reference input data specified by the user in the actions dialog. Variables are typically used in the Command, Confirm,
Result and SetVar elements.

Variables are specified in the following format:
${variableName}

The following is an example for a Rename Table action. It first shows the name of the database connection (which is always present) along with
information about the table being renamed. The last two input fields should be entered by the user and identify the new name of the table. The New
Database control is a list from which the user should select the name of the new database. The new table name should be entered in the New Table
Name field.

If the Show SQL control is enabled, you will see any edits in the dialog being reflected directly in the final SQL Preview.

248(260)

L ™

I_ﬂ Rename Table @

Object Details
Database Connection: |My5QL

|

Database: |test |

E Table: |Driver |

Mew Database: [test :]

Mew Table Name: |Drajuer |

Show 5QL _ l [— l
SQL Preview

El3 |9 -

FENAME TARBLE “test”, "Driwver” TO “test’. ‘Drajver”

Figure: The default action handler

The complete action definition for the previous Rename Table action is as follows:

<Action id="mysql-table-rename" label="Rename Table" reload="true" icon="rename">
<Input label="Database" style="text" editable="false">
<Default>${catalog}</Default>
</Input>
<Input label="Table" style="text" editable="false">
<Default>${objectname}</Default>
</Input>
<Input label="New Database" name="newCatalog" style="list">
<Values>
<Command><SQL><! [CDATA[show databases]]></SQL></Command>
</Values>
<Default>${catalog}</Default>
</Input>
<Input label="New Table Name" name="newTable" style="text"/>
<Command>
<SQL>
<! [CDATAL
rename table “${catalog} . ${objectname}"
to “${newCatalog} . ${newTable}"
11>
</SQL>
</Command>
<Confirms>
<! [CDATAL
Confirm rename of ${catalog}.${objectname} to ${newCatalog}.${newTable}?
11>
</Confirm>
<Result>
<! [CDATAL
Table ${catalog}.${objectname} renamed to ${newCatalog}.${newTable}!
11>
</Result>
</Action>

First, there is the Action element with some attributes specifying the label of the action, icon and whether the objects tree (and the current object
view) should be reloaded after the action has been executed.

249(260)

The next block of elements are Input fields defining the data for the action. As you can see in the example, there is a ${catalog} variable in the
Default element for the Database input and an ${objectname} variable in the Default element for the Table input. The values for these variables
are fetched from the selected object in the objects tree. Variables are evaluated by first checking if the variable is in the scope of the action dialog
(i.e., another input field), then if the variable is defined for the object for which the action was launched, and then if it is defined for any of the parent
objects until the root object in the tree (Connections node) is reached. If a variable is not found, its value is set to (null).

In the previous XML sample, the value of the ${catalog} variable is the name of the database in which the table object is stored. The ${objectname}
is the current name of the table (these variables are described in the ObjectsTreeDef section).

The New Database input field is a list component which shows a list of databases based on the result set of the specified SQL command. The
Default setting for the database will be the database in which the table is currently stored based on the ${catalog} variable.

The New Table Name input field is a simple text field in which the user may enter any text.

Both the New Database and New Table Name fields are editable and should be specified by the user. This data is then accessible via the variables
specified in the name attribute, i.e., newCatalog and newTable.

The Command element declares the SQL statement that should be executed by the action. In this example, the SQL combines static text with
variables.

<ActionGroup>

The ActionGroup element is a container and groups ActionGroup, Action and Separator elements. It is used to define what actions should be
present for a particular object type. It also defines in what order the actions should appear in the menu and where any separators should
be. ActionGroup elements can be nested to create sub menus.

<ActionGroup type="Table">
The attributes for an ActionGroup are:

¢ type
this defines what object type the ActionGroup represents. This attribute is valid only for top level action groups. An example is the object of
type Table, the corresponding ActionGroup will only be displayed when the selected object is a Table.

* label
this attribute is required for nested action groups. This label is displayed as the sub menu label for the nested action group. (The label
attribute have no effect on top level action groups).

<Action>

The action element defines the action.

