DbVisualhizer 6.5
Users Guide

| The Universal Database TOD—

Copyright Onseven Software AB

http://www.dbvis.com

Table of Contents

Getting Started and General OVervieW.iccciuiisrmsisssmssssssmsssnssssssnssssssnnnnnnnas

oo Yo [Tl o o PP
0Tt L3 T TR PP
Installation structure
Java Properties......cooviiiiin
Install license key for DbVisualizer Personal...........
Uninstalling the license Key.......ccovoviiiiiiiiiiiiiinnnnns
Useful Resources.................
Starting DbVisualizer....
Command line arguments
The Main Window and Common Components
Standard Components iN the USer INterfaCe. ittt e e e e e e e e e e e e e e e e ea e e 12

Sorting
Right-click menu
Calculate Selection
Column Visibility........coovvnennns
Auto Resize............oves
Quick Filter....
Checking for Updates.........cocvvvivnennnnnn.
Problem resolution............cooeivviiiiiinnnnns
(7= oYU T Lo g T I I o N AU 2= o
How to satisfy the DbVisualizer support team

Load JDBC Driver and Get Connected.........cccvierimsismmessssnsnnssssssnnsssnnsnnssnnnnnns 2

(T AR To I 0] TGl [YT ol 11 =T (3 PPN

Connection Wizard

[0 YTl = =T =T N

B0 =T G I o Y= gl T o =T o

Loading and Configuring Drivers Manually...

Setup @ JIDBC driVer .. .iiiiiiiiiiiiiic s

JDBC drivers that requires several JAR or ZIP files

The IDBC-ODBC bridge......ccuviviiiiiiiiiiiiiiiininieanee e
Loading JNDI Initial Contexts.....c..covuieieininininnnnenes
Errors (why are some paths red?)........coceoiiinininnnn.
Several versions of the same driver............ccceeuenenne.

Setup a database connection................ouu.

L O oI [a L IS = 1@ [A= PSPPI

ST 0 TS [T 08 NV 5 B o o W F PP

Connection Properties

(=1 0T L= o o) 1 =

LI RVl o o 0T o =

Driver Properties for JDBC Driver

Driver Properties for JNDI Lookup

Always ask for userid and/or password...............

Using variables in the Connection details............

Connect to the Database.........cccoovvvieiiiiininnens
Connections Overview

Database Objects EXPlOrer.....cccvucmiemriansssnmssnssansssnsssnssssnsssnsssnnssnnsssnnssnnssnnnss _Z

o o o 11T o0 o
Create a Database Connection......
Database Connection object....
Al@S. .o
Default database and schema
Remove and copy database connection ODJECES........iuiiiiiiiiii 46
Database Connection detailed INformation. e ettt e et e et et e aeas 46
4
Organizing Database CONNECLIONS IN FOIARIS. .. .uiuiiiiii e e e s ea e et e s et nans 47
[o T 0 T ot [T T Y= Y 48
Database Objects Tree.............. 49
Standard Actions 49
Object Actions......c.cvvvivnninnns 49
Common Object Actions.... 50
Create Table............... 50
Create IndeX............ ... 50
Import Table Data 50

2(245)

Script Object to SQL Editor.

Script Object to New SQL Editor....

(@ o) 1=ttt =T =Y o T

Show Table Row Count
Database Profiles........c.coevvvnininnne.

Database SPECITIC SUPPOIT. ..ttt e

[T a1 T ol o o) = PP TP PPN

Catalog/Database object

Schema object.....cocvviiiiiiiiii

Table Type object....

2T gLl T G5 1= o TN
R0 =T ST 1= o PPN
Quick Filter..............
Monitor row count.....
Editing.............
DDL Viewer............
References..........
Navigator
Procedure Editor.

SQL Commander......ccuueriemmumssmssamsanssnssanssnssnnsanssnssnnsanssnssnnssnssnnsansnnsnnnsnnsnnnnans 7

oY 10Tt oY
Physical Database Connections and Transactions....

Database Connection, Catalog and Schema....
Limiting Result Set size (Max Rows/Chars).....
Load from and save to file
Load Recent..........ccoevviiiinininns
[0 Lo gl o =1 =T =T T
LU o1 L= L0 PP
Permissions
[g F=T == €= o o o1 PP
[SCE = 11 o 1T =N
Client side Comments..................
Auto Completion........cccovvuiiiinennns
SQL Formatter........oovvviiiiiinnnnns
SQL History...oovvviiiiiiiiiiiiiiieeens
SQL Bookmarks......cocvevvvininnnnnnns
Execution........coovvviiiiiiiniinnnn,
SQL->Execute......cocovviiiinninininennns
SQL->Execute Current.................
O] ot o{ UL o = T = PP
SQL->Execute Explain Plan (Oracle, SQL Server and DB2)......c.iiiiiiiiiiiiiiini s
Auto Commit, Commit and Rollback
S] S 1
ANONYMOUS SQL DIOCKS ..ttt et e e e e e e e e et s e et e e et e e e et
1] el g cTe I ol oo =Te LU =t PP PPN
[O111=T)] [[T @eT 1 o1 0 T=1 o o =3 PP
@run - run SQL SCript from fil@. ...
@cd <directory> - change dir€CEOMYiur it e
@<file> - run SQL SCript from fil@. .. .
@export - export result sets to file....coviiii i
Example 1: @export with minimum setup........c.cooviiiiiiiii e
Example 2: @export with automatic table name to file name mapping.....
Example 3: @export all result sets into @ SiNgle file........ovuiuiiii i
Example 4: @export using predefined settings
@exit [nocheck] - Exit DbVisualizer..........ccocvvvvinenn.
[Tl o T = o Vo T < PP
@window iconify - IcoNify the Main WINAOW. ...ttt ettt e et e e e et e e a e a e e e e enaneaaenenens
@window restore - Raise the main WindoW.........ccoivviiiiiiiiin e
@desc table - Describe the columns in table.........ccooviiiiiiiiiin
@spool log - Save log to file...coviiiiiiiiiii e
@stop on error - Stop execution if any error occurs...............
@stop on warning - Stop execution if any warning occurs...............
@set autocommit - Sets the auto commit state
@commit - Commits the current transaction................ooeuee
@rollback - Rollback the current transaction...........ooviiiiii s
@set serveroutput - Enable/disable the DBMS output management for Oracle
BT =1 0=
RV L =T o LTS} 1= PP

3(245)

[RTa [AT g T=Ta I = T = o] [T PP 91

Variable Substitution iN SQL SEat@mMIENtS. e 91

L L= gLl 7 = T = = P 94

L L0 95

0T 96

[0 I ol o 1P 96

XU T 1= T ol o T R 96

2T U LY=o PP 96

YU L oY= ol o 0= o PPN 98

o 1l T PP 99

Multiple result sets produced by a single SQL StatemMENT.u it an 99

S 101

L0 = 101

132\ ST @ TU oYU L ol (0 = 1= PP 101

Query Builder........ccviiiiiiii i ri s sr s s s s n s s s an s nn s s nnnnnnnnnanns 103

oo 10Tt oY 103

(08 T /=Y ool T a1 = o[o = PP 103

(05T o o = T LT o 104

X Lo 11 a o B =1 o [T PPN 105

oY 1T FaTe N =1 5] 1T PPN 105

=YL= 1AV Lo T a1 T TR = o = PP 105

ol alTale R E=1 o] SIS AY UL o] o g = L o= 1 Y2 PPN 106

B o1 T o o] o= 1= PPN 107

LT 0 TN F= o] LT Vg o T | = 108

LU= = Y1 PP 108

(@ 18T o1 o =T PP 109

[a o 1) o 1= PP 110

[0T U o 0T 111

15 0 o T PP 111

1] @] o o PO 111

LTS g Lo I T @ LU= o PPN 111

[IoY-To e J- T @ IUI=T oV i o a R a TSI @] I =l] o o PP 112

[geYol=T gut=t oo aYu ol |11 e I @ UT=T VAN = U] 1 o 1= PP 112

Express joins as JOIN clause or WHERE CONAITIONttt sttt e e e e e s e e e r e e a e e e e e e e e e e r e e a e eees 112

N1 o] [SI=TaTe I @o] IW oo T\ F=Ta g[S Te FU =1 L1 o PP 113

(D= T q =T I K [T o o= o= 113

(D= T I nY (oI T g o B DT T =Y o o] = PPN 113
Monitor and Charts......cccciiiiciiiiicsiirsc s snrss s snrse s ssrss s sssn s sssn s sssnnssssannssnnnnsnnnnss 11

oo 10Tt oY 114

[N{o) aTi oY =Y A IS @] I =t =T o =T o | PPN 114

1o oYL el = o LS /o 17 A o 1 1) PP 116

[\ Lo] gl oY gl w=] o] L= o LY lo U] o e 111 £ =T =T o [l =T PP 117

11 To] oY o gV T o [o 1 PP PP 118

(0] T o 119

[0 = o 000 1 o 119

5= 120

[Yo T PP 120

L0 =T = 121

740 Yo Yo 11 e PP 121

2@] = | o1 T PP 122

T 50 122

Create and Alter TablellIIIllllIIIIIIllllIIIIIIllllIIIIIIlllllIIIIIlllllIIIIIllllllllllllllllllllllll 124

g oo T 11 T oo o TR PP 124

(@0 =T Lt =1 o][PP 124

(001181 Yo F=30 = o PP 125

L L F= TV =) 20 1= 1o T PPN 127

Foreign Keys tab 127

Unique Constraints tab (databas@-SP@CifiC). . ..ttt e e 128

Check Constraints tab (databas@-SP@CifiC) .. . u ittt et et e e et r e e ettt 129

INAEXES TAD (MY S QL ONIY) euiiititii ittt et e e e e e s s e et e e e r et e e e 129

1Y@] PP 130

=T L PP 130

Y L=l =1 o 1P 130

Edlt Table DatallIllllIIIIIIlllIIIIIIllllIIIIIIllllIIIIIIIlllIIIIIIIlllIIIIIIIllllIllllllllllllllllllllll 132

g oo o 11 Tl oo o A PP 132

R U] ST W P =8 o] o Yo (=T [1 T PPN 132

Update and Delete mMUSt MatCh ONE £ le FOW. ...ttt et e et e e e e e e et e e s e et e n e r e e e e e e e e e e e e nnnenens 132

[=la Lol T LT L= 2o 1Y PP PPP 132

(D= o= I V7 o LS ol =T {1 o PP 133

NV LY== T o @ o =T T 2= oo o PP 133

L o I =T oY o PP 134

T o o o 1 PP 134

[0 T E= Yo e 1PN 134

(DTS 1= o o 1T) R PP 135

DTN o] Tot= L= o 1Y (=3 PPN 135

(0701 == 1] = PP 135
Paste data from EXCEl @and Open O fiCe. .. . ettt ettt et 135
Insert pre-defined values (Set SeleCted CellIS).uiuiu it 136
L7 T o T =T o =) TR 136
LN Ol 1T Y0 oY =) T 1 oo L1 =T PPN 137
A YA @ 1= Y e = PO 137
= V7T T G = g T 1= P 138
=T FT= Tt o o T o o'oY APPSR 138
L] 0 V1] o 1= PP 138
] o = PP PP 138
(o n T =l Lo gAY AT Y o PP 139
(@=L I o [oY o7 AV =TT = T PP PP 140
Lo = 1V 0 = PP 141
= T LY AT 141
DI AT PPN 142
Serialized Java O ECES VIEW T . .. ittt e ettt ettt ettt enn 143
L TS0 G TS =T PP 144
[Yo T ol = =) A 1 0 12 TR PP 145
a0 o o /o T 11PN 146
Export to File 146
Table Data NavlgatlonllllllllII 147
g go o [N Tl u o o 1 PPN 147
(D= 1 ot= I N\ = Y7 o = | o T 1R PP PP 148
Adding Context INformation t0 The Grap ettt et e e e e e e e e e e e e e e e e e et e e e e n 150
F AN o= T | [T o =T] = o] o PPN 151
EXporting and Printing the Graph. ... 152
Procedure EdItorlllllllllllllIllllllllIIIIllllllllllllllllllllllllllllIllllllllIllllllllllllllllllIlllll 15
oo 10Tt oY o S 153
(@05 =Y T = o Tl Yo [T PPN 153
[l L ur=T oo [@ 0 oo Y11= PPN 155
(208 aYa Tl ate BT o TS @] I oY oV a'a = a T L= oS PP 157
SQL Bookmarksllllllll.lllII 159
g oo [U Tl o o o 1 PSP 159
What's @ DOOKMArK I DV iSUAIIZEI 2. .. ittt et e e et e e et e e e e et e e e e et e e s ra et e n e e e e e e n e e n e e enn e 159
LT3 = FeTo T < a a =T ST N =11 T =T o L P 159
[T 0 Yo g =Tt S = [PPN 160
L2 L0 Y0140 o T= Lot G0 1= o PPN 160
N 3= T Te I o T oYV oY o] Lo =T PP 162
1]] I o Lo 162
[\ oYL e ol oY {0 o =11 o) 1A PP 162
B I T AL L 0 = e PP 162
Executing an SQL bookmark or folder of SQL DOOKMAIKS.ttt et e e e e 162
Tool PropertleslllIII 164
(OUTS oY g T4 T aTe BB Yo NV AT U T[T o PP 164
The USer PreferEnCeS (XML fill@S . . ittt et et ettt et e et e e e et e r e e et e e e e et e e e e r e e e e n e s e e et n e e a e e e e nnnnenens 164
Lt oo Y 1 o 1 Ve =P 164
0T 0T oY= T 165
LT L= =T ST = T PP 166
Y 1= =T Lo 167
[0 o= PP 168
(323 Y =112 o 1o T I PP 169
(D= o= T= T <IN @] oY 1=Vt e o PPN 171
Driver Manager 171
Permissions 171
1510] I oY aaVa aF=T ol [T gl =T o s a1 ET1 L] o PP 172
BN TR T =l o] gl == o' n a1 111 [PP 172
L TS oY =Y
File Encoding.........
Data Formats 172
Date, Time and TimEStam D fOrmMatS. . ettt et e ettt e et e e s et e e et e e e e s e e e et r e e e n e e e n e s e e r e e e e n e e e e nenenes 173
LN LU oY=l o] o 4 = S 173
QLI 0L | - PP 173
L= 1 1= T o o 174
1200 1 2 =T PPN 174
117 o 110 o PP 174
Lo 0 g TV AT T PP 174
[o PP 174
[o 5 PP 175
[0 o /= PP 175
T[] M@ SR o o B 0] = T | o= PP 175
1@] I T 1o PPN 175
oY= =T T=T oLl 7= o g =Y PP 176
1]I oY g T T PP 176
F XU o I @e 3 o] [=1 u o o T PP 176
(@00 1218 1= 01 177

5(245)

AT T =1 oL PP 177

Lo 0DV T =] 1 o PP 177
(D= 1 ut= 0 T= [T IS =1t o 1 e PP 178
F YU =T ol [l o o 1A PPN 178
[T o T =T e £ o 1 ==t 179
(LU= 1= S 179
L 0}V 2 Tor=] @ oY =T oo o VPPN 179
L= L 1.17= 1o oo 180
1@] IS = (=T 1= o PP 180
[0 oY aT=Totu o o I oo PP 181
(O] [<Totd = L ST IR= o1 = PPN 181
S]] I e 1o 182
(@ U= VA = T] o 1= PP 183
(D= 1= T= T IS o 1= ol Lol =1t o I e =7 PP 183
=1 T Y7 0TS (@ = = 183
Data Types (DB2 and JavaDB/DerbDy). ..uiu it 183
Explain Plan (Oracle, SQL Server @nd DB2).......iiuiuuiiiiiiiiiii ittt e e e 183

[q T =TT T o 1= T (O =Tl [TR PP

oo =YL T = T 5 = 72 TR TP PP

Objects Tree (Oracle) 184
Export’ Import and PrlntlIII 185
g go o [N Tl u o o 1 PPN 185
LoDt a Yo T a1 o = PPN 185
[W/ | o o o 0 = PP 186

(@ 0o T | ol I T3 = o PPN 188

[03 1= A Y 0= 188
(] o = PN 188
S]] T 1 PP 189
0T T T T TR 189
e o Yo Lt o o e = = TP 189
ST o T =T 1= 189

[110 10 ol oY ¢ = PPN 190

=] o o |1 0T TR PP PP 191

(D= o= o T o ¢ - L PP 191

(O W o SR 1=l - | = P PP 191
(] o 1= PP 191

L0 192

o I P 192

15] PPN 192
PP P PPN 193

5= T PPN 193

[2= | = 01T 1= 193
(1= oL = T [T o 1= = PP 194

R e = L= e LY =T = o Tl D= o o] = PPN 195

LY T PPN 197

(@ 0]/ T8 ol 1)l o = o 1A PP 197
[t o Yo o [q e - - TP 198
bt s Yo Tl C =T 0] a e F= = PSPPI 198
Lt o Yo o o T= o e = o= PP 199
g oTo T ul F=1 o] (S I - | = PP 199
LYo 10 o= 1 = PP 200
S]] T 1 PP 200

[1= L= T oY 3 = | = PPN 202

I g a]oTo] D11 o] = o o A PP 203

g 00T o 0 o T =11 205

o T PP 206
e LT Y= U PR PPN 206
(1T PO = =T g T B 2 F= 1T o T S PPN 207
1= o o 1 PPN 207

Lo Lo = AT PP 208
Plug-in FrameworK.......ccvicuiiimmimrinmsse s ssmsssssnsssmsssssmssnssnssnnssnssnssnnsnnsnans 209
gLl T L8 T o o T PP 209
What features in DbVisualizer relies on the database Profil@?. ... e e areens 209
How does DbVisualizer know what database profile t0 USE 7. et e e e e e e eaeaeens 210
D= Ut o = 211
D] =] =1 o o PPN 211