<Action id = "oracle-table-drop"
icon = "remove"
label = "Drop Table..."
reload = "false"
mode = "execute"
processmarkers = "false"
resulttype = "resultset"
resultaction = "ask"
hideif = "<condition>">

The attributes for an action are:

e id
the id for the action. The recommended syntax for the id is " profileName-objectType-someGoodActionName"
* jcon
specifies an optional icon that should be displayed next to the label in the menu
¢ label
the label for the action as it should appear in the menu in the action dialog
* reload

specifies if the parent node (in the objects tree) should be reloaded after successful execution. This is recommended for actions that
change the visual appearance of the object, such as remove, add or name change
¢ mode attribute, can be set to any of these:
* execute (default)
show the action dialog, process user input and execute the final SQL within the scope of the action window

250(260)

e script
show the action dialog, process user input and send the final SQL to the SQL Commander
e script-immediate
will not show the action dialog but instead pass the final SQL directly to the SQL Commander
* processmarkers
e true
IN parameter markers in the SQL are processed with the JDBC driver. Not all drivers supports this
o false (default)
parameter markers are not be processed
* resulttype specifies what kind of result is produced by the action.
¢ resultset (default)
this is the default and indicates that the result is a standard result set produced by a SQL SELECT statement or stored
procedure
¢ dbmsoutput
this is specific for Oracle databases only and specifies that the output is produced by the DBMS_OUTPUT stored procedure
* resultaction attribute, is only valid in combination with mode="execute". It can be set to any of:
e ask (default)
if the action produced a result according to the setting of resulttype, ask the user whether the result should be displayed in a
window or copied as text to the SQL Commander

¢ show
if the action produced a result according to the setting of resulttype, show it in a window
e script

if the action produced a result according to the resulttype, copy it to the SQL Commander.
¢ hideif
there may be situations when an action should not appear in the list of actions. The hideif attribute is used to express a condition which is
evaluated when the list of object actions is created. Example: hideif="#dataMap.get('actionlevel') neq 'toplevel™

<Input>

An Input element specifies the characteristics of a visible field component for the actions dialog. The label attribute is recommended and is
presented to the left of input field. If a label is not specified, the input field will occupy the complete width of the action dialog. All input fields are
editable by default. The name attribute is required for editable fields and should specify the identity of the variable in which the user input is stored.

This is a minimal definition of an input field. It will show a read-only text field control labeled Size.

<Input label="Size" editable="false"/>

If the input field is changed to be editable, the name attribute must be used to specify the identifier for the variable name.
<Input label=Size" editable="true" name="theSize"/>

Any input element may contain the tip attribute. It is used to briefly document the purpose of the input field and is displayed as a tooltip when the
user hovers the mouse pointer over it.

<Input label=Size" editable="true" name="theSize" tip="Please enter the size of the new xxx"/>

The hideif attribute is useful to limit what <Input> fields should appear for an action. The condition specified in the hideif attribute have the same
syntax as described in the <SetVar> section. Example:

<Input label="Unit" hideif="#dataMap.get('actionlevel') neq 'toplevel'">

Input fields can be aligned on a single row with the linebreak attribute. The default behavior is that every input field is displayed on a single row. Use
the linebreak="false" attribute to define that the next input field will be arranged on the same line. To re-start the automatic line breaking feature
you must use the linebreak="true" attribute.

<Input name="size" label="Size" style="number" linebreak="false">
<Default>10</Default>

</Input>

<Input name="unit" style="list" linebreak="true">
<Labels>KB|MB</Labels>
<Values>KIM</Values>
<Default>M</Default>

</Input>

251(260)

The previous example shows the use of the linebreak attribute. The size number field and the unit list will appear on the same line.

Specifying the default value as a result from an SQL statement is a trivial task:

<Input label=Size" editable="true" name="theSize">
<Default>
<Command>
<SQL>
select size from systables where tablename = '${objectname}’
</SQL>
</Command>
</Default>
</Input>

Since Default here will execute an SQL statement, it will automatically pick the value in the first row's first column and present it as the default. SQL
may be specified in the Default element when used for all styles while SQL in Values and the Labels elements are valid only for list and radio
styles). In some rare situations it may not be possible to express a SQL statement that will return a single column that will be displayed for Values,
Labels and Default. An example is when data is collected via a stored procedure. To solve this problem specify the column attribute that takes the
value either by the actual column name or column index:

<Input label=Size" editable="true" name="theSize">
<Default column="2">
<Command idref="getSize">
<Input name"objectname" value="${objectname}"/>
</Command>
</Default>
</Input>

or by column name

<Input label=Size" editable="true" name="theSize">
<Default column="THE_SIZE>
<Command idref="getSize">
<Input name"objectname" value="${objectname}"/>
</Command>
</Default>
</Input>

An alternative to embedding the SQL in the element body, as in the previous example, is to refer to a command via the standard idref attribute:

<Input label=Size" editable="true" name="theSize">
<Default>
<Command idref="getSize">
<Input name"objectname" value="${objectname}"/>
</Command>
</Default>
</Input>

Instead of having duplicated SQLs in multiple actions, consider replacing these with Command elements referred via the idref attribute.

Referring commands in actions via the idref attribute is recommended when the same SQL is used in several actions. Use Input elements to pass
parameters to the command.

The following sections presents the supported styles that can be used in the Input element.

text (single line)
The text style is used to present single-line data in a text field.

<Input label="Enter your userid" name="userid" style="text">
<Default>agneta</Defaul t>
</Input>

252(260)

¢ The optional Default element is used to define a default value for the field. Variables, static text and Command elements can be used to
define the default value.
¢ Atextinput is editable by default. To make it read only just specify editable="false"

text-editor (multi line)

A text-editor field is the same as the text style except that it presents a multi-line field.
<Input label="Description" name="desc" style="text-editor" editable="true" args="height=50"/>

The args="height=50" attribute defines the height (in DLU) for the text-editor. The default height is 30 DLU's.

number

A number style is the same as text except that it only accept number values.

<Input label="Size" name="size" style="number" editable="true"/>

password

A password field is the same as text except that it masks the value as "***".

<Input label="Password" name="pw" style="password" editable="true"/>

Note that the password in visible in plain text in the SQL Preview.

list (large number of choices)

The list style displays a list of choices in a drop-down component. The list can be editable, meaning that the field showing the selection may be
editable by the user. Here is a sample XML for the list style.

<Input label="Select index type" name="type" style="list">
<Values>PizzalPastalBurger</Values>
<Default>Pasta</Default>

</Input>

The Values element should, for static entries, list all choices separated by a vertical bar (|) character. A Default value can either list the name of the
default choice or the index number (first choice starts at 0). In the example above, setting Default to {2} would set Burger to the default selection.

It is also possible to use the Labels element. If present, this should list all choices as they will appear in the actions dialog. Consider these as being
the labels shown to the user, while Values in this case should list the choices that will go into the final SQL via the variable. Here is an example:

<Input label="Select index type" name="type" style="list">
<Values>PizzalPastalBurger</Values>
<Labels>Pizza the French stylelPasta BologneselTexas Burger</Labels>
<Default>Pasta</Default>

</Input>

If the users selects Texas Burger then the value for variable type will be Burger.

The following shows how to use SQL to feed the list of values:

<Input label="New Database" name="newCatalog" style="list">
<Values>

<Command>
<SQL>

253(260)

<! [CDATAL
show databases
11>
</SQL>
</Command>
</Values>
<Default>${catalog}</Default>
</Input>

Here a Command element is specified as a sub element to Values. The result of the show databases SQL will be presented in the list component.

To make the list editable, specify the attribute editable="true".

radio (limited number of choices)
The radio style displays a list of choices organized as button components. The only difference between the radio and list styles are:

¢ All choices for a radio style are displayed on the screen (better overview of choices but suitable only for a limited number of choices)
e The args="vertical" attribute can be specified for radio style to present the radio choices vertically

See the list style for complete capabilities of the radio style.

check (true/false, on/off, selected/unselected)

The check style is suitable for yes/no, true/false, here/there types of input. Its enabled state indicates that the Value for the input will be set in the
final variable. If the check box is disabled, the variable value is blank

<Input label="Cascade Constraints" name="cascade" style="check">
<Values>compact</Values>
</Input>

¢ This will create a check component with the label Cascade Constraints
« Enabling the check box will set the value of the variable identified by name (cascade) to the value of Value, which is compact.
¢ If the check box is unchecked, the variable value will be blank

separator (visual divider between input controls)

The separator style is not really an input element but is instead used to visually divide the fields in the in the actions dialog. If the label attribute is
specified, it will be presented to the left of the separator line. If no label is specified, only the separator is displayed.