S =Y = Yo T Y= oo 1= PPN 212
<Commands> - The SQLs used to interact With the database.c.viuiiiiii e e e 213
@] 2 2 1= Uo B PP PP 213
LY == o PP 214
<INPUE> - SEtting COMMIANA INPUL Louvitii ittt e e e et e e e et e e e e e e et e e e e e e e s e e e e n e r e e e e n e e n et e e e nrneneenenes 214
<Output> - Redefine COMMANGA OUEPUL. ... ettt e e e e e e et e e e st e e et e e e e r e r e e e e e e nrn e e e nnnnenens 215
<ObjectsTreeDef> - Definition of the Database ObDJECES TrEe.ttt e e et e e e e e e e e e enenes 216
<GroupNode> - Static objects USed fOr GroUPING... .. .uiuie it 217
<DataNode> - Dynamic objects created Via SQL........iuiiuiiiiiiiiii e 217

B 00 031 21971 2 e > PPN 218

<Filter>

D= Y = [
<ObjectsViewDef> - Definition Of the OBDJECE VIEWS. ...ttt et e e et e e et e e e a et r et e e e ae e eenas 220
SO0 [T V= PSP 222
B 0 1Y o= VAT 222
R TS o= PP 222
o o PP 222
LS 225
L0 0. 1 PP 226
Lo e LT (o o o T PPN 227
L= Lo o= 228
L= Lo = N 229
L= L= o 230
L= L= oo oo LU o 231
B 070] 2 2] /2= T > 232
B =TT = 232
[T o [T g Yo O o =Tt Y AT PP 233
<ObjectsActionDef> - Definition Of USEr @CTIONS.ttt ettt e et e e e e e e e e e e e e e e enen e e e enenens 233
BT T =1 0= PPN 235
AV o] 1] o 1U] o PP 236
£ Y 1 237
£ Yo 11 PR PEPPRE 237
SN €] T aTe | L 11 = TR PP 238
Loy = Ta [o T ol (YU o 1 V=) PP 239
LT 0451 239
[=737 o PP 239
(LS Q=T [=I 18 Ta 0] o =T e} ol o] [l =t PPN 239
radio (limited NUMDEE Of ChOICES) iuiiii ettt e e et e e e eas 240
check (true/false, on/off, selected/UNSEIECEEA) ...uuininir ettt e et eeas 240
separator (visual divider between iNPUt CONEIOIS)vuiuiiiiiii e 240
grid (configurable MUILE FOW INPUES). ... uuiii ittt ettt e e et et e e e et e e et e et e s e e e e e e n e e anneaens 241
D1 = [242
000} 01 10 PP PP 243
RS 2SS N 243
S 000} 0 10 0= T N 243
(@feTaTa [TeY =Y I o Yol<T=1= o e PP PP 244
When are conditional @XpPreSSiONS PrOCESSEA?. ... e u ittt ettt e e s e e e et e e e e e et e e e e s s e e e re e a et e e e e a e e e e rn e enennreens 244
Conditional processing when database connection is @stabliShed.........ouviiiiniiii e e 244
Conditional processing during COMMEAaNA E@XECULION. ... uuiuiuiiitiiiii e e et e a e r e eas 245
(@18 /=T 0 ol T a1 r= o [0 o =7 PP 246

7(245)

Getting Started and General Overview

Introduction

DbVisualizer is a feature rich, intuitive multi-database tool fors developers and database administrators, providing a single powerful
interface across a wide variety of operating systems. With its easy-to-use and clean interface, DbVisualizer has proven to be one of the
most cost effective database tools available, yet to mention that it runs on all major operating systems and supports all major RDBMS that
are available. Users only need to learn and master one application. DbVisualizer integrates transparently with the operating system being
used.

This document gives a overview, installation tips and general information about the product.

The screenshots throughout the users guide are produced on Windows XP using the Windows Look and Feel, but DbVisualizer lets you
choose among other Look and Feels as well.

All documents in the Users Guide are primarily focusing on the DbVisualizer Personal edition. Some of the described features are not
available in the Free edition.

Installing

Installing DbVisualizer is no different then installing other modern products. The standard installation procedure is performed using a
graphical application, and you just need to click through the questions that are displayed. Follow the instructions at the DbVisualizer web
site if you need information on how to start the installation procedure specifically for your platform.

Installation structure

The installer and launcher for DbVisualizer is based on the install4jTM product (http://www.install4j.com). The structure of the
installation directory (referred as DBVIS-HOME throughout the users guide) contains the following. (The exact content may differ
between platforms):

.install4j/
doc/

jdbc/

lib/

resources/
wrapper/
dbvis.vmoptions
dbvis.exe
README . txt
uninstall.exe

The dbvis.exe file is used to start DbVisualizer. The remaining files and directories are only of interest if you need to do nonstandard
customization. For information on how to increase the memory for the Java process that runs DbVisualizer, and also on how to modify the
Java version being used, please read the on-line FAQ for the latest information.

Java Properties

DbVisualizer utilizes a few Java properties that you can use to modify characteristics of the application. These DbVisualizer specific
properties are available in the DBVIS-HOME/resources/dbvis-custom.prefs file.

You rarely need to modify these properties, as the default values are sufficient for most usage.

8(245)

http://www.dbvis.com/products/dbvis/install/install.jsp
http://www.dbvis.com/products/dbvis/faq.html
http://www.install4j.com/

The following are the properties handled by DbVisualizer:
Property Description

dbvis.driver.ignore.dir=lib:resource Specify directories from DBVIS-HOME that should not be listed in the Driver Manager "System
s:.install4j Classpath" list. Directories are separated with ":".
Accepted values: one or several directory names starting from DBVIS-HOME.

dbvis.grid.encode=false Specifies if encoding of data in result set grids will be performed or not. If set to true then make
sure the dbvis.grid.fromEncode and/or dbvis.grid.toEncode are also set.

dbvis.grid.fromEncode=1S08859_1 Encoding used when translating text data that is fetched from the database
dbvis.grid.toEncode =GBK Encoding used when translating data that will appear in the result set grid

dbvis.usegetobject=false Specifies if the generic ResultSet.getObject() method in JDBC will be used in favor of the data
type specific get methods or not. Default is false.

dbvis.savedatacolumns=false Column layout changes such as reordering and/or visibility are saved for all grids in the Objects
Views *except* for the "Data" grid. This property can be used to also include the layout in the
"Data" grid. Note: This will result in DbVisualizer saving the layout for each table that is displayed
in the Data grid = huge XML file...

dbvis.disabledataedit=false Specifies if table data editing should be completely disabled, i.e. the form and inline editors. Note:
This only has an effect when used with a licensed edition.

dbvis.showactionresult=false This defines whether the result for all actions should be displayed or only failures (default).

dbvis.usestandardgridfit=false Enable this property and DbVisualizer will use an accurate but slow method to automatically resize
grid columns. "Accurate" since it does a real calculation of the columns width. If leaving this
property disabled then column widths are determined much faster but depending on what grid
font is used some columns may be truncated with "...". This property only have effect if Tool
Properties->Grid->Auto Resize Column Widths is enabled

dbvis.sqlwarning.maxrows=5000 Defines the number of SQL Warning rows that should be processed until truncated.

These properties may change in future versions of DbVisualizer. Some are also experimental and may be removed or instead introduced in
the DbVisualizer GUI.

Install license key for DbVisualizer Personal

If you have a license key file for DbVisualizer Personal, then start DbVisualizer and open the Help->License Key window. Enter the name
of the license file in the License Key File field, or launch the file chooser by pressing the "..." button to the right of the license file field.
Once the file is loaded, press the Install License button.

Uninstalling the license key

If you ever need to uninstall the license key, you can do so by removing (or renaming) the following file:

Operating System File Name
Windows C:\Documents and Settings\<user>\.dbvis\dbvis.license
UNIX/Linux /home/<user>/.dbvis/dbvis.license

9(245)

Mac OS X /Users/<user>/.dbvis/dbvis.license

Useful Resources

Resources related to DbVisualizer that are useful:

ounkNeE

The home of DbVisualizer

The FAQ which is regularly updated with frequently asked questions and known problems

The User Guide

The Databases and JDBC Drivers online page. This page gives information about supported databases and JDBC drivers
The Ming forums

The online problem report form. This is the recommended channel for product support and general questions

Starting DbVisualizer

How to start DbVisualizer depends on the operating system you are using.

Windows

Locate the DbVisualizer submenu in the Start menu. Select the DbVisualizer entry in that menu
Linux/Unix

Open a shell and change directory to the DbVisualizer installation directory. Execute the dbvis program
Mac 0S X

Double click on the DbVisualizer application or the DbVisualizer.app application bundle.

Command line arguments

DbVisualizer supports a range of command line arguments. These are listed in the Help->About menu choice, under the Command Line
tab, in DbVisualizer.

Usage: dbvis [-help] [-up <path>] [-sqlfile <path>]

[-windowtitle <title>]
[connect options] [remote options]

General Options:

-help Display this help
-up <path> Use an alternate user preferences file
-sqlfile <path> Load file into the SQL Commander editor

-encoding <encoding> Optional encoding for loaded file
-windowtitle <title> Additional window title
-execute Will execute SQL file automatically
-invisible No windows will be displayed

Driver Connect Options:
-driver Setup and connect using the following Driver options:

-alias <name> Database alias
-drivername <name> Driver name

-path <path> Path to driver class
-class <class> JDBC Driver class
-url <url> Connection URL
-userid <user> Userid to connect as
-password <pw> Connect password

INDI Connect Options:
-jndi Setup and connect using the following JNDI options:

-alias <name> Database alias

-drivername <name> Driver name

-path <path> Path to initial context class
-class <class> Initial context class

-url <url> Provider URL

-lookup <name> Lookup name

-userid <user> Userid to connect as

10(245)

http://www.dbvis.com/support/supportform.jsp?product=DbVisualizer
http://www.minq.se/forum/index.jspa
http://www.dbvis.com/products/dbvis/doc/drivers.jsp
http://www.dbvis.com/products/dbvis/doc/databases.jsp
http://www.dbvis.com/products/dbvis/doc/main/doc/index.html
http://www.dbvis.com/products/dbvis/doc/faq/faq.jsp
http://www.dbvis.com/products/dbvis

-password <pw>
Remote Options:

Connect password

-attachremote Attach to remote DbVisualizer instance
-enableremote Enable remote attachment

-host <host> Remote host name (default: localhost)

-port <port> Remote port (default: 8787)

The Main Window and Common Components

As you can see in the in the screenshot below, the DbVisualizer interface has a Database Objects Tree to the left and two tabs to the right.

Database Objects Tree

This tree keeps (at the top level) all the Database Connection objects (or folder objects, used to organize Database Connections).
Use this tree to navigate and explore the database. Clicking on an object will change the view in the Object View tab to show
details about the selected object.

Object View

This tab shows detailed information about the object represented by the selected tree node. The content of the Object View tab
depends on the type of the selected object.

SQL Commander

The SQL Commander lets you execute any SQL statements and scripts.

B DbVisualizer Personal - Untitled
File Edit WView Database

vER ER (B ENFO

SQL Bookmarks Tools Window Help

RO|Y Ead W

@ Connections
#-J DB2
- Infarmix
- Java
- Mimer
-] MysaL
-1 Oracle
-] PostgresaL
#-] 5AL Server
#-] Sybase
#-] WebLaogic
-ig Cache 5.0
@ Database Connection
-3 FireBird 1.5
-5 FrontBase 3.6 21
- Ingres
- MaxDB
- MonStap
g Pervasive 8.10
- Progress 10.0a
- MEACC
~fg Ingres

Y . ObjectView | b 5QL Commander

License Details

Product:

Licensed to:
License id:
Upgrade Expiration:

Getting Started
'

DbVisualizer Personal
World Inc.

2006-09-19 [#1
2007-09-21

& Select Tools-=Connection Wizard menu choice to create a database connection.

@ Latest news, documentation and FAQs are available at hitp:iiwww. dbvis cam

Figure: The DbVisualizer main window

Standard Components in the User Interface

The following sections introduce generic features and components that you find in many parts of DbVisualizer.

11(245)

Grid, Graph and Chart

Grid, graph and chart are three terms that are often used in the application and in the documentation. The following screenshots show
what they represent.

cemployee_id first_name dept_code manager_id
1 1 /Robin Eng {null)
2 2 Anthony SoC 1
3 3|/ Denise SoC 2
Grid 4 4| Jeremy SoC 2
5 5 Tim {null)
G GJon SoC 1
7 7|5ven SoC 2
g 2|Diane SoC 2
Graph

PlayStation 2 sales figures

4000

. L
fl" bR hr'\f»

Chart zqag wtugn,

1000 I\'f ‘

0
1999 February 2000 May 2001 May 2002 May 2003 May

Figure: The grid, graph and chart terms

The documentation uses the term grid for the user interface component that represents tabular data, rather than table, to avoid
confusion with a database table.

Context Sensitive Components

All components in the user interface (e.g., buttons and menu items) are context sensitive. They are enabled only if they can be used in the
current scope.

Tooltips

Tooltips are used to provide more details about a component. They are also used to express status information. An example is the grid
column header tooltip that shows information about the column. To see a tooltip, let the mouse hover over an area of the user interface,
e.g., a button or grid header. If there is a tooltip for the area, it will pop up in about a second.

employee_id INTEGER
Mot MULL, Key Column
JODBC: INTEGER {type: 4), Java: Long

12(245)

Figure: Tooltip example

Grids

Grids are used heavily in DbVisualizer and require a brief introduction.

Column Visibility coentrol
Sort direction indicators

Primary key symbol Binary data symbol Truncated column
4 & color e

. Custld ~1] CreatedDate ~2| SelfRegistered Name
Null value ik 1003 2007-05-17 & BINARY, 27 Byies
1N 1004 2007-04-10 g BINARY, 7 Bytes

3 1005 2007-05-19 & BINARY, 21 Bytes

4 ik BINARY, 16 Bytes

5 i BINARY, 11 Bytes

6 1008 2007-02-19 * (null)

7 1009 2007-02-20 & BINARY, 39 Bytes

8 1010 2007-08-22 & BINARY, 6 Bytes | Carl Binde
R 9 1011 2007-01-19 gk BINARY, 17 Byvtes Steve Wils
indicator —» | 10 1012 2007-05-19 & BINARY, 16 Bytes Van Son

11 1013 2007-06-03 #& BINARY, 7 Bytes |Roger Wrig s

12 1014 2007-10-25 & BINARY, 20 Bytes Pekkalcty

13 1015 2007-12-24 gk BINARY, 16 Bytes Mike Swans

14 1016 2007-07-04 & BINARY, 10 Bytes 5

e >

=
=
In

Max Rows: 2500 | Max Chars: [100] | 0.008/0.069 sec | 11 29/11] | 1-
+ 4

Exec/Fetch time Rows/Columns
(red = truncated)

Visible row range

Figure: Grid overview

The screenshot shows the grid and controls that are available for the grid in the Data tab, but the differences are minor compared to
grids used in other places.

Sorting

You can sort the grid based on the values in one or more columns. When you click on a column header, the grid is sorted in ascending
order on the values in that column, indicated by an up-arrow in the column header. If you click the same column header again, the grid is
sorted in descending order, indicated by a down-arrow in the column header. If you click a third time, the data is shown in the order it was
received from the database and the sort indicator disappears.

To sort on more than one column, Ctrl-click (keep the Ctrl key pressed when clicking) on additional columns. The grid is then sorted on the
values in the first column you clicked on (indicated with a 1 next to the arrow), and then all rows with the same value in the first column
are sorted on the values in the second sort column (indicated with a 2 next to the arrow), and so on.

Right-click menu

The generic right-click grid menu contains the following operations:

13(245)

| I select Al

Ctrl-A

Select Row
[l Copy Selection

& Export..
[T} Export Selection...
< Print...

{4 Print Selection...
2 Print Preview..

k= save Selected Cell...

= Reload

 Find..

E] Browse Row in Window:..
@@ Browse Cell in Window...

1 Describe Data...
Calculate Selection...

[l Copy Selection ¥ith Column Header) Ctrl-H

Ctri+3hift-J
Ctrl-C

Ctri+Alt-E

Ctri+5hift-3
Ctrl-R

Ctrl-F

Ctri+5hift-C

Figure: Grid right click menu

Menu Choice

Select All

Select Row(s)

Copy Selection

Copy Selection (With Column Header)

Export

Export Selection

Print

Print Selection

Print Preview

Save Selected Cell

Reload

Find

Browse Row in Window

Browse Cell in Window

Describe Data

Description

Select all cells (i.e., all rows and columns) in the grid

Select all cells in the selected row(s)

Copy all selected cells onto the system clipboard

Copy all selected cells including column header onto the system clipboard

Copy the export dialog

Export the selection using the standard export feature

Open the print dialog for printing the compete grid

Open the print dialog for printing just the selected rows/columns

Open the print preview dialog

Save the value of the selected cell to a file, selected with a file chooser dialog

Reload the grid with data from the database

Open the find dialog

Display all data for the selected row in a separate window.
Note: for a read/write grid, this entry is named Edit Row in Window.

Display the cell value in a separate window. This is especially useful for BLOB/CLOB data.
Note: for a read/write grid, this entry is named Edit Cell in Window.

Show detailed information about the columns in the grid

14(245)

Calculate Selection

The menu may contain additional entries based on the current scope, e.g., entries for editing cell values for a read/write grid.

Read more in Calculate Selection below.

Calculate Selection

Displays some metrics about the current selection. This is especially useful for numeric fields.

The Calculate Selection feature performs basic calculations on the current selection. It is primarily used for selections of cells holding
numbers. The following is an example of what it shows.

IT_PROG 4800
IT_PROG 4500
IT_FREOG 4200
FI_MCE. 12000
FI_ACCOUNT [000
FI_ACCOUNT 5200
1 |[FI_ACCOUNT F700
ho Mumber of Cells: 6 Sum; 43,000
v Walid Murmbers: 6 Min: 4,200
1 Mull walues; 0 4wy F,166.67
1 Bytes: 25 Max: 12,000
; (%)
v

Figure: The calculate selection popup

Property

Description

Number of Cells Shows the number of cells in the selection.

Valid Numbers

Null Values

Bytes

Sum

Min

Avg

Max

Lists the number of valid numbers in the selection.

Shows the total of null values in the selection.

Shows the total number of bytes in the selection after that the data has been translated to text

Shows the total summary of the selection

Shows the minimum number in the selection

Shows the average value of the selection by doing sum / number of valid numbers

Shows the maximum number in the selection

Click the red cross icon, or anywhere in the popup, to close it.

Column Visibility

The Column Visibility dialog controls which columns you want to appear in a grid. You open the column visibility dialog by clicking the
button above the vertical scrollbar in the grid.

15(245)

E DbYisualizer Personal - Grid Column Chooser

Qriginal) ey Column N
Index e Column Mame
1 >+ |EMPLOYEE_ID st
2 FIRST_MAME
3 LAST_MAME
4 EMAIL
11 PHOTO
5 PHOME_MUMBER
B JOB_ID
7 SALARY
g COMMISSION_PCT
g MAMNAGER_ID
10 DEPARTMENT_ID
12 RESUME

Figure: The Column Visibility dialog

The Column Visibility dialog shows all columns that are available in the grid.

The checkmark in front of a column name indicates that the column is visible in the grid, while an unchecked box indicates that it is
excluded from the grid. Click the checkmark to change the visibility of a column. You can change the visibility for all columns at once using
the two visibility buttons in the dialog.

The order of the columns can also be adjusted in this dialog. Just select a row and use the Up and Down buttons to move it up (left in
grid) or down (right in grid).

If you want to revert your changes, you can click on the Default Layout button to reset the grid, i.e., making all column visible and put
them in their default locations.

Note 1: Modifications of column visibility, size and order are saved between invocations of DbVisualizer for all grids in the various Object
View tabs except for the Data tab.

Note 2: If you modify the column visibility in the Data tab, the changes persists throughout the session. For instance, if you remove the
Name column in the Data tab for the table EMPLOYEE, the Name column remains excluded when you reload the table or come back to

the Data tab for that table later in the same session. You must manually make it visible again to bring it back. The changes are, however,
reset when you restart the application.

Auto Resize

The column header right-click menu contains a number of options for automatic resizing of column widths.

All Columns {consider Header)

All Columns Jgnore Header)
Current Column (consider Header)
Current Column dgnore Headen
Default Column Widths

Figure: Auto Resize menu

Menu Choice Description

16(245)

All Columns (consider Header)

Resize all columns to fit the widest cell value, or the column header if it is wider than any cell value

All Columns (ignore Header)

Resize all columns to fit the widest cell value

Current Column (consider Header)

Resize the current column to fit the widest cell value, or the column header if it is wider than any

cell value

Current Column (ignore Header)

Resize the current column to fit the widest cell value

Default Column Widths

Set all column widths to their default width

Quick Filter

All areas that hold a grid in DbVisualizer also provide a Quick Filter field.

=X IE IR AL

FEHE By = %0

|0.'u

o COUNTRY_ID| COUNTRY_MAME | REGION_ID |
1 Uz United States of America 2
2 |Al Australia 3
2 |UK United Kingdom 1
4| Fuwait 4
% |BE Belaium 1

@ Al

O COUNTRY_ID

O COUNTRY_MNAME
O REGION_ID

) Case sensitive
@ Case insensitive
) Match from start
@ Match anywhere

=]

Max Rows: [2500 Max Chars: |

0.006/0.002 sec | |5 [251/3 || 1-7

Figure: Grid with Quick Filter

When you type in the Quick Filter field, DbVisualizer matches the value with cell values in the grid and filters out all rows that do not have
a match in at least one cell. The Quick Filter pull-down menu (click on the down arrow next to the magnifying glass) lets you choose if the
filter should match cells in all columns or just one selected column, case or case insensitive matching, and where in the cell the value must

match.

Checking for Updates

We frequently release new versions of DbVisualizer to introduce new features and improvements, and to fix problems. To make you aware
of new versions, DbVisualizer periodically checks if a newer version than the one you are using is available when you start DbVisualizer. If
there is a newer version available, you are presented with a dialog with links to pages on our site where you can read more about it and

download the new version.

17(245)

E Available Updates

The Faollowing new versions are available. Click on Release Mokes or Download to read about or download a version using
your web browser,

Version Comment Download Release Motes
6.5 Early Access version. Download Release Motes

Figure: Available Updates dialog

The Comment field tells you if it is an Early Access version (i.e., a preview of an upcoming major version we are currently working on) or
if you need a new license to use the new version. If your current license is valid even for the new version, the Comment field is empty.
Click on the links in the Download or Release Notes fields to open a browser with the corresponding page at our web site.

DbVisualizer checks for new versions at start-up on a weekly basis. You can change the interval or check manually at any time by
launching the Check for Update dialog from the Help menu.

. Check For Updates

Dbvisualizer can automatically check for new versions at start-up using your
Internst connection.

Check for updates: Every Start-Up vl [Check Mow

Current version: DbVisualizer Personal 6.1.1.4
Last check for undates: Wed Sep 24 14:22:27 CEST 2008

CK l ’ Cancel

Figure: Check For Updates dialog

You can set the interval to one of Every Start-Up, Weekly, Monthly or Never, or click the Check Now button to see if there are any
new versions available right now. If new versions are available, the same dialog as shown above appears, otherwise a message tells you
that you are running the latest version.

The dialog also informs you about which version you are currently running and when the last check for updates took place.

Click OK to save the new interval or Cancel to leave it as it was.

If you are accessing the Internet through a proxy, you must enter information about the proxy in the Tool Properties dialog before you
check for updates.

Problem resolution

Even though we make our very best to ensure the quality of DbVisualizer, you may run into problems of different kinds. The runtime
environment for DbVisualizer is rather complicated when it comes to tracking the source of a problem, since it's not only DbVisualizer that
may cause the problem but also the JDBC driver, or even the database engine.

There are a few things that you can try before reporting a problem, depending on the nature of the problem:

Make sure you are using the latest version of Java available for your platform (Java 5 or later)

Make sure you are using a version of the JDBC driver that we've tested DbVisualizer with, or a later, production quality version
Read the DbVisualizer FAQ

Check the online Forums

Read the DbVisualizer Users Guide

... the last resort is to post a question via the problem report form or send an email to support@dbvis.com. (Note that we
generally love detailed reports as well as screenshots when possible)

ounhwne

18(245)

mailto:support@dbvis.com
http://www.dbvis.com/support/supportform.jsp?product=DbVisualizer
http://www.dbvis.com/products/dbvis/doc/main/doc/index.html
http://www.dbvis.com/forum
http://www.dbvis.com/products/dbvis/doc/faq/faq.jsp
http://www.dbvis.com/products/dbvis/doc/drivers.jsp
http://www.java.com/
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId495258

Debugging DbVisualizer

The Tools->Debug Window is useful to see what is going on in DbVisualizer and the JDBC driver(s). The checks at the top control what
parts of DbVisualizer that should be debugged. The Debug JDBC Drivers option will enable debug of the current JDBC driver. Note that

the amount of output is determined by the JDBC driver.

£ DbVisualizer Personal - Debug Window

Debug Dbvisualizer [] Debug JDBC Drivers

(S | 68M of 254M @9

13:30:26 [DEBUG AWT-EventQueue-1 CommandExecutar.execute] Total rowsicolumns: 21 3. Rows afte a
14:43:28 [DEBUG AWT-Eventueue-1 SALExecutar execute] Executing.. M
14:48:28 [DEBUG AWT-EventCiueue-1 SOLExecutor.setCurrentCatalog] DhConnection="Mimer 9.2.3A (v
14:48:28 [DEBUG AWT-EventQueue-1 JDBECConnectionHandlar.invoke] RootConnection: Connection.cr
14:48:28 [DEBUG AWT-EventQueue-1 SOLExecutor.prepareStaterment] SQL: selact cauntd™) fram "MIMEI
14:43:28 [DEBUG AWT-Eventueue-1 JDBC ConnectionHandler invake] RootConnection: Connection.n:
14:48:28 [DEBUG AWT-Eventtiueue-1 JDBCStatermentHandler.invoke] RootConnection: Statement.setE
14:48:28 [DEBUG AWT-EventQueue-1 JDBCStatementHandler.invoke] RootConnection: Statement.exec
14:48:28 [DEBUG AWT-EventQueue-1 CommandExecutar.execute] Commandld: getPrimarnykeys
14:43:28 [DEBUG AWT-Eventueue-1 JDBCExecutaor runGetPrimankeys] DhConnection="mimer 9.2 34
14:48:28 [DEBUG AWT-Event@iueue-1 CommandExecutar.processhodelActions] Renaming column: TA
14:48:28 [DEBUG AWT-EventQueue-1 CommandExecutar. processhodelActions] Renaming column: KE
14:48:28 [DEBUG AWT-EventQueue-1 CommandExecutar processhodelActions] Renaming column: Pk
14:45:28 [DEBUG AWT-Eventlueue-1 CommandExecutor processModelActions] Dropping colurmn: TAE w

< | >
Log Destination: () Debug {this) Window [_] Auto Popup
) File | |
() Consale

Close

Figure: The DbVisualizer Debug Window

The Save and Copy buttons will prepare the log with information about the DbVisualizer version you are using and the connected
database connections.

The log is automatically truncated to preserve memory when the log destination is set to Debug Window. The Console and File
destinations have no such limitation.

19(245)

How to satisfy the DbVisualizer support team

Quite often we get incomplete problem reports and need to follow up for additional information. If you encounter a problem, please follow
these steps to include the details we need to help you:

Select the Connection tab

In the Connection Message area, select the right click menu

In the menu, select Copy

This copies the system details to the clipboard. Then paste the details into an email or in the problem report form.
In addition, we really appreciate it if you provide us with screenshots. An image says more than ... you know.

ke

Connection Message

Oracle

Cracle Databhase 109 Enterprise Edition Release 10.2.0.1.0 - Production
With the Partitioning, OLAP and Data M= =
Oracle JDBC driver (B Copy ||
10.2.0.2.0

|Eumge.fstackhulm||Deve|agment||Proﬂle: aracIE” % Connected - 00:08:35

| Connection | (£ Properties|

Figure: The connection message right click menu

20(245)

Load JDBC Driver and Get Connected

Introduction

This document describes the way JDBC drivers are managed in DbVisualizer and all aspects about getting connected to your database(s).

If you are impatient, please go ahead and read the Connection Wizard section. It is the recommended way to create database connections
in DbVisualizer.

What is a JDBC Driver?

DbVisualizer is, as you know, a generic tool for administration and exploration of databases. DbVisualizer is in fact quite simple, since it
does not deal directly with how to communicate with each database type. The hard job is done by a JDBC driver, which is a set of Java
classes that are either organized in a directory structure or collected into a JAR or ZIP file. The magic of these JDBC drivers is that they all
match the JDBC specification and the standardized Java interfaces. This is what DbVisualizer relies on. A JDBC driver implements all
details for how to communicate with a specific database and database version, and there are a range of drivers from the database vendors
themselves and 3:rd party authors. To establish a connection with a database, DbVisualizer loads the driver and then get connected to the
database through the driver.

Database specific
JDBEC driver

Figure: The runtime environment with the JDBC interface, JDBC driver and sample databases

It is also possible to obtain a database connection using the Java Naming and Directory Interface (JNDI). This technique is widely used in
enterprise infrastructures, such as application server systems. It does not replace JDBC drivers but rather adds an alternative way to get a
handle to an already established database connection. To enable database "lookup's" using JNDI, an Initial Context implementation must
be loaded into the Driver Manager. This context is then used to lookup a database connection. The following sections describe the steps for
getting connected using a JDBC Driver, and also how to use JNDI to obtain a database connection.

A complete JDBC driver typically consists of a number of Java classes, located in a JAR, ZIP or a folder, that need to be loaded into the
DbVisualizer driver manager. DbVisualizer automatically recognizes the classes that are used to initiate the connection with the database
and presents them in the Driver Class list. You must select the correct class in this list to make sure DbVisualizer successfully can initiate
the connection. Consult the driver documentation for information of which class to select, or if the number of classes found are low, figure

21(245)

it out by trying each of them. More about this in the following sections.

Get the JDBC driver file(s)

DbVisualizer comes bundled with all commonly used JDBC drivers that have a license that allows for distribution with a third party product.
Currently, drivers for DB2, JavaDB/Derby, Mimer, MySQL, and PostgreSQL, as well the jTDS driver for SQL Server and Sybase, are included
with DbVisualizer. If you only need to connect to databases of these types, you can skip the rest of this section and jump straight to the

Connection Wizard section, because by default, DbVisualizer configures all these drivers automatically the first time you start DbVisualizer.

If you need to connect to a database that is not supported by a bundled JDBC driver, you must get a JDBC driver that works with your
database type and version. The following online web page contains an up-to-date listing of the database/driver combinations we have
tested:

Databases and JDBC Drivers

Information about almost all drivers that are available is maintained by Sun Microsystems on this page:
JDBC Data Access API - Drivers

Download the driver to an appropriate directory. Make sure to read the installation instructions provided with the driver. Some drivers are
delivered in ZIP or JAR format but need to be unpacked to make the driver files visible to the Driver Manager. The Databases and JDBC
Drivers web page describes where you can download each driver and also what additional steps may be needed to install and load the
driver in DbVisualizer.

(Drivers are categorized into 4 types. We're not going to explain the differences here, just give you the hint that the "type 4," aka "thin,"
drivers are the easiest to maintain, since they are pure Java drivers and do not depend on any external DLL's or dynamic libraries. Even
though DbVisualizer works with any type of driver, we recommend that you get a type 4 driver if there is one for your database).

When you have downloaded the JDBC driver into a local folder (and unpacked it, if needed), you can go ahead and create a connect with
the Connection Wizard, as described in the next section. You will then asked to load the driver files when the wizard needs them.
Alternatively, you can move (or copy) the JDBC driver files to the DBVIS_HOME/jdbc folder, where they will be picked up and loaded
automatically by the JDBC Driver Finder the next time you start DbVisualizer. You can read more about this option in the JDBC Driver
Finder section.

Connection Wizard

The Connection Wizard greatly simplifies the steps needed to load the JDBC driver and create a new database connection. You just enter
information about the driver file(s) and the connection data on a few wizard pages, and the wizard handles all the details. Once the new
database connection has been created, it appear in the database objects tree.

The wizard cannot be used to define database connections via JNDI data sources.

The first wizard screen look like this.

22(245)

http://www.dbvis.com/products/dbvis/drivers.html
http://www.dbvis.com/products/dbvis/drivers.html
http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers
http://www.dbvis.com/products/dbvis/drivers.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/getConnected.html#mozTocId465153

&, Db¥isualizer, Personal - Mew Connection Wizard

New Connection Wizard

This Connection Wizard will guide you through the steps to setup
a database connection. Make sure you have access to the
required JDBC driver file{s) for the database you are going to
ACCESS.

Infarmation ahout supported databhases and links to download
sites for JDBC drivers are available at hitp:bsseee. dbvis.corm .

|CRM Staging

Enter the connection alias for the new database connection. This is
the name you will use to refer this database connection throughout
the application.

N_e;d>] { Cancel

n
m
a
),

Figure: Connection Wizard - Page 1

In the connection alias field, enter the name of the new database connection. This is the name that will be used for the connection in
DbVisualizer, e.g., in the object tree.

Press Next to go to the next page.

On this page, select the driver you are going to use from the list. A red icon in front of the driver name indicates that the driver is not yet
ready to use, while a green icon indicates that it has been properly configured (simply press Next to continue).

If the driver you select is not yet configured, a Load Driver File(s) button is displayed. When you click the Load Driver File(s) button,
a file chooser is opened. You should select the JAR or ZIP file(s) that contain the driver implementation.

23(245)

B, Db¥isualizer, Personal - Mew Connection Wizand

Select Database Driver

|3 oracle Thin (-]

Selectthe appropriate database driver from the list above.

The =elected driver has not been propetly configured yet. Press
Load Driver Files hutton to apen a file chooser in which you should
select the driver fileds). If multiple files must be loaded then hold
CTRL and select all ofthem at once. Driver files are normally
packaged as JAR ot ZIP files. In addition you can load a directory
with driver classes.

[] Load Driver File(s)

= Back]| Mext = | l Cancel

Figure: Connection Wizard - Page 2

In the file chooser, locate the files containing the JDBC driver files. (Select multiple files by pressing the SHIFT key while clicking).

Look In: |IJ_J oracle |z“ @ @ @ @
B classes Hidden Files:
instantclient10_1

7 ojdbet 4jar L1 Show

[b jar

[#rlparserajar

File Narme: |ojdbcd jar |

Files of Type: |.Java Archive File {jan |3|
Oppna l I Aty]

Figure: Connection Wizard - Page 3

Once the driver has been properly loaded, a green icon appears in front of the driver name. Press Next to continue to the last page.

24(245)

&, Db¥isualizer, Personal - Mew Connection Wizard

Select Database Driver

|© Oracle Thin -]

Selectthe appropriate database driver from the list abaove.

|| = Back |H et =][Cancel

Figure: Connection Wizard - Page 4

On the last wizard pane, enter details for the new database connection. The information that must be provided varies depending on the
database type. Please consult the database documentation if you are unsure about how to find the requested information.

B, Db¥isualizer, Personal - New Connection Wizard

CRM Staging
(Oracle Thin)

Host: [182.168.1.102

Port 1521

Userid: |5cntt

|
|
gID: [ORGL |
|
|

Pasgsword: |““*

{ P2 Test Connection

Fress the Finish button to create and connect this database
connection.

= Back H Finish][Cancel

25(245)

Figure: Connection Wizard - Page 5

Press Test Connection to check that the connection can be established. If the test passes, press Finish to create the new database
connection and connect to the database.

We recommend that you skip the rest of this document, unless you:

» want to learn how the driver manager in DbVisualizer works

* need to have several versions of the same JDBC driver loaded simultaneously

¢ need to establish a connection via the JNDI interfaces (Java Naming and Directory Interface)
* need to add a Driver that do not exist in the wizard list of drivers

Driver Manager

The Driver Manager in DbVisualizer is used to define the drivers that will be used to communicate with the databases. You can manually
locate the JDBC driver files and configure the driver, or you can use the JDBC Driver Finder to do most of the work for you, either on
demand or automatically.