<Input label="Parameters" style="separator"/>

The separator is a useful substitute for the standard label presented to the left of every input field. Here is a sample:

254(260)

.

I_ﬂ Create Function

Object Details

Database Connection: |Mimer - sysadm

Schema: 'SYSADM
Function: |MyFunc
Specific Mame: |

Return Data Type: |nuard’13r{2[]}

4

*

m

Deterministic: (@) MOT DETERMIMISTIC () DETERMIMISTIC
Access Option: 'READS 5QL DATA -
Parameters
@ Mame Type ﬁ
) P1 nvarchar (20) |T|
(2l nvarchar{20) —
N
P3 BOOCLEAN |—|
v |
Source
1 --
2 —-- Insert wour own function code here
3 —_
4 declare war nwarchar(20);
5 et wvar = n'abc';
=] return war:
[7] Show SQL Execute | | Cancel

Figure: Sample showing separators and wide fields

The previous figure shows the use of separators and two fields that extend to the full width of the action dialog. The separators for Parameters and
Source are here used as alternatives to labels for the fields below them.

grid (configurable multi row inputs)

The grid input style is presented as a grid with user controls to add, remove and move rows. The columns that should appear in the grid are defined
by using any of the primitive styles: text, number, password, check, list and radio. The grid style is useful for data that allows the user to define

multiple entries. Examples are, defining columns that should appear in a table index, setup data files for a tablespace or databank.

This example shows a grid style definition that will ask the user for parameters that will be part of a create procedure action.

<Input name="parameters" style="grid">

<Arg name="output" value="${direction} ${name} ${type}${ default}"/>

<Arg name="newline" value=", "/>

<Input name="name" label="Name" style="text">
<Default>parm</Default>

</Input>

<Input name="direction" label="Direction" style="list">

<Values>IN|INOUTIOUT</Values>
<Default>IN</Default>
</Input>
<Input name="type" label="Type" style="text">
<Default>nvarchar(20)</Default>
</Input>
</Input>

255(260)

Here is how it looks:

Ohject Details

Database Connection: |Mimer - gysadm

Schema: 'SYSADM |
Procedure: | |
Specific Mame: | |
Deterministic: MNOT DETERMIMISTIC () DETERMINISTIC
Access Option: 'READS 50L DATA]
Parameters
——
Mame Direction Type
¢ | e (&
ouT
v
Source
l J—
2 —-- Ingert wour own procedure code here
T —-
4 declare warl integer:
5 zet warl = 10;
[7] Show SQL | Exeate | [Cancel

The sub elements for the grid style is different from the other input styles as it accepts sub <Input> elements. These input styles defines what

columns should appear in the grid and the first input style will appear to the leftmost and the last in the rightmost column.

This example doesn't specify the label attribute as we want the grid to extend the full width of the actions dialog. The grid style use the <Arg>

elements to customize the appearance and function of the field. The following arguments are handled by the grid style:

* output

Defines the output format for each row in the grid. The value may contain variables and static text. To create conditional output check the

<SetVar> element below
* newline

Defines the static text that should separate every row in the grid. A "\n" somewhere in the value will be converted to a true newline in the

final output
¢ rowprefix

Specifies any prefix for every row in the grid
* rowsuffix

Specifies any suffix for every row in the grid

The resulting parameter list is created automatically by the control and is available in the variable name specified in the example to be parameters.

The <SetVar> element in the context of a grid style is used to process the data that will appear as defined by the <Arg name="output"> element. It

is used to process the data for every row in the grid. Let's say that the output must contain the word "default" if the value in a column named

"Default” is entered. <SetVar> is used to handle this:

<SetVar name="_default" value='#default.equals("") ? ""

" default " + #default'/>

The #default input value is here evaluated and if it is not empty the " default " text s prefixed to the value of the #default value. The result is stored in

the "_default" variable which is also refered in the output argument above.

256(260)

<SetVar>

The SetVar element is very powerful, as it is used to do conditional processing and create new variables based on the content of other variables.