JDBC Driver Finder

The JDBC Driver Finder is a very powerful part of the Driver Manager that automates most of the driver management work. Given the
folders where JDBC drivers are located, it loads and configures new drivers (if any) every time you start DbVisualizer. You can configure
the JDBC Driver Finder in Tools Properties, in the General->Driver Manager category.

26(245)

DbVisualizer Personal - Tool Properties

General | [Database| - _
JOBC Driver Finder Settings
General

E|~:if Appearance Corrt.rols rwhether.the JDBC driver finder should rE.II'1 automatically at start of .
DbVisualizer. If disabled then use the Tools->Driver Manager to setup JDBC drivers.

al Fonts
- Key Bindings Run JOBC Driver Finder at Startup:

ﬁ ectlun Display When MNew Files:
- Permissions Display on Error:
4% Time Zone
% Data Formats
-] Table Data Driver Finder Paths
€1 Variables
4% Transaction
& Bookmarks
(& Manitar
—[E] Farm Viewsr Search Path

EX
=-7] Grid ${dbvis prefs.homejijdbc
..... B Copy $idbvis.home}jdbe [Z]
N

Thig list defines directary paths that the driver manager will use to automatically find
JOBC drivers. Each listed directory will be searched recursively for JAR files. For
optimal result organize related JAR files in one directory per driver.

------ & BinaryBLOB and CLOB Data
= 5L Editor

----- ¥ Statement Delimiters

------ (=] 5L Formatting

""" {n] Auta Completion ${dbvis.prefs.home} = C:\Documents and Settings'Rogerl.dbvis
------ #. Comments
-l Debug

${dbvis.home} = CtempDhVisualizer-5.1.1 10

Excluded File Name Patterns

List af file name patterns that should be excluded by the JDBC driver finder feature. A
pattern can list an explicit JAR file name or a regular expression.

File Mame or Pattern

Fimysqgl *hin-gljar

> e

<

jconna3d jar

o) o o]

Figure: JDBC Driver Finder properties

Use the following properties to specify the finder behavior:

Property Description

Run JDBC Driver Finder at Startup If enabled, the finder will run automatically every time you start DbVisualizer. If it finds any new driver
files, it will automatically load and configure them.

Display When New Files If enabled, the finder window pops-up if it finds any new files when you start DbVisualizer. Otherwise,
the finder runs invisibly in the background.

Display on Error If enabled, the finder window pops-up if it encounters any errors loading and configuring new drivers.
Otherwise, it is silent about errors and you have to launch the Driver Manager to see which drivers are
not loaded successfully. Enabling this property is only meaningful if you have disabled Display When
New Files.

You can also specify the folders the JDBC Driver Finder will search. By default, it will search folders named jdbc in the DbVisualizer
installation directory (${dbvis.home}) and the DbVisualizer preferences folder (${dbvis.prefs.home}). These folder paths are shown under
the list of Driver Finder Paths.

Finally, you can specify regular expression patterns for filenames that the finder should ignore. This can be useful if you need to store

27(245)

other files besides driver files in the designated folders.

If you let the JDBC Driver Finder load all drivers for you, all you need to do to install a new driver is to put the driver files in one of the
folders specified for the finder in Tool Properties and then restart DbVisualizer.

Loading and Configuring Drivers Manually

You can also load and configure JDBC drivers manually using the Driver Manager. If you use JNDI to provide access to the database, you
must use this option, since the JDBC Driver Finder does not handle JNDI. Start the Driver Manager dialog using the Tools-
>Driver Manager menu choice.

The left part of the driver manager dialog contains a list of driver names with a symbol indicating whether the driver has been configured
or not. The right part displays the driver configuration for the selected driver in terms of the following:

« Name
A driver name in the scope of DbVisualizer is a logical name for either a JDBC driver or an Initial Context in JNDI. This is the
name shown in the Connection tab setup when selecting which driver to use for a database connection

« URL Format
The URL format specifies the pattern for the JDBC URL or a JNDI Lookup name. Its purpose is to assist the user in the Connection
tab when entering the URL or lookup name

* Driver Class
Defines the main class for the JDBC driver, used for connecting to the database.

+ Web Site
Link to the DbVisualizer web site, where you can get up-to-date information about how to download the driver.

* Driver File Paths
Defines all paths to search for JDBC drivers or Initial Contexts when connecting to the database. The Driver File Paths area is
composed of two tabs: the paths in the User Specified tab are used for dynamically loaded JDBC drivers or Initial Context
classes, and the System Classpath tab lists all paths that are part of the Java system classpath.

The System Classpath tab is only of interest for the JDBC-ODBC driver.

B DbVisualizer Personal - Driver Manager

Driver Edit View

mmiy Ml AV @

Drriver Mame Diriver Settings

23 Informix (DataDirect) ”~ _
& JavaDBiDerhy server Mame: |OracIeTh|n |
gdavaDBJDerby embedded URL Format: |jdb|::c|racle:thin:@=:server=:=:pnr11521=:=:sid} |

JDataStore
@ JDBCIODBC Bridge Driver Class: |P oracle jdbc.OracleDriver V|
3 maxpB Driver Version: 10.2
g Mckai Web Site: hitp:iiwww. dbvis com

Mimer
& mysoL J# - UDBC Driver @® - JNDI Lookup
& Oracle Thin
E:! Qracle 0OCI Drriver File Paths
g Oracle (DataDirect) User Specified |_S-3;stem P—

FPervasive - : : :
m Pointbase embedded il I;npt‘udbc_nracIe'u_dbclmdbﬂ 4.J_ar ¢l
m Pointhase sarver - gracle.jdbc.driver.OracleDriver

oin -J® oracle.jubc.OracleDriver x

@ PostgresaL A
E3 Progress il
E3 saL sewver (DataDirect)
@ 5oL Server (TDS) = 5.
SQL Server (Microsoft JOBC Driver) o
£ 50QL Server 2005 (Microsoft JOBC D...
g o .Tnf g Show Full Path |

& = Custom Driver

Close

28(245)

Figure: Driver Manager dialog

Initially, the driver list contains a collection of default drivers. They are not fully configured, as the paths to search for the classes need to
be identified. You can edit the list, i.e., create, copy, remove and rename drivers. A driver is ready to use once a driver class has been
identified, which is indicated with a green check icon in the list. Drivers that are not ready for use are indicated with a red cross icon.

Only ready (configured) drivers appear in the Connection tab driver list.
The figure shows seven drivers that are ready: DB2 UDB, Informix, JDBC/ODBC Bridge, Mimer, MySQL, Oracle Thin and

PostgreSQL.

Setup a JDBC driver

The recommended way to setup a driver is to pick a matching driver name from the list and then simply load the JAR, ZIP or directory that
keeps the driver class(es). For instances, if you are going to load the JDBC driver for Oracle, select the Oracle driver in the list . You can
also create a new driver or copy an existing one.

Check the following online web page with the most current information about the tested databases and drivers:

Databases and JDBC Drivers

« It lists which databases and drivers we have tested

* Download links to JDBC drivers

« Information of which files to load in the driver manager for each JDBC driver
« Information of which Driver Class to choose

When you have selected the driver to configure, you need to load the driver files. Click the Load button to the right of the User Specified
paths tree to show the file chooser and load the driver JAR, ZIP or individual files.

B, Oppna
Look In: |II_:| oracle |3| @

U_:] classes Hidden Files:
J instantclient! 0_1

5 Shaowy
ojdbc14 jar r

D wdb.jar
D ¥milparsemnd jar

File Marne: |njdbc14 jar |

Files of Type: |.Java Archive File Cjan E|

[Gome | oot]

Figure: File Chooser dialog

A JDBC Driver implementation typically consists of several Java classes. If they are packaged in a JAR or a ZIP file, you don't have to
worry about the details; just select and load the JAR or ZIP file. For instance, in the example above, use the ojdbc14.jar file.

If the driver classes are not packaged, it is important to select and load the root folder for the JDBC Driver. Java classes are typically

29(245)

http://www.dbvis.com/products/dbvis/drivers.html

organized using a package name structure. Example:

oracle.jdbc.driver.OracleDriver

Each package part in the name above (separated by ".") is represented by a folder in the file system. The root folder for the driver is the
folder named by the first part, i.e., the oracle directory in this example. The class files are stored in the oracle/jdbc/driver sub folder.
When the driver classes are located in a folder structure like this, you must select and load the root folder, so that the Driver Manager gets
the complete package structure.

When a connection is established in the Connection tab, DbVisualizer searches the selected drivers path tree's in the following order:

1. User Specified
2. System Classpath

The paths are searched from the top of the tree, i.e., if there are several identical classes in, for example, the dynamic tree, the topmost
class will be used. Loading several paths containing different versions of the same driver in one driver definition is not recommended, even
though it works (if you do this, you must move the driver you are going to use to the top of the tree). The preferred method for handling
multiple versions of a driver is to create several driver definitions.

When you load files in the User Specified paths list, DbVisualizer analyzes each file to find the classes that represent main driver classes.
Each such class is listed under the path where it was found in the User Specified paths lists, and it is also added to the Driver Class list in
the Driver Settings area above. If there is more than one class in the list, make sure you select the correct Driver Class from the list.
Consult the driver documentation (or the Databases and JDBC Drivers page) for information about which class to select.

JDBC drivers that requires several JAR or ZIP files

Some drivers depend on several ZIP or JAR files, or directories. An example is if you want XML support for an Oracle database. In addition
to the standard JAR file for the driver, you then also need to load two additional JAR files. These are not JDBC driver files but adds
functionality the driver needs to fully support XML.

Simply select all JARs at once and press Open in the file chooser dialog. The Driver Manager will then automatically analyze each of the
loaded files and present any JDBC driver classes or JNDI initial context classes it finds.

Loak In: |[:| oracle E| @

J classes Hiddan Files:
J instantclientio_1

; - Showy
L) ojdbet 4ar =

I:I xdh.jar

i ¥mlparsen. jar

File Marme: |"ujdbc14.jar" “wdb jar "wmlparser? jar” |

Files of Type: |.Java Archive File Cjan E|

[Oppna H Awbryt]

Figure: File Chooser dialog

The JDBC-ODBC bridge

The JDBC-ODBC driver is bundled with most Java installations, but not all (e.g., it is not included with Java for Max OS X). The
JdbcOdbcDriver class is included in a JAR file that is commonly named rt.jar, stored somewhere in the Java directory structure.

30(245)

http://www.dbvis.com/products/dbvis/drivers.html

DbVisualizer automatically identifies this JAR file in the System Classpath tree. To locate the JdbcOdbcDriver, simply press the Find
Drivers button to the right of the System Classpath tree. When it is found, make sure the sun.jdbc.odbc.JdbcOdbcDriver is selected as

the Driver Class in the Driver Settings area.

Loading JNDI Initial Contexts

Initial Context classes are needed to get a handle to a database connection that is registered with a JNDI lookup service. In DbVisualizer,
these context classes are similar to JDBC driver classes in that an Initial Context implementation for a specific environment is required.

Remember that the appropriate JDBC driver classes must be loaded into the Driver Manager even if the database connection is obtained
using JNDI.

To load Initial Context classes into the Driver Manager, simply follow the steps outlined for loading JDBC drivers. The difference is that you
will instead load paths containing Initial Context classes instead of JDBC drivers. When you load a path, DbVisualizer locates all Initial
Context classes in the path and lists then in the User Specified paths list.

I DbVisualizer Personal - Driver Manager

Driver Edit View

mmdg M5 A V|

Driver Mame Driver Settings
3 Informix (DataDirect) ~
& JavaDBiDerby server Mame: |MY5@L(REfF5) |
& JavaDB/Derby embedded R e |<path> |

3 JDataStore

@ JDBCIODBC Bridge Driver Class: |rf com.sun jndifscontext RefFSContextFactory V|
3 MaxDB Driver Version: 5.0

3 mekai Wehb Site: hitp:ihwww. dbvis.com

& Mimer

@ MysoL ¥ - JDBC Driver & - JMDI Lookup

~ ¥ MySQL(Ref F5)

@ aracle Thin Driver File Paths

Cracle OC User Specified | System Classpath|

Oracle (DataDirect)
Pervasive

Pointbase embedded
Pointbase server

'{j Eloptjdbcimysglimysqgl-connector-java-5.0 8\mysql-connectar-java-5.0.§
¥ com.mysqljdbc.Driver

-J# com.mysqljdbc.NonRegisteringDriver

--b com.mysljdbc.MonRegisteringReplicationDriver

@ PostaresaL ¥ com.mysqgljdbec.ReplicationDriver

3 Progress ¥ org.gjit.nm.mysql.Driver

3 saL sewer (DataDirect) {_ﬂ Eloptjdbcimysglijindifscontexd-1_2-hetal\libWfscontext jar

@ SOl Server (jTDS) L dcom.sun.jndi.fscontext.RefFSContextFactory

E3 saL Sewer (Microsoft JDBC Driven) {jrﬂ com.sun.jndifscomext.FSContextFactory
) i Edoptjdbcimysgljnditfscontext-1_2-heta3lib\providerutil jar
E:! SQL Server 2005 (Microsoft JOBC D...

@ Sybase ASE (jTDS) — || Il€ | >
E3 sybase ASE (JConnec) v Show Full Path I Ready |

[Fs. P90 F. -V 1
Close

T <KD

& = Custom Driver

Figure: Driver Manager List with Initial Context classes

Visually, the difference between the identified JDBC drivers and Initial Context classes is the icon in the tree.

The figure shows the JAR files required to first obtain the JNDI handle, and then also the JDBC driver for the database. Check with the
application server vendor or similar for more information of what files you need to load to get connected via JNDI.

31(245)

Errors (why are some paths red?)

A path in red color indicates that the path is invalid. This may happen if the path has been removed or moved after it was loaded into the
driver manager. Simply remove the erroneous path and locate the correct one.

Several versions of the same driver

The Driver Manager supports loading and using several versions of the same driver concurrently. We recommend that you create a unique
driver definition per version of the driver and name the driver definitions properly, e.g., Oracle 9.2.0.1, Oracle 10.2.1.0.1, etc.

Setup a database connection

This section explains how to setup a Database Connection in the Connection tab.

Setup using JDBC driver

A Database Connection in DbVisualizer is the root of all communication with a specific database. It requires at a minimum that a driver is
selected and that a Database URL is specified. A new Database Connection is created using the Database->Add Database Connection
menu choice in the main window:

E DbVisualizer Personal - Untitled

Fil= Edit Wiew Database SQL Bookmarks Tools Window Help

SHR ¢ BERG

2Q|Y E&dE B I, Object View | B> SQL Commander |

b-

Q Connections & Database Connection: Oracle 11g

Oracle 11g

i -i DB2

Oracle 11g

-ig Informix % Connection | [} Database Infa || § Data Types || % Scarch
-l sybase i
g MyS0L Conneckion
: ﬂ SQL Server Alias: |Oracle 11g |
- Mimer Database Type: |Oracle v| 7]
Driver (JDBC): |@ Oracle Thin v| =
Database URL: |jdbc:oracle:thin:@localhost:1521:ORCL v| @ -
URL Faormat: jdbc:oracle:thin: @ <server =: <port1521:=: =sid= Edit URL... |

Authentication

Launch URL Builder...
Userid: |sys as sysdba I

Password: |****** |

Conneck Disconneck

Caonnection Massage

Europe/Stockholm ||Deve|onmer1t ||ProFiIe: M” i# Disconnected

Connection | (¥ Properties

Figure: New Database Connection using JDBC driver

The Connection tab is the only tab that is enabled if you are not connected to the database. Database connection objects appear

32(245)

throughout the application and are by default listed by their URL. A URL can be, and often is, quite complex and long. You can use the
Database Alias to set a more readable name for the database connection.

The Database Type list shows all database types that have a set of separate properties, which you can adjust in the Tool Properties
dialog. Select the database type you are creating a connection for, or select Generic if you cannot find a matching type.

The Driver list shows all defined drivers that have been defined properly in the Driver Manager. Just open the list and select the
appropriate driver. Clicking the button to the right of the field opens the Driver Manager dialog with the settings for the selected driver.

Enter the JDBC URL for the connection in the Database URL field. The drop-down menu to the right of the field provides two options for
entering or editing the URL. Edit URL opens a multirow editor, in case your URL is extremely long. Launch URL Builder opens a dialog
where you fill out a form with information about the connection, used to generate the URL for you when you close the dialog.

There is also a URL Format field under the URL field that shows the URL format that the driver supports. You can click on the format

string to copy the format template into the URL field. Terms between < and > characters are placeholders that need to be replaced with
appropriate values, e.g.:

jdbc:oracle:thin:@proddb:1521:bookstore
jdbc:sybase:Tds:localhost:2638

jdbc:db2://1localhost/crm
jdbc:microsoft:sqlserver://localhost;DatabaseName=customers

Userid and Password are optional but most databases require that they are specified.

Some drivers accept additional proprietary parameters described in the Connection Properties section.

Setup using JNDI lookup

The information needed to obtain a database connection using JNDI lookup is similar to what is needed for connecting using a JDBC driver.

33(245)

E DbVisualizer Personal - Untitled

File Edit View Database SQL Bookmarks Tools Window Help

Y
R TRl e I = I3, Object View | P saL commander|

@ Connections ¥ Database Connection: MySQL 5.0.18: localhost (J|
MySQL 5.0.18: localhost (JNDI)

| & Connection | i Database Info | @ Data Types | W S¢

= C i
% MySOL 5.0.22: localhost onneeton
@ MySQL 4.41.20: newdu Alias: \MySQL 5.0.18: localhost (JNDI) |
= MySGQL 3.23.41: oldflu Database Type: |M]rSQL v| =)
i MySQL 5.0.19: localhost (UTFE) Diriver (JKDI: |0 MySQL{Ref F3) Vl Edif.
@ MySaL@NG —
lI_ﬂ Oracle Lookup Mame: |rtmprjnd|tes‘[8055.tmpnest V|
II_:] PostgreSQL Name Format: =path=
; g SQL Server Authentication
[#-[J Bybase e
Elﬂ WebLogic Userid: |mat |
i@ Cache 5.0 Password: |*’“‘* |

@ Database Connection

- FireBird 1.5 AR
- FrontBase 3.6.21 i
-~ Ingres

i@ MaxDB

~fg MonStop

~g Pervasive 8.10
i@ Progress 10.0a
~ i@ MSACC

~fg Ingres

Coannection Message

!Eurape.l'StchkhnIm”Develanment”Prnﬂle:auta”ﬂ Disconnectad |

Connection | Properties|

Figure: New Database Connection using JNDI lookup

The figure above shows parameters to connect with a lookup service via the MySQL RefFS driver. The /tmp/jnditest4975.tmp/test
lookup name specifies a logical name for the database connection. This example is in its simplest form, since userid and password are not
specified, nor where the database connection is finally fetched from. Any errors during the process of getting a handle to the database
connection appears in the Connection Message area.

Connection Properties

In addition to the standard connection parameters (URL, Driver, Userid, Password, etc.), there are also a collection of connection
properties. Which properties are available depends on the database type. Some database types have more properties than others. Which
edition of DbVisualizer you use also affects which connection properties are available.

All supported database types (Oracle, Informix, Mimer, DB2, MySQL, etc.) are listed in the Database tab in the Tool Properties window.
For each database type, there are a number of properties that are applied to any database connection of that type. This means, for
instance, that a database connection defined as being a PostgreSQL database type will use the PostgreSQL properties defined in Tool
Properties. The Connection Properties can then be used to override some settings specifically for one database connection. The advantage
with this inheritance model is that property changes that apply to all connections can be made in one place, instead of having to apply a
common setting for every database connection of a specific database type.

The following summarize the organization of the properties:

* Tool Properties (Database)

These apply to all database connections of the specific database type.
+ Connection Properties

These apply for a specific database connection only.

34(245)

-"Okay, so there are two places to change the value of a property. Which shall I use?"

This depends on whether the change should be applied to all database connections for a specific database type or just a single one. If the

majority of your database connections should use the new property, it is recommended to set it in Tool Properties. Any overridden
properties in the Connection Properties tab are indicated with an icon in the Properties tab label.

E DbVisualizer Personal - Untitled

File Edit View Database SQL Bookmarks Tools Window Help
v (R[S
dERC @ ENFO
2O Y BB l:i Objsct View | B s0L Commandst|
@ Connections ~
= DB2 :
¢ i.i@ DB2: ginda datadirect MR
i DB2: localhost _ i & Connection | §§ Database Info | 5§ Data Types | % Search|
i@ DB2: localhost generic |
- Informix Connsction Properties G
g Java || i--Database Profile Connection Mode
- Mimer | ‘Driver Properties i i
: - Use this setting to define what type of database the
Elﬂ MySOL | (=3 1'5"5"-'-”— database connection represent. Db sualizer will for
SR JMySQL 5.0.22: localhost | ~\§ Authentication type Test and Production rendsr a border around
3 Databases - g Delimited ldentifiers the SQL editor, editable result sets and form editor to
- DBA Views l -IF Qualifiers catch your attention. E
%_' MySaL 4.1.20; newflu | —jﬂl. Physical Connection Use the Permission tool properties category to H
ﬂ_ MySQL 3.23.41: oldflu Sl oy Transaction define rules for specific features and database
i@ MySQL 5.0.18: localhost (JNDI) -2 saL Statements operations.
& MySQL 5.0.19: localhost (UTFE) l --#7 Connection Hooks
i@ MySAL@NG | [z Objects Tree [Development “ Test][Production]
@] Oracle | -[B 50L Editar === ==
'"'le FostgreSGL | =2 Query Builder ' This is a sample I —
=[] SOL Server !
- Sybase
F_I[[;J WebLogic | Show only default Database or Schema ==
i@ Cache 5.0 | Check to enable that only default database andior
@ Datahase Connection I schema will appear in the Database Objects tree
H FireBird 1.5 and throughout the application. z
@ FrontBase 3.6 21 '
g lr.:g;;sa |y L_Defauts Apply
—@ MonStop " :
- Pervasive 510 Connection| [# Properties

Figure: Connection Properties

The Connection Properties tab is organized in the same was as the Tool Properties window. The difference is that the list only includes the
categories that are applicable for the selected database connection. Briefly, the categories are:

+ Database Profile

e Driver Properties

*« MySQL (The current Database Type)
e Authentication
+ Delimited Identifiers
* Qualifiers
* Physical Connection

* Transaction

* SQL Statements
* Connection Hooks
* Objects Tree
* SQL Editor
e Query Builder

The Database Profile and Driver Properties categories are only available in the Connection Properties tab and not in Tool Properties.
The next section explains the Database Profile and Driver Properties categories, while the other categories are described in the Tool
Properties document.

Additional categories may appear in the connection properties depending on the type of database. An example is the category for Explain

35(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId753863
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId753863

Plan for Oracle, DB2 and SQL Server.

Database Profile

Please read in the Database Objects Explorer document for detailed information about database profiles.

The Database Profile category is used to select whether a profile should be automatically detected and loaded by DbVisualizer, or if a
specific one should be used for the database connection. The default strategy is to Auto Detect a database profile.

t% Database Connection: MySQL 5.0.22: localhost

MySQL 5.0.22: localhost

we Connection |

H- Connectmn F'ropemes

Database Profiles

DrwerPrapemes

Database profiles controls what objects appear inthe ohjects tree, what detailed

E 3 MysaL views are available for each object type and actions used to operate on objects.
I:\? Authentication Database profiles are database specific and here you can either decide to let
g Delimited Identifiers DbVisualizer automatically pick (recommended) the appropriate profile ar manually
IEP Qualifiers choose one. If manually choosing a profie make sure it is compatible with the

=g Physical Connectian database you are connecting to. The generic profile works with any database.
@ Transaction Hote: ou must reconnect the database connection after changing profile.
-[] SQL Statements
-#] Gonnection Hooks (&) Auto Detect (O Manually Choose
‘;j ggfgzig?e Profile Version Date Descr?ptinn |
=& Query Builder dh2 1.3 2007106126 Profile for DB2 Windows/Linux fad
db2-zos 1.3 2007106126 Profile for DB2 UDB on 205
derby 1.3 2007/06/26 Profile for Apache DerbylJavaDB =
generic 1.2 2007106126 Generic profile far any database
informix 1.6 2007106126 Profile for Infarmix IDS T
mimer 1.4 2007102105 Profile for Mimer SQL
mysql 1.12 2007106126 Profile for MySaL
neoyiew 2.00 2007105110 Profile for HP Neoview nlatfarm)

Defaults Apply
Cannection| (¥ Properties

Figure: Database Profile category for a database connection

The way DbVisualizer auto detects a profile is based on the setting of Database Type in the connection details.

If you manually choose a database profile, this choice will be saved between invocations of DbVisualizer.

Driver Properties

The Driver Properties category is used to fine tune a driver or Initial Context before the database connection is established.

Driver Properties for JDBC Driver

Some JDBC drivers support driver specific properties that are not covered in the JDBC specification.

36(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseExplorer/databaseExplorer.html

localhost

Database Connection: MySQL 5.0.22: localhost

W Connection | 53 Database Info

% DataTypes| & Search|

Actions W

[# Connection Properties
-Database Profile

Jriver Properties
=3 MysaL
1§ Authentication
(@ Delimited ldentifiers
~IEF Qualifiers
=¥ Physical Connection

% Transaction
-[Z] S0L Statements
& Connection Hooks
-|&z] Objects Tree

[SQL Editar

-3 Query Builder

Driver Properties

Defines JOBC Driver or JMDI specific properties that can be used to fine tune the
database connaction. A pre-defined property is reverted to its default value when
remaving it while user defined properiesare remaved. The Edited flag indicates
that the property value has been edited or that the property has been added

manually.

Edited Parameter

D [T R TR e

useGmitMilliskarDatetimes
useHostsinPrivileges
uselLocalSessionState

O
O
]
| B |useNewlO

usedIdUTFEBehavior
useQnlyServerErrorMessages
user

useReadAheadinput

neeServerPrenStmia

i |

o s e s

<

-~

b
|

Should the driver use the java.nio * interfaces for network communication

(truelifalse), defaults to 'false’

Possible values: trusg, false, yes, no

(%]
(%]

Defaulis

Apply

Connection| (¥ Properties

Figure: Driver Properties for JDBC Driver

The list of parameters, their default values and parameter descriptions are determined by the JDBC driver used for the connection. Not all
drivers supports additional driver properties. To change a value, just modify it in the list. The first column in the list indicates whether the
property has been modified or not, and so, whether DbVisualizer will pass that parameter and value onto the driver at connect time.

New parameters can be added using the buttons at the bottom of the dialog. Be aware that additional parameters do not necessarily mean
that the driver will do anything with them.

Driver Properties for JNDI Lookup

The Driver Properties category for a JNDI Lookup connection always contains the same parameters.

37(245)

¥ Database Connection: MySQL 5.0.18: localhost (JNDI)

MyS@L 5.018 localhost (JNDI)

W Connection | B Database Info || § Data Types || W Search|

E- Connection Properties
- Database Profile

[

Driver Froperties

Defines JOBC Driver or JNDI specific properties that can be used to fine tune the database connection.

rver Roperics A pre-defined rty i rted to its default value wh ing it whil defined
E.IE MFSQL pre-qetined property s revered 10 Is defaul value when removing i whnile user define

- ropertiesare removed. The Edited flag indicates that the property valus has been edited or that the
w ‘n‘“them'catm” i zmzer’cy has been added manually. : e
- @ Delimited Identifiers
—{Ir Qualifiers Edited FParameter Yalue]
—:lﬂg Fhysical Connection il java.naming.authoritative -~
% Transaction F] java.naming.batchsize E
9 Comatonsons S
@ Objects Tree | J_ava.nam!ng.facmry.nhject b
} S0L Editor | java.naming factory state
=3 Query Builder i java.naming.factory.url.pkgs
1 java naming.language
i:3'u"-3.r|:3rr|ir|g.[;|r|:rv'i|:1er.url
1 java.naming.refarral
1 java.naming.security.authentication A

Caonstant that holds the name of the environment property far specifying configuration
information for the service provider to use. The value of the property should contain a URL
string (2.9, "ldap: Vsomehost: 389"). This property may ke specified in the environment, an "

Defaults Apply
Connection F'raperﬂes]

Figure: Driver Properties for JNDI lookup

The list of options for INDI lookup is determined by the constants in the javax.naming.Context class. To change a value, just modify the
value of the parameter. The first column in the list indicates whether the property has been modified or not, and so, whether DbVisualizer
will pass that parameter and value onto the driver at connect time. New parameters can be added using the buttons at the bottom of the

dialog. Be aware that additional parameters do not necessarily mean that the InitialContext class will do anything with them.

Always ask for userid and/or password

Userid and password information is generally information that should be handled with great care. By default, DbVisualizer saves both
userid and password (encrypted) for each database connection. Userid is always saved while password saving can be disabled in the
connection properties.

The Require Userid and Require Password connection properties can be enabled to tell DbVisualizer to automatically prompt for userid
and/or password when a connection is to be established. Enabling either one or both of these while leaving the Userid and Password
fields blank for a database connection ensures that DbVisualizer will not keep this vital information between sessions. The following dialog
is displayed if requiring both userid and password.

5 Connect: Oracle 10g: MyDB

Establish database connection for.
Oracle 10g: M\yDB

Specify additional connection details below;

Userid: |scntt |

Password: |"""“"‘* |

E Connect ” Cancel]

38(245)

Figure: Dialog asking for Userid and Password as a result of having Require Userid and Password settings enabled

Using variables in the Connection details

Variables can be used in any of the fields in the Connection tab. This can be useful alternative to having a lot of similar database
connection objects. Several variables can be in a single field, and default values can be set for each variable. The following figure shows an
example with variables, i.e., variable named delimited by dollar characters, $$...$$.

Connection
Alias: |Oracle 100 §5Alias§E |
Database Type: |Orac|e E|
Driver (JDBCY: |@ Oracle Thin E“

Databasze URL: |jdbc:nracle:thin:@$$Datahase Host||dbhost2||||choices=[dbhost! dbhost2, dbhost3 | $5:58Port]|1521 $5: 5551055 E|
URL Format: jobc:oraclething@=host=: =port1 521 = =25id=

Authentication
Lserid: |$$Useridllscuﬁ$$ |

FPassword: | |

Figure: Connection tab with variables
The following variables appear in the figure:

+ $$Alias$$

+ $$Database Hostl|Idbhost2!11|choices=[dbhostl,dbhost2,dbhost3] $$
« $$Portl11521%%

« $$SIDIIORCLS$S

+ $$UseridlIscott$$

All of these variables define a default value after the "||" delimiter, except for the $$Alias$$ variable, which have no default value. The

default values appear in the connect dialog when you ask for a connection to be established. The $$Database Host$$ variable includes
the choicesoption, with a comma separated list of choices that should appear in a drop-down list. The drop-down list is editable, so the
user is not locked into the choices from the list.

The following figure shows the connect dialog based on the connection definition shown above.

Using variables in conjunction with the Require Userid and/or Require Password settings also works.

5, Connect: Oracle 10g; $5AliasSS

Estahlish database connectian far:
Oracle 10g: $$Alias$%

Specify additional connection details below:

Alias: [MyDE |

Database Host: [192.168.1.102 [~]

i Y Part [1521

ﬁ sID: [oRCL

|
|
Userid: |5cntl |
|

Password: |*‘*‘“‘*

[Connect H Cancel]

39(245)

Figure: Connection tab with variables

Enter the appropriate information in the fields and then press the Connect button to establish the connection. When the connection is
established, DbVisualizer automatically substitutes the variables in the Connection tab with the values entered in the connect dialog. At
disconnect from the database, they revert back to the original variable definitions.

Connect to the Database

Press Connect when all information has been specified. DbVisualizer passes all information you entered on to the selected driver, and
when the connection is established, the following appears.

E DbVisualizer Personal - Untitled

File Edit \View Database SQL Bookmarks Tools Window Help

vER G @ BN

< @ | T | & T | B 0, Object 'ﬂewl P soL Commander|
- Database Connection: Oracle 11g

0_ Connections
El@ Oracle 11g Oracle 11g
= & Schemas =
=& SYS (Default) i Connection | &3 Database Info || 5§ Data Types || & Search

[T Tables

Views Conneckion
& Synonyms Alias: |Oracle 11g |

Indexes Database Type: Cracle @
¥ Sequences
A Materialized Views Driver (IDBEC): | @ Oracle Thin | 4
553 Functions . T ——
& Procedures Database URL: |jdbc:oracle:thin:@localhost:1521:0RCL | 4

URL Format: jdbcioracle:thin: @ =server =: =part1521 =1 =sid=

Authentication
= Userid: |sys as sysdba |

Password: |****** |

[Reconneck][Disconneck

- [E] Session Propertiss
= €} DBA Views

Connection Massage

Oracle

|| Qracle Database 11g Relzase 11.1.0.0.0 - Production
Oracle JDBC driver

11.1.0.6.0-Production+

& Scheduler
£ Statistics

[P SGA + | | Connection @Properties|

Figure: A freshly initiated database connection using JDBC driver

|EuropefStockhoIm”Development”PmFile: oracle” @ Connected - 00:01:05

The Connection Message now lists the name and version of the database as well as the name and version of the JDBC driver. The
database connection node in the tree indicates that it is connected. The connection properties cannot be edited while a database
connection is established. The Alias can be edited by selecting the database connection node in the tree and then clicking on the name.

The figure above also shows that the database connection node in the tree has been expanded to show its child objects.
If the connection is unsuccessful, it is indicated by an error icon in the tree. The error message as reported by the database or the

driver appears in the Connection Message area. Use this information to track down the actual problem. Since these conditions are

specific for the combination of driver and database, you should check the driver and database documentation to find out more. Below are
a few common problem situations:

40(245)

Error Message

No suitable driver.

There is no driver that can handle a connection for the specified URL.
The most common reason is that the driver is not loaded in the Driver

Manager. Also make sure the URL is correct spelled.

java.sql.SQLException: Io exception: Invalid number format for port

number
Io exception: Invalid number format for port number

Connections Overview

Explanation

The JDBC support in Java determines what driver to load
based on the database URL. If the URL is malformed
then there might be no driver that is able to handle the
database connection based on that URL. This error is
produced when this situation occurs or when the driver is
not loaded in the driver manager. The recommendation is
to check the JDBC driver documentation for the correct
syntax.

The URL templates that are available in the Database
URL list contains the "<" and ">" place holders. These
are there to indicate that the value between them must
be replaced with an appropriate value. The "<" and ">
characters must then be removed.

This example error message is produced by the Oracle
driver when using the following URL:
jdbc:oracle:thin:@<qinda>:<1521>:<fuji>

Simply remove the "<" and ">" characters and try again.

The Connections overview is displayed by selecting the Connections object in the Database Objects Tree. This overview displays all
database connections in a list and is handy to get a quick overview of all connections. In addition to the URL, driver, etc. there are a few
symbols describing the state of each connection. Double clicking on a connection changes the display to show that specific connection.

E DbVisualizer Personal - Untitled

File Edit View Database S0QL Bookmarks Tools Window Help

dHER G @ BN

'@ ObjectView | [SQL Commander

e® Y &ES
=-+] Oracle ~ & &
i@ Oracle 10g: DataDirect
H_ Oracle 10g; HR 131 2) | 3) 4_) 5) Type
~-ig Oracle 10g: OCI ® E 7 @ [Ooracke
i Oracle 10g; SALSA Jme @ [oracle
--fg Oracle 10g: SCOTT Y & [aracle
=@ Oracle 10g: MyDB mE Y & D Oracle
=-& Schemas
=& SCOTT (Default) LB
o Ja T & |:| Oracle
|2 & [] Oracle
& Synonyms - & [Oracle
i@ Indexes = @ [Oracle
'@ Sequences = i@ [oracle
o Materialized Views = & I oracle
43 Functions = %

Alias Userid Profile
Oracle 10g: HR hr auta C™
Qracle 10g: OCI scott auta C
Qracle 10g: SALSA salsa auto C
Qracle 10g: SCOTT scott auto

Oracle_Oracle 10g-WyDB E

CQracle 10g: 8YSTEM

svstem as sysadm autu e

CQracle 10g: THNS file scott auto
CQracle 10g: TMNS string scott auto
CQracle 9i: HR hr auto C
CQracle 9i: OCI scott auto
Qracle 9i: SALSA tak auto }C O

& Procedures
-4 Packages

i+ Gl Package Bodies 1) =

& Java Sources 1) o

2)

k) I 4

4 g

-0y Invalid Objects 4 i

-[E] Session Properties H 2
=3 DBA Views

: 5)

H-a Users

Symbol Description

Database Caonnection uses a JDBC Driver

Database Connection uses a JMDI Data Source

Database Connection have overridden connection properies
Database Connection have filters defined

Database Connection is established

Database Connection could not be established

Database Connection is about to be established

Database Connection will be established when "Connect All" is exe...