Consider an SQL statement for creating new users in the database:
create user 'user' identified by 'password'

In this case it is quite easy to map the user field to an Input element for the action since it is a required field. The question arise for password which
is optional. The identified by clause should only be part of the final SQL if the password is entered by the user. The solution for this scenario is to
use the SetVar element. Here is the complete action definition:

<Action id="mydb-user-create" label="Create User" reload="true" icon="add">
<Input label="Userid" name="userid" style="text"/>
<Input label="Password" name="password" style="password"/>
<SetVar name="_password" value='#password.equals("") ? ""
<Command>
<SQL>
<! [CDATAL
create user ${userid} ${_password}
11>
</SQL>
</Command>
</Action>

identified by \"" + #password + "\""'/>

The SetVar element accepts two attributes:

* name
should specify the name of the new variable
* value

this should contain the expression that will be evaluated. The expression is based on the OGNL toolkit provided by www.ognl.org. This is
an expression library that mimics most of what is being supported by Java. Variables are referenced as #variableName.

The expression in the example above checks whether the password variable is empty. If it is empty, a blank value is being assigned to the
_password variable. If it is not empty, the value for _password will be set to identified by “"theEnteredPassword".

The SQL in the Command element now refer the new ${_password} variable instead of the original ${password}.

It is recommended that variables produced via SetVar elements are prefixed with an underline to highlight were they come from.

<Confirm>

The Confirm element is displayed to the user when a request to Execute the action is made. If there are only read-only input fields in the action, this
message is displayed in the body of the action dialog. The message is displayed in a confirmation dialog if there are editable fields.

<Confirm>Really drop table ${table}?</Confirm>

Note that the message text can be composed of HTML tags such as , <i>,
, etc.

<Result>

The Result element is optional and if specified, it is shown in a dialog after successful execution.

NOTE: Result elements are currently not displayed in DbVisualizer. It is however recommend that you specify these as they will most likely appear in
some way or another in a future version. If you want to test the appearance of Result elements then open the DBVIS-HOME/resources/dbvis-
custom.xml file in a text editor and make sure dbvis.showactionresult is set to true.

<Result>Table ${table} has been dropped!</Result>

257(260)

http://www.ogn.org/

¢ The Result message will be displayed in a dialog after successful execution.
¢ If the execution fails, a generic error dialog is displayed and the Result is not displayed.

<Command>
The Command element specifies the SQL code that is executed by the action.

<Command>
<SQL>
<! [CDATAL
drop table ${table} mode ${mode} including constraints ${includeconstraints}
11>
</SQL>
</Command>

Conditional processing

Conditional processing means that a profile can adjust its content based on certain conditions. A few examples:

¢ Which version of the database it is

¢ The format of the database URL

¢ The client environment i.e Java versions, vendor, etc.
e User properties

¢ Database connection properties

Conditional processing is especially useful for adapting the profile for different versions of the database (and/or JDBC driver). Another use for the
conditional processing is to replace generic error messages with more user friendly messages.

Programmers familiar with if, else if and else will easily learn the conditional elements.

Depending on in which of the two phases the conditions should be processed, some restrictions and rules apply. Please read the following sections
for more information.

When are conditional expressions processed?
There are two phases when conditions are processed:

1. Conditional processing when database connection is established
<If>, <Elself> and <Else> elements can be specified almost everywhere in the profile.

2. Conditional processing during command execution
The <OnError> element is used to define a message that will appear in DbVisualizer if a command fails. Conditions are used to control
what message should appear.

DbVisualizer uses the type attribute to determine which If elements should be executed in which phase. If this attribute has the value runtime, it will
be processed in the second phase. If it is not specified or set to load, it will be processed in the first phase.

Conditional processing when database connection is established

The following example shows the use of conditions that are processed during connect of the database connection.

<Command id="sybase-ase.getlLogins">
<If test="#DatabaseMetaData.getDatabaseMajorVersion() lte 8">
<SQL>
<! [CDATAL
select name from master.dbo.syslogins
11>
</SQL>

258(260)

</If>
<ElseIf test="#DatabaseMetaData.getDatabaseMajorVersion() eq 9">
<SQL>
<! [CDATAL
select name, suid from master.dbo.syslogins
11>
</SQL>
</Elself>
<Else>
<SQL>
<1 [CDATA[
select name, suid, dbname from master.dbo.syslogins
11>
</SQL>
</Else>
</Command>

The above means that if the major version of the database being accessed is less then or equal to 8, the first SQL is used. If the version is equal to
9, the second SQL is used, and the last SQL is be used for all other version. The test attribute may contain conditions that are ANDed or ORed.
Conditions can contain multiple evaluations, combined using parenthesis. The If, Elself and Else elements may be placed anywhere in the XML file.