41(245)

Figure: The Connections Overview

Information for each symbol is provided in the description area below the list. The fifth check symbol is the only editable symbol and is
used to set the state of the Connect when Connect All property, i.e., whether the database connection should be connected when
selecting the Database->Connect All menu choice.

42(245)

Database Objects Explorer

Introduction

The Database Objects Tree is used to explore databases and browse details about objects. Which objects that may be explored and
which object actions that exist is database dependent.

E DbVisualizer Personal - Untitled

Fils Edit View Database SOL Bookmarks Tools Window Help
vHE ¢R BEFI
2@ Bdl= B ObisciView | B S0 Cammandar
=45 77 Oracke 10g:HR Ll 5 Table: EMPLOYEES
i H-@ Sthemas Wl oracse 10g +R | Senemas | HR | Tadies | EMPLOYEES
i | =& HR ({Default) | .
Objects tree ; =] Tatles =1 constraints | @ Triggers | “9poL | %% DDL with Storage |
Vo o -0 ETEEREE (108) wRowid | ==Refarences | f Navigator | * Golumns Gomment |
—* | = %jggﬁHl[s;;UFY (10) 46 info | @ columns | i Data | @ Row Count| % Primary Key || G indexes | I8 Grants|
{3 Views et aT]wGEE R .- Qo %)
i o Synomyms | :
- Ingskes || % Fiter. EMPLOYEE_ID = 100 |[ueeFiner |[usema Fimrj
¥ Bequences |
i Materialized Views g ~+EMPLOYEE_ID FIRST_NAME LAST_NAME EMAL PHONE_NUMBER _ml
-4 Funclions = 105 Davia AuStin |DAUSTIN 590.423.4569 16A
¢ Procadures I 102 Danal Faviat [DFAVIET 515.124.4169 1€
& ¥ Packages 3 116 Shelll Baida | SBAIDA 515,127 4563 1€
5 : & '! Jeri ke @il 121 Adam Fripp |WFRIPP 650.123.2234 |18
Ohject Fifter B 142 Gurts Davizs (CDAVIES 650.121.2094 18
& 143 Randall Matos [RMATOS 650.121.2874 1€
Acllvals Fiftars: [+ 7 151 Davla Bemnstein |DBERNGTE |071.44.1344.345268 |16
Object Type: | "% Table w B 163 Danisll Greena |DGREENE |011.44.1346.229269 [1¢
Filter setup SR R 2 165 Davig Lag |DLEE 011.44.1346.529268 | 2C
— |Mame ViE] EMP% L @ 10 166 Sundar Anta |SANDE 011.44.1346.626268 |2
or |Namg - EIJOE* @@ 11 167 Amit Banda |ABANDA 011.44.1346.720268 |20
; ; i 191 Randail Perking |[RPERKING 650.505.4876 18
Match: & Any O All] Z
Max Rows: MaxChars:| | [0.040,050 sec |12 (108p11 |[1-12

TObject View

Figure: Database Objects tab

The Database Objects Tree to the left is the place to setup new database connections and establish connections. Once connected,
expand the database connection object and explore the objects available. The Object View area to the right displays detailed
information about the currently selected object in the tree.

The Filter setup pane below the tree is used to control what objects are displayed in the tree. It comes in handy when you have many
schemas or tables in your database and want to limit the number of visible objects.

For some object types, there are actions (small dialogs for performing a task) for common operations, such as creating, altering, and
dropping database object. Which actions are available depends on the database you are connected to and the database profile used for the
connection. More about this in sections below.

Tip 1: The Database Objects Tree is always visible to the left. If the currently selected main tab is the SQL Commander, you can double
click on an object in the tree to automatically switch to the Object View tab.

Tip 2: All object names in the tree can be dragged to any editable text fields, including to the SQL Commander editor.

Create a Database Connection

There are a few objects that always appear in the tree independent of the edition of DbVisualizer and the database profile in use. The most

43(245)

important object is the Database Connection, which is used to setup and establish a database connection. The other two objects are
Folder and Connections Overview. The following sections describe these objects in more detail.

Database Connection object

The Database Connection object is the root object for a connection. Before exploring or accessing a database, you need to establish the
connection. Create a new database connection using the Database->Add Database Connection main menu choice and the following
will appear.

. DbVisualizer Personal

File Edit View Database SQL Bookmarks Tools Window Help

vEHRLEp R BNé

q B, Onject View | pp S0L Commander

License Details

Froduct: DbVisualizer Personal
Licensed to: World Inc.
License id: 2006-09-19/#1
Uparade Expiration: 2007-09-21

=] Oracle
#- PostgreSQL

: Use Connection Wizard?
#-[] 5aL Servar

ﬂ Syhase €y Create database connection using the Connection Wizard?

#-[J] WehLogic \-)

i@ Cache 5.0 Always Show this Dialog

g Database Connection

- FireBird 1.5 : 1

-ig@ FrontBase 3.6.21]|

-4 Inares -

- MaxDB

- NonStop

- Pervasive 810

-8 Progress 10.0a Getting Started

- MSACC A REIrE _ _

a Ingres & Select Tools-=Connection Wizard menu choice to create a database connection.
@ Latest news, documentation and FAQs are availahle at hitphwww. dbvis.com

Figure: Add database connection

We recommend that you always use the connection wizard when you create a new database connection, as it hides the complexity of
loading drivers and the syntax of database URLs (detailed information on how to establish a connection is provided in the Load JDBC
Driver and Get Connected document).

Tip 1: Once a database connection has been setup properly, you just need to double click on the object to establish the connection.

Tip 2: You can use the Database->Connect All main menu choice to connect all enabled database connections with a single click. You
make a database connection "Connect All" -aware in the Database Properties or in the Connections overview.

Alias

The name of the database connection object as it appears in the tree is by default "Database Connection". The Connection Alias can be
used to provide a name that is more descriptive. Enter the new name in the Alias field in the Connection sub tab or click on the name in
the tree and start editing the name.

Default database and schema

The (Default) indicator after the name of a database or schema in the tree indicates that it is the default database or schema. The

44(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

default is determined when you connect to the database.

& 3 7 Oracle 10g: hr

2 schermas
@ & HR (Default)
o= & SALSA
o & SCOTT
e 5 sH
@ & SI_INFORMTMN_SCHEM A
@ & 5Y5
o & SVSMAN
@ & SYSTEM
— E] session Properties
@ O DBA Views

Figure: The (default) indicator for database and schema objects

Tip: In the Connection Properties you can define that only the default database or schema should be visible in the tree.

Remove and copy database connection objects

To remove a database connection, select the Database->Remove Database Connection operation in the main menu. You can copy a
database connection with Database->Duplicate Database Connection.

Database Connection detailed information
The following section describes the tabs in the Objects View for a database connection briefly.
Tab Description

Connection This tab is always enabled and is used to setup the details for a database connection. You can also connect, disconnect
and reconnect using the buttons in this tab.

Database Info When connected, the Database Info tab shows various information supplied by the driver. Much of this information is low
level, even though some of it may be useful.

Data Types The Data Types tab lists all data types supported by the database.

Search The Search Tab is used to search among the objects in the tree. Search operates on the content in the tree. See the next
section for more information about search.

Search

The Search tab is used to search among the objects in the tree by object name. Note that if you have tree filters or any other property
that limits the content of the tree enabled, the search is performed only for those objects that match the filters. The types of objects that
are searchable depends on the database you are connected to. For instance, columns are included in the tree for some databases but not
for others.

45(245)

- Database Connection: Derby on Mac

| s Connection | &3 Database Info | &} Data Types | & Search

Search For
Search Okject Mames: |jnb* | [D Search]
Use an asterix {*)to indicate a wildcard. (Onlky if Regular
Expression is disabled)
Scope
Search From: |Schemas E]|
Case Sensitive: P
Fegular Expression; P
Eesult
LRI [
Type | Marme

[T] Takle Schemas | HR | Tahles | |OBS
Table Schemas | HE | Tahkles | JOB_HISTORY
IiTabIe Schemas | A | Tables | JOBS
[T] Takle Schemas | SA | Tables | JOB_HISTORY

0.000 sec | 4/2 | 1-4

Figure: The Search tab

Search by specifying the name of the object, or name pattern, and press the Search button. You can use asterisk (*) as a wildcard in a
pattern, or you can use a regular expression pattern if you enable it by checking the Regular Expression checkbox. You can also specify
where in the tree to start the search, and whether to do a case sensitive search.

You can search operation with Stop button in the grid toolbar. Use the Show Object Path toolbar toggle button to include or exclude a

column for the complete path for each found object in the grid. This path is the same as if navigating to each object manually in the
objects tree. Other grid toolbar buttons let you export and print the search result grid.

The search may take some time to perform the first time.

Tip: Double click on a row to see detailed information about a specific object. This will display all information about the object in a
separate window.

Organizing Database Connections in Folders

If you work with many database connections, you can use folder object to organize and group them in the tree. Folder objects can have
child folder objects in an unlimited hierarchy. Use the Database->Create Folder and Database->Remove Folder menu choices to
create and remove folder objects. You can use the Database->Move Up/Down main menu choices to move the folders (and database
connections) in the tree, or you can just drag and drop to the nodes to a new location.

46(245)

Y @& B
@ Connections
@] Production
& salesDesk
& Forurn
& support
) Components
':ﬂ Hardware
i Parts
— & Private; MyEQL
- | Development Databases
&% Oracle: DevForum
ﬂ Infarmix: MextCenHardware
— & Oracle; Bug reports

Figure: The database objects tree and the folder object type

Connections overview

The Connections object is the root object in the tree and acts as a holder for all database connections and folders. When selected,

displays an overview of all database connections in the Object Details view. Here you can see the basic settings and states for your

database connections. For more information, see the Load JDBC Driver and Get Connected chapter.

E DbYisualizer Personal - Untitled

File Edit View Database SQL Bookmarks Tools Window Help

sEHR G BEIFJ

~® Y RBED q @ Object View | » sQL Cammander
=] Oracle ~l & #H|w
kg Oracle 10g; DataDirect : :
H_ Oracls 10g: HR 1733 4_) 5 Type Alias Userid Profile
~-i@ Oracle 10g: OCI = “r @ [Oracle Oracle 10g: HR hr auto C*
--ig Oracle 100; SALSA | @ [] Oracle Oracle 10g: OCI scoft auto C
-~ Oracle 10g: COTT | & [] Oracle Oracle 10g: SALSA salsa auto C
=i Oracle 10g: MyDB Jm= T ﬂ |:| Oracle Oracle 10g: SCOTT scott auto
Sdammas | N T T
s 9 Tables | T ﬂ |:| Oracle Oracle 10g: SYSTEM svstem as sysadm autcu =
& views | & [] Oracle Oracle 10g: THS file scoft auto
& Synonyms Ju i@ [] Oracle Oracle 100 TMS string scott auto
i@ Indexes Jm= @ [] oracle Oracle 8i: HR hr auto G
‘@ Sequences | @ [oracle Oracle 8i: OC scott auto
o Materialized Views i @ 1 oracle Oracle 9i: SALSA tak autn C™
Functions — | >
& Procedures Symbal Description
{3 Packages
'@ Package Bodies 1) ™ Database Connection uses a JOBC Driver
@ Java Sources 1) @ Database Connection uses a JMDI Data Source
B Java Classes 7 Database Connection have overridden connection properias
3 %f Database Connection have filters defined
4) @ Database Connection is established
-2 Invalid Objects 4) @ Database Connection could not be established
D%l gg?ﬂf” Properties 4) &) Database Connection is aboutto be established
=k iews
___,; Users 5) Datakase Connection will be established when "Connect All" is exe...
i b

Figure: Connections object

it

47(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

Database Objects Tree

Standard Actions

The Database Objects toolbar buttons are used to do tree related operations. These are individually enabled or disabled based on the

currently selected object.

EX-15al Xril=

Figure: Objects tree toolbar

Description of the buttons from the left:

Tool bar button

Reload

Stop

Show/Hide Tree Filter

Create Database
Connection

Create Folder

Show in Window

Description

Reloads the currently selected object by asking for new information about the object from the database.
This is useful if new objects have been created or removed.

Stops the current tree operation, for instance connecting to a database or expanding a node.
Is a toggle button that determines whether the Filter management pane will be displayed below the tree.

Adds a new Database Connection object in the tree. The location of the new object is determined based on
the current selection. If no node is selected, the new is object added at the end of the list.

Creates a new folder object.

Request to display the details view for the selected object in a separate window.

The right click menu for an object and the Database main menu lists object specific actions. The following actions are always available for

all objects:

|@ Refresh Ohjects Tree

ES:

Reconnect
Show in Window...

ShowiHide Tree Filter

DaEad e

Copy Mame
Clear Visited State

ShowiHide Tahle Row Count

Ctri+Skift+R

Ctri+C

Figure: Standard right click menu actions for all objects

Object Actions

An object in the objects tree may have object specific actions attached to it. These actions are accessible via any of:

» Right-click menu in the objects tree
* Via the Database->Selected Object main menu
¢ Via the Actions menu button in the object view

Here is an example of the actions menu launched via the Actions menu button:

48(245)

Table: EMPLOYEES
Oracle 10g: HR | Schemas | HR | Tables | EMPLOYEES =
| =Bconstraints | @ Triggers | 93 |® RenameTable..
| _wRowld | =ZReferences [o Navig Empty Table..
g Info | [
g | Columns || [Data || & Row Count || 3 DropTable..
& | & %o Copy Table...
Mame Comment Table...
OWNER HR & ImportTable Data...
TABLE_NAME EMPLOYEES
Create Index...
TABLESPACE_MNAME ExXAMPLE
CLUSTER_NAME {null) Script Object to SQL Editor b
10T_NAME (null Script Object to Mew SQL Editar #
STATUS WALID
PCT_FREE 10
PCT_USED {null
INI_TRANS 1
MAX_TRANS 255
INITIAL_EXTENT 65536
NEXT_EXTENT (null)
MIN_EXTENTS 1 p;

Figure: Object actions menu

Common Object Actions

There are a few actions that appear for some object types in all database profiles. These are most often valid for plain table object types
and offer related functionality. Read the following sections for more information.

Create Table

The Create Table action launches the Create Table feature. You use it to create a table, optionally with a primary key, foreign keys and
other constraints. Read more about this feature in Create and Alter Table.

Create Index

The Create Index action launches the Create Index assistant dialog, where you can select columns to include in a new index for a table.
See the Create and Alter Table for more information.

Import Table Data

Import Table Data launches a dialog where you can specify a CSV file to be imported into a table. Various configurations for how the
source file is organized and data mapping are offered. Read more in Export, Import and Print.

Script Object to SQL Editor

Use this action to create pre-defined SQL statements based on the source table and its columns. The created statement is copied to the
current SQL editor in the SQL Commander. Here are a couple of examples:

Script Object to SQL Editor -> Select

SELECT
COUNTRY_ID,
COUNTRY_NAME,

49(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportPrint/exportPrint.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/tableDesigner/tableDesigner.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/tableDesigner/tableDesigner.html

REGION_ID
FROM
HR.COUNTRIES

Script Object to SQL Editor -> Insert

INSERT
INTO
HR . COUNTRIES
C
COUNTRY_ID,
COUNTRY_NAME,
REGION_ID
)
VALUES

For databases with DbVisualizer database specific profiles, the Script Object to SQL Editor action menu also contains an entry for
generating the DDL for Table and View objects.

Script Object to New SQL Editor

This is the same as Script Object to SQL Editor, except that the SQL is copied to a new SQL editor instead of to the current editor.

50(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/databaseExplorer.html#mozTocId399048

Objects Tree Filtering

The Filtering setup is activated via the Database->Show/Hide Tree Filter menu choice and the filter pane appear below the objects
tree. Filtering is useful to limit the number of objects that will appear in the tree.

Tree filters are managed per database connection object. What can be filtered is defined per database profile. The generic database profile
supports filtering of database (catalog), schema, table and procedure names.

The same
objects but
now filtered

Artivate Filters: []

The unfiltered schema objects for an Oracle based on all Filter defined as all names that do not start with "O"
connection. schema and "S".
names
starting with
"O" or "S".
©- i3 [Oracle 10g: hr & 53 %7 Or Oracle 10g: hr
& & Schemas & & 5ol Schernas
o & ABC - & & ABC
@ & ANONYMOUS o & & AMNOMNYMOUS
e 3 Bl o & 2 Bl
o & CTHSYS o 2 & CTxsvs
o~ & DESNMP o & & DBSMMP
= & DIP o 2 a DI
o & DMIYS o 3 & DMsYS
o & EXF3vS o 2 & BXFEvS
@ 3 HR ¢Default) o & & HR (Default)
o & I o & 2
@ & MDDATA o 2 & MDDATA
o & MDSrs o 2 & MDsYS
e & MCMT_YIEW — E] se & MOMT _WIEW
o 3 MiA @ O DE & Mia
e & 0F — & Oracle 2 PM
o= & OLAPSYS — & oracl & PUBLIC
@ & ORDPLUGING — & Oracle & QUOTATEST
@ & ORDSYS i Oracle & TaK
& 3 OUTLM] sybase & TaMSYS
o 2 PM e] DB2 A wesrs
@ 5 PUBLIC =] S0L Serve & XDB
@~ & QUOTATEST @ [Mimer — [E] Session Properties
© § SALTA, @ [Informix @ £ DEA Yiews
> & SCOTT (4] — & Oracle 10g: salsa -
y 2t Object Filter Object Filter
Ohject Filter Activate Filter Activate Filters: [+

Object Ty Ohject Type: | & “ Schemal~]

oo Tops: (B screnelz] ame [= pame [0)fo%] #4]
heme IR] or [ame] and [name] [©]5% &%

Match: @ Ay O Al Match: Match: O Amy @ Al

Sawe Filter Si

Figure: Examples of tree filter settings

An active filter for a database connection is represented by the funnel icon just before the database connection name. The active state for
a filter is defined using the Activate Filters checkbox in the Object Filter pane. A filter can only be activated if there are any filters
defined. Up to 15 filters can be defined per object type.