Here is another example that controls whether certain nodes will appear in the database objects tree or not.

<!-- Getting Table Engines was added in MySQL 4.1 -->
<If test="(#dm.getDatabaseMajorVersion() eq 4 and #dm.getDatabaseMinorVersion() gte 1)
or #dm.getDatabaseMajorVersion() gte 5">
<GroupNode type="TableEngines" label="Table Engines" isLeaf="true"/>
<!-- "Errors" was added in MySQL 5 -->
<If test="#dm.getDatabaseMajorVersion() gte 5">
<GroupNode type="Errors" label="Errors" islLeaf="true"/>
</If>
</If>

As you can see, this example contains nested uses of If.

Conditional processing during command execution

Using conditional processing to evaluate any errors from a Command may be useful to rephrase error messages to be more user friendly.

<Commands>
<OnError>
<!-- The ORA-942 error means "the table or view doesn't exist" -->
<!-- It is catched here since these errors typically indicates -->
<!-- that the user don't have privileges to access the SYS and/or -->

<!-- V$ tables. -->
<If test="#result.getErrorCode() eq 942" context="runtime">
<Message>
<! [CDATAL
You don't have the required privileges to view this object.
11>
</Message>
</If>
<ElselIf test="#result.getErrorCode() eq 17008" context="runtime">
<Message>
<1 [CDATA[
Your connection with the database server has been interrupted!
Please reconnect to re-establish the connection.
11>
</Message>
</Elself>
</0OnError>

</Commands>

259(260)

The OnError element can be used in Commands and Command elements. If used in Commands element, its conditions are processed for all
commands. If it is part of a specific Command, it is processed only for that command.

Current limitations

e The SQL statements in the profile must be statements that DbVisualizer can execute with JDBC. It can not contain any executables,
scripts or OS specific calls

¢ ltis not possible to specify conditions or compound commands, i.e., everything needed to execute a command must be expressed in a
single SQL statement.

260(260)

	Getting Started and General Overview
	Introduction
	Installing
	Installation structure
	Special Properties

	Install license key for DbVisualizer Personal
	Uninstalling the license key
	Useful Resources
	Starting DbVisualizer
	Command line arguments
	Pure command line interface

	The Main Window and Common Components
	Standard Components in the User Interface
	Grid, Graph and Chart
	Context Sensitive Components
	Tooltips
	Grids
	Sorting
	Right-click menu
	Aggregation Data for Selection
	Column Visibility
	Auto Resize
	Quick Filter

	Print
	Printer Setup
	Grid, Chart and Plain Text
	Graph

	Print Preview
	Checking for Updates
	Problem resolution
	Debugging DbVisualizer
	How to satisfy the DbVisualizer support team

	Load JDBC Driver and Get Connected
	Introduction
	What is a JDBC Driver?
	Get the JDBC driver file(s)
	Connection Wizard
	Driver Manager
	JDBC Driver Finder
	Loading and Configuring Drivers Manually
	Setup a JDBC driver
	JDBC drivers that requires several JAR or ZIP files
	The JDBC-ODBC bridge

	Loading JNDI Initial Contexts
	Errors (why are some paths red?)
	Several versions of the same driver

	Setup a database connection
	Setup using JDBC driver
	Setup using JNDI lookup
	Connection Properties
	Database Profile
	Driver Properties
	Driver Properties for JDBC Driver
	Driver Properties for JNDI Lookup

	Always ask for userid and/or password
	Using variables in the Connection details

	Connect to the Database
	Connections Overview

	Database Objects Explorer
	Introduction
	Create a Database Connection
	Database Connection object
	Alias
	Default database and schema
	Remove and copy database connection objects
	Database Connection detailed information
	Search

	Organizing Database Connections in Folders
	Connections overview

	Database Objects Tree
	Standard Actions
	Object Actions
	Common Object Actions
	Create Table
	Create Index
	Import Table Data
	Export Table
	Script Object to SQL Editor
	Script Object to New SQL Editor

	Objects Tree Filtering
	Show Table Row Count
	Object Tree Icons

	Database Profiles
	Database Specific Support
	Generic profile
	Catalog/Database object
	Schema object
	Table object
	Procedure object

	Object Views
	Grid
	Form
	Source
	Table Row Count
	Table Data
	Right-click menu
	Where Filter
	Quick Filter
	Monitor row count
	Editing

	DDL Viewer
	References
	Navigator
	Procedure Editor

	SQL Commander
	Introduction
	Physical Database Connections and Transactions

	Editor
	Database Connection, Catalog and Schema
	Limiting Result Set size (Max Rows/Chars)
	Load from and save to file
	Load Recent
	Quick File Open

	Editor Preferences
	Multiple editors

	Permissions
	Charsets and Fonts
	Key Bindings
	Client-Side Comments
	Auto Completion
	SQL Formatter
	History
	Bookmarks

	Execution
	SQL->Execute
	SQL->Execute Current
	SQL->Execute Buffer
	SQL->Execute Explain Plan (Oracle, SQL Server and DB2)
	Auto Commit, Commit and Rollback
	SQL Scripts
	Execute Large SQL Scripts
	Anonymous SQL Blocks
	Stored Procedures
	Client Side Commands
	@run - run SQL script from file
	@cd <directory> - change directory
	@export - export result sets to file
	Example 1: @export with minimum setup
	Example 2: @export with automatic table name to file name mapping
	Example 3: @export all result sets into a single file
	Example 4: @export using predefined settings

	@delimiter - Temporarily change the statement delimiter
	@call - Execute a function or stored procedure
	@echo - Echo text
	@window iconify - Iconify the main window
	@window restore - Raise the main window
	@desc table - Describe the columns in table
	@ddl - Generate DDL command
	@spool log - Save log to file
	@stop on error - Stop execution if any error occurs
	@stop on warning - Stop execution if any warning occurs
	@set autocommit - Sets the auto commit state
	@commit - Commits the current transaction
	@rollback - Rollback the current transaction
	@set serveroutput - Enable/disable the DBMS output management for Oracle

	Variables
	Variable Syntax
	Pre-defined Variables
	Variable Substitution in SQL statements

	Parameter Markers

	Output View
	Log
	Log controls
	Auto clear log

	Result Set
	Result set menu
	Editing
	Multiple result sets produced by a single SQL statement
	Text
	Chart

	DBMS Output (Oracle)

	Query Builder
	Introduction
	Current Limitations

	Creating a Query
	Adding Tables
	Joining Tables
	Manually Joining Tables
	Joining Tables Automatically
	Join Properties

	Remove Tables and Joins
	Query Details
	Columns
	Conditions
	Grouping
	Sorting

	SQL Preview

	Testing the Query
	Loading a Query from the SQL Editor
	Properties controlling Query Builder
	Express joins as JOIN clause or WHERE condition
	Table and Column Name qualifiers
	Delimited Identifiers
	Drag style and Diagram Size

	Bookmarks and History
	Introduction
	Bookmarks
	Creating, Editing and Organizing Bookmarks
	Executing Bookmarks
	Adding a Bookmark as a Favorite
	Sharing Bookmarks

	History
	Reusing a History Entry
	Saving a History Entry as a Bookmark

	Quick Load

	Monitor and Charts
	Introduction
	Monitored SQL Statements
	Creating, Editing and Organizing Monitored Statements
	Monitor table row count
	Monitor table row count difference

	Monitor Window
	Charts
	Chart Controls
	Data
	Layout

	Chart View
	Zooming
	Rotating

	Export

	Create and Alter Table
	Introduction
	Create Table
	Columns tab
	Primary Key tab
	Foreign Keys tab
	Unique Constraints tab (database-specific)
	Check Constraints tab (database-specific)
	Indexes tab (MySQL only)
	SQL Preview
	Execute

	Alter Table

	Edit Table Data
	Introduction
	Features that support editing
	Update and Delete must match one table row
	Edit Multiple Rows
	Data Type checking
	New Line and Carriage Return

	Grid Editor
	Insert row
	Update row
	Delete row(s)
	Duplicate row(s)
	Copy/Paste
	Paste data from Excel and OpenOffice