Tip: A common requirement is to list only the default schema or catalog (database) in the database objects tree. This can be

accomplished using the filtering functionality, but the recommended way is to do this with the Show only default Database or Schema
property in the Properties tab for the Database Connection object. You can read more about this in the Tool Properties section.

51(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId753863

Show Table Row Count

The Database->Show/Hide Table Row Count menu choice decides whether the number of rows for table objects will be listed after the
name of the table in the tree.

Enabling this property results in a performance degradation.

Database Profiles

A Database Profile is the foundation for database specific support in DbVisualizer. A database profile is, somewhat simplified, a definition of
which kind of information that is presented in the database objects tree and in the various object views for a specific database engine. In
addition, the profile defines the actions for the object types defined in the profile. DbVisualizer loads the matching database profile when
you connect to a database. If no matching profile is found, or if you are running DbVisualizer Free, DbVisualizer uses a Generic profile with
just the general database information and actions included.

Database Specific Support

DbVisualizer Personal currently offer database specific support (database profiles) for the following databases (click links for details):

* Oracle

- DB2

+ Sybase ASE
* SQL Server
« MySQL

* PostgreSQL
« Informix

¢ Mimer

« JavaDB/Derby

The specialized database profiles define different object types, so the database objects tree may look different depending on which
database you are connected to. The structure and organization of a database profile is also something that may impact the layout of the
tree, even though the provided ones are similar in their structure. There are two root nodes in the majority of the profiles:

* User objects
* DBA objects

User objects are, for example, tables, views, triggers, and functions, while DBA objects most often are objects that require administration
privileges in the database in order to access them. DbVisualizer puts all DBA objects under the DBA Views tree node. If you connect to a
database using an account with insufficient privileges to access a DBA object, you may see error messages if you try to select nodes under
the DBA Views node. This is an example of the DBA sub tree.

- O DBA views |

& Users

& Foles

= Table spaces

[£] Data Files

© Rollback Segments
W Sessions

£ Statistics

Figure: The DBA Views tree object

Note: Database profiles are defined in XML and it is quite easy to extend and modify them. Read more in the Plug-in Framework
document.

Generic profile

DbVisualizer supports a wide range of databases. The nature of the databases and what they support differ from vendor to vendor, so the
appearance and structure of the tree below the Database Connection objects for different databases differ as well. The generic database

52(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/derby.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/mimer.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/informix.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/postgresql.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/mysql.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sqlserver.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sybase-ase.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/db2.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

profile (the only profile available in DbVisualizer Free) displays objects based on what JDBC offers in terms of database information (aka
metadata information). DbVisualizer asks the JDBC driver for all schemas, databases, tables and procedures, and then builds the tree
based on what the driver returns.

The advantage of using JDBC to get database metadata is that it is a standard way to access the information, independent of the database
engine type; the JDBC driver layer hides the proprietary details about where and how the information is really stored. The drawback with
using JDBC is that JDBC doesn't offer access to all metadata a database may hold. While the information presented by the generic profile,
with its reliance on JDBC, is sufficient for many tasks, a database specific profile offers far more details as well as more features. If you
use DbVisualizer Free with one of the databases supported by database specific profiles, you may want to upgrade to the DbVisualizer
Personal edition.

The generic database profile when used for an Oracle connection look as follows:

3 [Oracle 9 scott |

@ & SCOTT (default)
o~ [SYNONTM
@~] TABLE
© W | E
©~ & Procedures

Figure: The generic database profile when applied to an Oracle database connection

The appearance of the generic database profile may include schema objects and/or catalog objects depending on whether the database
supports these objects. The Procedures object always appear in the tree, regardless of if the database connection supports procedures or
not.

The following sections describe the objects provided by the generic profile.

Catalog/Database object

Catalog is the term used in JDBC and some database engines for a logical grouping of database objects. Other database engines, e.g.,
Sybase, PostgreSQL, SQL Server and MySQL use the term Database for, more or less, the same purpose. Both terms are used in
interchangeably in DbVisualizer.

The Object View for a Catalog object in the generic profile is a pane with two tabs, Tables and References. The Tables tab lists all the
tables that are located in the catalog while References shows the exact same list of tables but instead as a referential integrity graph.

2@ | < | 2 o | = : IZ, object view | [S0L Commander
@ Connections nj b Catalog: test _
& 3 MySQL MySQL | test
3 pmtest | D Tables [=3 Referances |
3 test (Default) & | S 2D [a- |
TABLE :
%ﬁ LOCAL TEMPORARY || TABLE_ CAT | TABLE SCHEM | TABLE MAME | TABLE TYPE | REMARKS | [El]
& Procedures |test inull) Customer TAELE -
|3 testz |test {null Customerorder TABLE
— i@ Mys0L Connectar/) 5.0.x ‘|test enully DEPARTMENT TAEBLE
g: iiZ MySOLNew “|test irwll) DhbvisOrders TABLE
>~ (i3 PostgresQL Jtast {rull ftem TABLE
— & Mimer rest {null Orderitern TABLE
— & De2 test fmull) SALARY TABLE
— & Oracle) |1est inull) atest TABLE
B g ﬁ;&ggﬁﬁ;ﬁ;;ﬁ; tast inully altertest TAELE
& i3 Derby on Mac -[test null comment_test TABLE
| ﬂ DEZ an Vista test {null defaults TABLE
— i@ Oracle on Fedora 6 test inulh Tk TABLE
— & Rogge's Sybase with jTDS test {null) index _test TABLE
— & Rogge's Mac DBE2 tast (il self_ref TABLE
— g Fogge's SOL Server 2000 test il tabl TABLE 3
— i@ Rogge's DB2 — u ol LAOLT |
| i@ Rogge's MySOL S - 0.003/0.000 sec | |21/5 || 1-1¢ |

Figure: The view for Catalog objects

53(245)

The child objects shown for a catalog object depend on the capabilities of the JDBC driver. Typically, a child object represents a type of
table that the driver use to categorize the tables in a catalog, e.g., regular tables or system tables. For instance, the example in the figure
above shows a MySQL database connection with catalog objects as its child object. The catalog child objects are TABLE and LOCAL
TEMPORARY, because these are the table types that the MySQL JDBC driver supports (these table types are the same as those listed in
the Table Types tab when selecting a database connection object). For other databases, you may see child objects representing other
table types.

Tip 1: You can double click on a catalog object to display the detail view in a separate window.

Tip 2: Select one or several rows (cells) in the tables grid and then choose Script: SELECT ALL to create a select script for the selected
tables, copied to the current SQL Commander where it can be executed.

Schema object

The generic profile Schema object tree and view are organized in the same way as for the Catalog objects. There is in fact no difference
except that the schema objects are in another level in the tree and is represented by a different icon.

The following screen shot shows the information for the selected schema with the Reference tab selected.

Tables: TABLE

Oracle 10g: HR | HR | TABLE

Tahles | =& References

OB &S %A T EE| | W Herachic -

HELJOE HIETORY
T
aumw ww
ey o J
- e i DEFARTNENTS
A ssen _— ey HeLEE
o = e
wmR o g [% mew p—]
—— P [rt—— e s —
e [el
j—y [———
ey —
e— e
- s
I et ranmnn
oI T mERR3
e —
e e
HELLOCATIONS
L] s Lo [rr——
T
iyl
e
[HLCOUNTRES
]] e COARIWY B CHAREY
[i BESINS
R T e T

FPowered by yFile ra o

|42%||Tables: ?HReferences: 10

Figure: The view for Schema objects

Table Type object

The generic profile Table Type object has been briefly described earlier. The name and the number of table type objects are determined
by the driver as DbVisualizer asks for the supported table types. When DbVisualizer retrieves all tables it checks each table's type and puts
them into the matching table type object. The reason is simply to make the tree easier to browse.

54(245)

©- 23 [PostgresQL: jabc |

3 templated

@ templatel

[3 test (defaul
& 3 po_catalog
i (NDEX ()
[0 SEQUENCE {0}
i@ SYSTEM INDEX (52)
SYSTEM TABLE (28)
i@ SVSTEM TOAST INDEX (0
[T SvSTEM TOAST TAELE ()
TYSTEM WIEW (25)
1 TABLE (0
i@ TEMPORARY INDEX (07
O TEMPORARY TAELE (09

YVIEW (0

Figure: Example of table type objects for PostgreSQL

Note: Even though the figure above lists objects as INDEX, SEQUENCE, VIEW, etc are all treated as tables by DbVisualizer.

Table object

The Table object is probably the most frequently accessed object in the tree, since its Object View shows not only a lot of information
about the table but also the data the table holds. This is also the place where you can edit the table data.

Oracle 10g: HR | HR | TABLE | EMPLOYEES

| fG@indexes | WEGrants | e Rowld | =3 Refersnces | < Navigator |
| @info | Mcoumns | [HData | @RowcCount | “ Primary Key

20|25 |7Y- GWEHEH B v=-9v

Table: EMPLOYEES

s |

" EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER

1 198|Donald OConnell DOCONNEL |650.507.9833

2 199|Douglas | Grant DGRANT 650.507.9344

3 200|Jennifer |Whalen | JWHALEN 515.123.4444

4 201 | Michael Haristein MHARTSTE |515.123.555%

5 202|Pat Fay PFAY 603.123.6666

§ 203|Susan Mavris SMAVRIS §15.123.7777

7 204 Hermann Baer HBAER 515.123.8888

8 205 Shelley Higgins SHIGGINS |515.123.8080

] 20EWilliarm Gistr WGIFT7 151238181 b

£ | 1ilJ] ¥

Max Rows: Max Chars:| | 0.040/0.110 sec | 10811 1-9

Figure: The view for Table objects

The Object View for a table object contains the following tabs:

Tab Description
Info Brief information about the table object
Columns This tab lists type information about all columns in the table
Data Read more in Data tab

Row Count Lists the table row count

55(245)

Primary Key Shows the primary key

Indexes Lists all indexes for the table
Grants Displays any privileges for the table
Row Id Displays the optimal set of columns that uniquely identifies a row

References Read more in References tab

Navigator Read more in Navigator tab

Procedure object

The Procedure object shows the name of the procedure or function in the tree, and the Object View lists the parameters that are used
when calling it.

£ Procedure: ADD_JOB_HISTORY Actions w

Oracle 10g: HR | HR | Procedures | ADD_JOB_HISTORY

[Procedure Columns
2|8 2 & a- |
PROCEDURE_SCHEM PROCEDURE_MAME COLUMN_NAME COLUMN_TYPE DATA_T[H|
HR ADD_JOB_HISTORY P_EMP_ID 1 ~
HR ADD_JOB_HISTORY |P_START_DATE 1
HR ADD_JOB_HISTORY P_END_DATE 1
HR ADD_JOB_HISTORY |P_JOB_ID 1
HR ADD_JOB_HISTORY P_DEPARTMENT_ID 1
]

ol il] =

0.200/0 260 sec | 5116 [1-5 |

Figure: The procedure object

The Object View shows a list of column names for the selected procedure.

Object Views

The Object View tab shows detailed information about the selected tree object. The Object View may contain several sub tabs, depending
on the current database profile and the type of the object selected in the tree. There may also be several representations of the same
information, providing different views of the information. The following sections describe the different views, or visual presentation forms,
provided by DbVisualizer.

Grid

The Grid view is the most common one as it displays the data in a standard grid style.

56(245)

* Indexes

i e oh Fed:

@ Indexes

SIS [|
OWMER | INDEX_MAME | INDEX_TYPE| TABLE_OWNER| TABLE_NAME | TAHE
HE. COUNTRY_C_ID_PK I0T - TOF HR COLNTRIES

HR DEFT_ID_PK NORMAL HR DEPARTMENTS

HR. DEPT _LOCATION_IxX NORMAL HR DEPARTMENTS

HR. EMP_DEPARTMENT _IX NORMAL HR EMPLOYEES

HR EMP_EMAIL_LIK NORMAL HR EMPLOYEES

HR. EMP_EMP_ID_PK. NORMAL HR EMPLOYEES

HR. EMP_JOB_IX NORMAL HR EMPLOYEES

HR EMP_MANAGER_IX NORMAL HR EMPLOYEES

HR. EMP_NAME_IX NORMAL HR EMPLOYEES

HR. IHIST _DEPARTMENT _IX NORMAL HR JOB_HISTORY

HR JHIST _EMPLOYEE_IX NORMAL HR JOB_HISTORY

HR. IHIST_EMP_ID_ST_DATE_PK NORMAL HR JOB_HISTORY

HR IHIST _JOB_Ix NORMAL HR JOB_HISTORY

HR JOB_ID_PK NORMAL HR J0BS

HR. LOC_CITY_Ix NORMAL HR LOCATIONS

HR LOC_COUNTRY_IX NORMAL HR LOCATIONS

0.569/0.027 sec | | 19/53 || 1-17

Figure: The Grid view

Form

The Form view extends the Grid view by adding a form below the grid. Click on a row in the grid and the information is displayed in the

form.

{ f Storage

Oracle on Fedora 6 | DBEA YWiews | 5torage

[=5 Tablepaces] [£] Data Files] O Rollback Segrents

ElE Q- |
SEGMENT _MAME | OWNER | TABLESPACE_NAME | SEGMENT _ID | FILE_ID | BLOCK_ID [INIT1AL
SYSTEM N ES SYSTEM 0 1 3 (]
_SYsaMULE FLELIC UNDO 1 2 9
_SYSSMU10§ FUBLIC UNDO 10 2 153
_SYSEMUZ$ PLBLIC UNDO 2 2 25
_SY=EMUZ$ FLBLIC UNDO E 2 41
_SYSEMU4S FUBLIC UNDO 4 2 57 II]EJ
4
0.194£0.002 sec || 11714 1-7 |

Mame | Walue |
SEGMENT_NAME SYSTEM]
OWNER =Ys
TABLESPACE_NAME SYSTEM
SEGMENT_ID Q
FILE_ID 1
BLOCK_ID 9
INITIAL EXTENT 1146838[

Figure: The Form view

If there is only one row of data, only the form is displayed.

57(245)

Source

The Source view is typically used to show the source for functions, procedures, triggers, etc. It is based on a read only editor with SQL
syntax coloring. The sub toolbar buttons from the left:

* Reload the data from the database

* Stop loading the data from the database
* Export the data to file

* Print the data

* Copy the data to SQL Commander

* Format the SQL

HIETORY (TAELE - IIFEI WTE: EMPLO)

20| s »[E

1 TRIGGER update_joh_history AFTER

2 UPDATE

3 OF job_id,

4 deparntment_id

5 O

& employvees FOR EACH ROW BEGIN add_job_histong:old. employvee_id, (old hire_date, <
7 END;

L — b

| 0.047/0.001 sec |

Figure: The Source view

Table Row Count

The row count view is really simple: it only shows the number of rows in the selected object.

58(245)

Table: COUNTRIES o]

Schemas | HR | Tahles | LINTRIES

~J Constraints | @ Triggers | “sDDL | “¥ DDL with Storage
I# Crants] » Row Id] =3 References | Mavigator] * Columns Comment
@ Info] [Columns]] Data] & Row Count | ., Primary Key | G Indexes

&

Number of rows: 25

Figure: The Row Count view

Table Data

You use the Data tab to browse the data in the table and to do various data related operations. This view is based on the generic grid, but
it adds a few more visual components to limit the max number of rows, the width of text columns and the collection of data tab specific
operations in the right-click menu. In addition, you can also use a filter limit the data to the rows that match the filter. The data tab is the

place to do edits in DbVisualizer Personal.

Table: COUNTRIES

cle an Fe emas | HR | Ta INTRIES

=3 Constraints | @ Triggers | “sooDL | “% DOL with Storage
I Crants | e Rowid | =3 References | < Mavigator | * Columns Comment
g Info] [T] Columns] [l Data | %48 Row Count | o PrimaryKey | G Indexes

RO Y- REEE B = w0 [& |

. COUNTRY_ID| COUMTRY_MAME | REGION_ID |
1 |AR Argentina 2
2 |Al Australia 3
3 |BE Belgium 1
4 |BR Brazil 2
5 |CA Canada 2
& |CH Switzerland 1
7 |cw China ES
8 |DE Carmany 1
4 DK Denmark 1
10 |Ec Egypt 4
11 |FE France 1
12 |HK Hangkaong kS
13 |IL Israel 4
14 [N Indlia 3
15 [IT Itaky 1 -
Max Rows: [2500 | Max Chars: [| 0.009/0.004 sec | 25/3 | 1-17

Figure: The Data tab for Table objects

59(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Right-click menu

The Data tab grid right-click menu contains some operations in addition to those the standard grid right-click menu. The additional
operations are primarily for creating SQL statements based on the current selection. Choosing any of these creates the appropriate SQL
and then switch the view to the SQL Commander tab. You must use these operations to edit table data in the DbVisualizer Free edition.
With the DbVisualizer Personal edition, you can instead use inline and form based editing. (Information about the standard right click
menu operations are available in the Getting Started and General Overview document).

You can generate SQL with either static values as they appear in the grid, or with DbVisualizer variables. A variable is essentially a
placeholder for a value in an SQL statement. When the statement is executed, DbVisualizer locates all variables and presents them in a
dialog where you can enter or modify values for the variables. DbVisualizer replaces the variable placeholders with the new values before
executing the statement. Variables can be used in any SQL statement and DbVisualizer relies on them heavily. (Read more about variables

in the SQL Commander document).

Whether to use variables in the SQL statements generated by the right-click menu SQL operations depends on the Table Data-
>Include Variables in SQL setting in Tool Properties, under the General tab. By default, variables are being used in the statement. If
you disable the property, static values are instead used in the generated statement.