	Insert pre-defined values (Set Selected Cells)
	Undo Edit(s)
	Key Column(s) Chooser
	Preview Changes
	Saving Changes
	Transaction Control
	Permissions
	Errors

	Form Editor/Viewer
	Cell Editor/Viewer
	Binary/BLOB
	Image Viewers
	XML Viewer
	Serialized Java Objects Viewer
	Hex Viewer

	Large text data/CLOB

	Import from File
	Export to File

	Table Data Navigation
	Introduction
	Data Navigation
	Adding Context Information to the Graph
	Arranging the Graph
	Exporting and Printing the Graph

	Procedure Editor
	Introduction
	Create Procedure
	Edit and Compile
	Execute in SQL Commander
	Script CALL to Editor

	Tool Properties
	Customizing DbVisualizer
	The user preferences (XML) files

	Export Settings
	Import Settings
	General Settings
	Appearance
	Fonts

	Key Bindings
	Database Connection
	Driver Manager
	Permissions
	SQL Commander Permissions
	Table Data Editing Permissions

	Time Zone
	File Encoding
	Data Formats
	Date, Time and Timestamp formats
	Number formats

	Table Data
	Transaction
	Scripts
	Monitor
	Form Viewer
	Grid
	Copy
	Colors
	Binary/BLOB and CLOB Data

	SQL Editor
	Statement Delimiters
	SQL Formatting
	Auto Completion
	Comments

	Variables
	Proxy Settings

	Database Settings
	Authentication
	Delimited Identifiers
	Qualifiers
	Physical Connection
	Transaction

	SQL Statements
	Connection Hooks
	Objects Tree Labels
	SQL Editor
	Query Builder
	Database Specific settings
	Data Types (Oracle)
	Data Types (DB2 and JavaDB/Derby)
	Explain Plan (Oracle, SQL Server and DB2)
	Explain Plan (Oracle)
	Explain Plan (DB2)
	Objects Tree (Oracle)

	Export and Import
	Introduction
	Export Schema
	Output Format
	Output Destination
	Object Types
	Options
	Settings
	Logging

	Export Table
	Export Grid data
	Settings page
	Output Format
	Encoding
	Data Format
	Quote Text Data
	Options
	CSV
	HTML
	SQL
	XML
	XLS

	Settings

	Data page
	Generate Test Data
	Test data generator example

	Preview
	Output Destination

	Export Text data
	Export Graph data
	Export Chart data
	Import Table Data
	Source File
	Settings
	Data Formats
	Import Destination
	Import Process

	Exporting and Importing Binary/BLOB and CLOB Data
	Exporting Binary/BLOB and CLOB Data
	Importing Binary/BLOB and CLOB Data

	Using Variables and Exporting to Multiple Files

	Database Profile Framework
	Introduction
	What features in DbVisualizer relies on the database profile?
	How does DbVisualizer know what database profile to use?

	XML structure
	XML skeleton

	<DatabaseProfile>
	<InitCommands> - Initialization commands
	<Commands> - The SQLs used to interact with the database
	<Command>
	Result set
	<Input> - Setting command input
	<Output> - Redefine command output

	<ObjectsTreeDef> - Definition of the Database Objects Tree
	<GroupNode> - Static objects used for grouping
	<DataNode> - Dynamic objects created via SQL
	<Command>
	<Filter>

	<SetVar>

	<ObjectsViewDef> - Definition of the Object Views
	<ObjectView>
	<DataView>
	Viewers
	grid
	text
	form
	node-form
	table-refs
	tables-refs
	table-data
	table-rowcount

	<Command>
	<Message>

	Extending ObjectView

	<ObjectsActionDef> - Definition of user actions
	Variables
	<ActionGroup>
	<Action>
	<Input>
	text (single line)
	text-editor (multi line)
	number
	password
	list (large number of choices)
	radio (limited number of choices)
	check (true/false, on/off, selected/unselected)
	separator (visual divider between input controls)
	grid (configurable multi row inputs)

	<SetVar>
	<Confirm>
	<Result>
	<Command>

	Conditional processing
	When are conditional expressions processed?
	Conditional processing when database connection is established
	Conditional processing during command execution

	Current limitations