Here is an example with the Include Variables in SQL setting enabled and then disabled. The SQL is generated when the select *
where operation is selected based on the selection in the previous figure.

Include Variables in SQL is enabled:

select *
from HR.COUNTRIES
where COUNTRY_NAME = ${COUNTRY_NAME (where)||Brazill|Stringl|where nullable ds=4@ dt=VARCHAR }$

Include Variables in SQL is disabled:

select *
from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil'

The following lists the generated SQL for each of the operations based on the selection of COUNTRY_NAME = Brazil, with variables
disabled.

Operation SQL Example

Script: SELECT ALL select *
from HR.COUNTRIES

Script: SELECT ALL WHERE select *
from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil'

Script: SELECT ALL WITH FILTER select *
from HR.COUNTRIES
where REGION_ID = 1 // If this is the filter, see below

Script: INSERT INTO TABLE insert into HR.COUNTRIES
(COUNTRY_ID, COUNTRY_NAME, REGION_ID)
values (', '',)

Script: INSERT COPY INTO TABLE insert into HR.COUNTRIES
(COUNTRY_ID, COUNTRY_NAME, REGION_ID)
values ('BR', 'Brazil', 2)

Script: UPDATE WHERE update HR.COUNTRIES
set COUNTRY_ID = 'BR',
COUNTRY_NAME = 'Brazil',
REGION_ID = 2
where COUNTRY_NAME = 'Brazil'

60(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Script: DELETE WHERE delete from HR.COUNTRIES
where COUNTRY_NAME = 'Brazil'

Where Filter

The filter capability in the Data tab lets you limit the number of rows in the grid, using the same syntax as for an SQL WHERE clause. The
Filter menu button in the grid toolbar contains all operations related to using a filter.

able: COUNTRIES Actions ¥ |

le on Fedora b | Schemas | HRE | Tables | COUMTRIES

=3 Constraints | @ Triggers | S®oDOL | 5% DDL with Storage
I8 Grants | “® Rowld | =8 References | ' nNavigator | ® Columns Comment
g Info I [T Columns] [Data i 8 Row Count] “ Prifmary Key] i@ Indexes

2OV | EEEE v 5w [|

. COUNT @ WHERE REGION_ID =1 |_ID| Z
1 |BE Use Mo Filter 1 [«]
2 JCH Clear Filter List 1
4 |pK [0 Show/ Hide Inlined Filter 1
5 |FR Configure Filter... 1
& |IT [taky 1
7ML Metherlands 1
8 |UK nited Kingdom 1

-]
Max Rows: [2500 Max Chars: | 0.918/0.078 sec | | 8/3 | ILF)

Figure: Filter menu

The top entries in the menu are previously used filters for the table, if any. The checkbox is selected for the filter that is currently in use.
The filters are saved between DbVisualizer sessions, and you can toggle between them by selecting them from the menu. You use the Use
No Filter choice to disable all filters for the table, and the Clear Filter List to permanently remove all filters for the table.

To create a new filter, select Configure Filter to launch the Filter Configuration dialog.

E DbVisualizer Personal - Filter & Sort

Filter
'REGION_ID v||= v| 1 fanp || or |
BFEGION_ID = 1
Sort
COUNTRY_ID % ||ascending v Add

| useFiter || usenoFiter || close

61(245)

Figure: The Data tab Filter Configuration dialog

The Filter Configuration dialog contains one Filter area and a Sort area.

The Filter area is composed of two parts. The upper one is used to define a condition for a single column. You can use the two lists to
select the column name and an operator, and enter the value of the column in the text field. You can use Ctrl-Enter while editing the
value to force a reload of the grid based on that single filter. The lower part displays the complete filter and the buttons are used to control
whether the newly entered filter will be AND'ed or OR'ed with the complete filter. The buttons change appearance based on whether there
is any filter or not. While in the complete filter you can use Ctrl-Enter to force a reload based on the complete filter.

The Sort area is similar to the Filter area. You can select column names and sort order from the two lists, and click the Add button to add
the sort criteria for the single column to the complete criteria.

Click the Use Filter button to apply the filter and save it, and close the dialog by clicking the Close button.

If you often need to tweak the filter conditions and want a more compact user interface, you can use the inline filter view. Use the Show/
Hide Inline Filter choice in the Filter menu to toggle the visibility of the inline filter.

Table: COUNTRIES [actions = |

Oracle on Fedora s | Schemas | HR | Tables | COUMTRIES

=3 Constraints | @ Triggers | S®ooOL | “% DOL with Storage
I8 Grants | e Rowld | =3 References | < Mavigator | ® Columns Comment
g Info] [T] Columns] [flData | '@ Row Count | . Primary Key | @ Indexes
20257 wEEE B v =50 [a |
¢ Filter: [REGION_ID = 2 | | useFirer | Use Mo Fier |
Cu COUNTRY.ID| COUNTRY_MAME | REGION_ID| El
1 AR Argentina 2 E
2 |BR Brazil 2
3 |CA Canada 2
4 |Mx Mexico 2
5 |Us United 5tates of America 2
Max Rows: 2500 | Max Chars: | 0.015/0.000 sec | | 5/3 | 1-7

Figure: Data tab with the Inline filter enabled

The inline filter is displayed above the grid. You can edit the condition in the text field and use Ctrl-Enter or click the Use Filter button to
apply the modified condition. Instead of manually typing column names in the field use the Ctrl-Space key binding to show a list of
available columns.

Quick Filter

The quick filter acts on the data that is already in the grid, as opposed of a WHERE filter which is used to limit the number of rows
fetched from the database. With a Quick filter, you can easily list only those rows in the grid that match the entered search string.

The following figure shows data that matches the search string "d". Matching cells are highlighted.

62(245)

Table: COUNTRIES | Actions » |

on Fedora & | Schemas | HRE | Tables | COUNTRIES

~J Constraints | @ Triggers | “sDDL | “¥ DDL with Storage
I Crants | e Rowid | =& References | +f Mavigator | ® Columns Comment
@ Info] [Columns] [Data | %@ Row Count | o PrimaryKey | G Indexes

O3 V-G EHE By = %|n [Qd o)

. COUNTRY.ID| COUNTRY_MAME | REGIOM_ID | %

1 |CA Canada 2 -
2 |CH Switzerland 1
3 |DE CErmany 1
4 |DK Denmark 1
5 |IM India 3
& ML Metherlands 1
7K Inited Kingdom 1
8 |Us United States of America 2

-

Max Rows: [2500 Max Chars: | 0.02270.005 sec ||8 [25]/3 ||Lf,4l

Figure: Using the Quick Filter

Entering successive characters will narrow the result even further, as in the following figure.

Table: COUNTRIES

Oracle on Fedora & | Schemaz | HR | Tables | COUMTRIES

=3 Constraints | @ Triggers | “ooL | “% DDL with Storage
@ Grants | e Rowld | =@ References | < Mavigator | ® Columns Comment
g Info] [T Columns] 7 Data | @& Row Count | o Primary Key | G Indexes
20|37 G EEEE|y = 9w [aw 2]
L. COUNTRY_ID| COUNTRY_MAME | REGIOM_ID| %
1 [DE CEFTany 1 -
Dk Denmark. 1
Max Rows: [2500 | Max Chars: [| 0.022/0.005 sec | | 212513 || 1-7

Figure: Refining the filtering

The Quick Filter pull-down menu (click on the down arrow next to the magnifying glass) lets you choose if the filter should match cells in
all columns or just one selected column, case or case insensitive matching, and where in the cell the value must match.

63(245)

: Table: COUNTRIES [ctions |

e on Fed: 5 | Schemaz | HR | Tables | COUMTRIES

=3 Constraints | @ Triggers | SsDDL | “¥ DOL with Storage
I8 Grants] “e Row Id] =3 References] A Mavigatar] ® Caolumns Camrment
& Info] Caolurnns] ff Data | ¥ Row Count | % Primary Key | @ Indexes

2025 Y WEEEHBE v = %9 [Qa <)
[
. COUNTRY_ID| COUNTRY_NAME | REGION_D| | @Al |
1 |DE Cermany 1 O COUNTRY_ID
2 |DK Denmark 1 O COUNTRY_NAME

O REGION_ID

O Case sensitive
Case insensitive

'O Match from start

Match anywhere

-

Max Rows: [2500 | Max Chars: [| 0.022/0.005 sec | 2 [25)i3 | | 1-7

Monitor row count

Read more about the Monitor Row Count and Monitor Row Count Difference in Monitor and Charts.

Editing

Read about data editing in Edit Table Data

DDL Viewer

The DDL Viewer tabs appear only for Table and View objects and for databases that have specialized database profiles.

64(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html#mozTocId117949

S E @

1 CREATE -
2 TABLE EMPLOYEES
3 {
a EMPLOYEE_TD NUMEER(%,0) HOT HULL,
5 FIRST NAME VARCHARZ(Z0],
6 LAST_NAME VARCHARZ(25) HOT HULL,
7 EMATL VARCHARZ (25) HOT HULL,
8 PHONE_NUMEER VARCHARZ (20},
9 HIRE_DATE DATE HOT HULL,
10 J0B_TD VARCHARZ(10) HOT HULL,
11 SALARY NUMBER(%,2),
12 COMMISSTON_PCT NTMEER(Z,Z),
13 MANAGER_ID NUMEER(f,0),
14 DEPARTMENT_ID NUMBER[4,0],
15 CONSTRATNT EMP_EMP_TD_PK PRIMARY KFY (EMPLOYEE_ID),
16 CONSTRATNT EMP_DEPT_FK FORETGH KEY [DEFARTMENT ID| REFERENCES I
17 CONSTRAINT EMP_10B_FK FOREIGH KEY (J0B_ID) REFERENCES J0BS [I0F
18 CONSTRATNT EMP_MANAGER_FK FOREIGH KEY (MANAGER_TD) REFERENCES I
19 CONSTRATHT EMP_EMATL UK UWIQUE (EMATL),
K
1:1 ||ms] | untitledr

Figure: The DDL viewer for a table

References

The References tab for a Table object shows how the table references other tables (e.g., Imported Keys) and how other tables reference
the selected table (i.e., Exported Keys), based on primary and foreign key declarations. Use the sub tabs at the bottom of the display to
show either view. The following shows the references from the table.

Table: EMPLOYEES

Oracle 10g HR | HR | TABLE | EMPLOYEES
| .8 Info | Columns I [Data w Count |
| ., Primary Key || §@ Indexes || I Grants || “® Row Id | =3 References 4 Navigatar

SO @ &% & e & EE || W Hierachic -

HR.EMPLOYEES
Jo EMPLOYEE M NUMBER (5|

FIRST_NAME VARCHARE (201
LAST MAME VARCHARS (25

EMAIL VARCHARS (25 HR.JOBS
PHOME_NUMBER VARCHARZ (20) -

HRE_DATE — I—b e 308D VARCHARZ {10]
0B _ID VARCHARE (10 I e =]
- e M SALARY MUWBER (5]
COMMISSION FCT MUNWBER (23] R T L 75)

MANAGER_ID NUMEER (5]
DEFARTHENT_ID NUNEER (1) HR.DEPARTMENTS
_|—I~ Jir DEPARTHEMT ID MUMBER (4]
DEFARTMENT_MAME \ARCHARE (30
MLANAGER_ID MUMEER (B]
LOCATION ID HUBER (4]

|65%||Tab|es: 3||References: 3

Imponted Keys | Exported Keys

Figure: The references graph showing imported keys for a table

Navigator

The Navigator tab provides an interactive way to navigate in data by following primary key and foreign key references.

65(245)

Table: DEPARTMENTS

e <]

v on bac | ichemas | HR | Tables | DEPARTMENTS

g Info | Caolurins |] Data

| B Row Count

. PrimaryKey | G@indexes | e Rowld | =@References | < Navigator I <% DOL

SR LeemacaHE D

DEPARTMENT_ID
DEPARTMENT_NAME Human Resources

HR.EMPLOYEES |

HR.DEPARTMENTS DEPARTMENT_ID
DEPARTMENT_NAME IT

Y

"+ DEPARTMENT_ID 40 |

=¥ rrrrrrerrrrerrecrrrcrrrrrrrrrrerrrrrrrrrrrrrerr

= @ | & | T - | = |Related Tahle; |

-]

) EMPLOYEE_ID| FIRFI'_NAME| LATI'_NAMEl EnrdAlL FHOME_MUMEER.

HIRE_.DATE | JOBID | SALARY |COM

1032 Alexander Hunold AHUMOLD 590.4232 4567
104 Bruce Ernst BERMNST 590,423 4568
105 Dawvid Allstin DALSTIM 590,423 4569
106 Yalli Paratialla WPATABAL 590,423 4560
107 Diana Lorentz DLORENTZ 530.423.5567

1490-01-03 [T_PROG 2000.00 (null)
1851-05-21 T_PROG &000.00 (null
1997-06-25 [T_PROGC 4800.00 (null)
1998-02-05 [T_FROG 4800.00 (null
1999-02-07 [T_PROG 4200.00 (null

4

Max Rows: |1000 Max Chars: |

4

0.0020.002 sec | |5/11 || 1-7

Figure: The Navigator tab showing two navigation cases

The tab contains a graphic view showing navigation cases (paths through the data) at the top and a data grid showing the data for the
navigation case selected in the graph. You navigate in the data by selecting the row in the grid that holds the key value you want to follow,
e.g., a specific department in the example shown in the figure, and then select a primary or foreign key relationship from the Related
Table list above the grid. This creates a new navigation case in the graph and updates the grid with the corresponding data.

How to use the navigator is described in more detail in the Data Navigation section.

Procedure Editor

You can use the procedure editor is to browse, edit and compile procedures, functions, packages, package bodies, triggers and other
database objects that represent custom code that can be invoked in a database. You can edit the source code in the editor and then click
Execute to save/compile the code. If errors are found, selecting an error message in the error list highlights the row containing the
incorrect statement in the editor (in the cases when a row number is available, which is not true for all databases).

More information can be found in the Procedure Editor document.

66(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/procEditor/procEditor.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/navigator/navigator.html

DbVisualizer Personal - Untitled*

File Edit View Database 35QL Bookmarks Tools Window Help

vEHR CR RBDFI

20 | T |] ‘ = 2, Object View [sqL Commander
B@ tlracle 10g (system) {f Procedure: UPDATE_STATUS
& the’"as Oracle 10g (system) | Schemas | HR | Procedures | UPDATE_STATUS
2 ANONYMOUS
im [# Procedure Editor
& crsvs i
z i dE | = | BB ‘ | @ Status: VALID
e:n DIP 1 CRERTE OR REPLACE PROCEDURE HE.UPDATE_STATUS {
@ DMSYS 2 order_id start IN NUMEER DEFAULT -1,
@ BESIS | = order_id_end IH NUMBER DEFAULT -1,
a HR || a status IN VARCHARZ DEFAULT 'CLOSED')
5 AS
& BEGIH
7 DEMS_OUTPUT. PUT_LINE({'Sanple output');
Ll e m:
b Materislizad Views
{5} Functions
=i Procedures
g ADD_JOB_HISTORY
EMP_REPORT 8:5 ||| [] Juntitrealf
NOTHING —
out Line Column Text
REMOVE_EMP
SECURE_DML
4 UPDATE_STATUSA
- {3 Packages
J"% Package Bodies 2

Figure: The procedure editor for functions, procedures, packages etc.

67(245)

SQL Commander

Introduction

The SQL Commander is used to edit, format and execute SQL statements or SQL scripts. Multiple editors may be open at the same time,

each controlling its own SQL log and result sets. Result sets can be displayed in grid, text or chart formats.

The SQL Commander supports the following features:

Syntax coloring

Auto completion

Multiple SQL editors

Multiple result sets

SQL editors displayed as tabs or windows

Result sets displayed as tabs or windows

Support for stored procedures producing multiple result sets
SQL formatter with extensive customization options
Execution control (stop on error/warning)

View result sets as grid, text or chart

Editable result sets with the inline or form editors

Support for BLOB, CLOB and binary data

View BMP, TIFF, PNG, GIF and JPEG images

View XML data in tree or text format

Export result sets as CSV, HTML, Excel, XML, SQL or text
Batch execution enabling export of unlimited sized result sets
SQL history saved between sessions

Bookmark management (save favorite SQLs)

Sort, quick filter and basic calculations of result sets
Parameterized queries

Drop objects dragged from the Objects Tree

Auto Commit on/off support with confirmation checks if uncommitted updates

Full key binding support with predefined key maps for for Windows, Mac OS X, Linux-UNIX, SQL Query Analyzer and TOAD users

Database specific support:

Oracle, DB2 and SQL Server: Explain Plan queries presented either in tree or graph format

Oracle: support for TIMESTAMPLTZ, TIMESTAMPTZ and XML data types
Oracle: support for DBMS Output

68(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/sqlserver.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/db2.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html

Unithed®

Fi= Edil Wiew Dalabase EOL Bookmarks Tools Window Help

(] Lol NE e

: B, Objaci view| B SOL Comenander

3 5] Ganerst |
pahkoEcER & +an R < [Ere [Lo Auers Bikde
w
Dotaass Correcdon [Jsichy Datehaze Senems Mex Rows Mex Crars |2 Editors
| & oracle 100: HR ~ & HR ~| |a 1 2 (%) Sihow as Tabs
[| | g
1 aelact * (rom DEPARTHENTS: = 71 Show as Windows
» 2 select EWPLOYEE_ID, FIPST MAFE, LAST WAME, FMATL from TEPIOVEZS; A
Edltnr 3 relel.-t. T fvam JO0_MISTORY: E Exarution —
4 3 =
Stop on Emor
E gedack © From KRE: ; o
€ -- Felect * from LOCATEONST = [stop onwaming
I
CERS =1 o Coamic: on| |Umtitleas| =
I | I | | Rezull Bels
: P 1 seisct mom DEPARTMENTS N ETETR (%1 Show as Tabs
. o 3 o r
P 2 selett EMPLOYEE_ID, FRST_MAME.. | P 3 select*from JOB_HETORY | pe—
T =
0257 - GEHEHEr=-%»n [Taks in Single Row
_. E FIRST.] :
EMFLOYEE_ID FIRST_MAME LAST_MAME EMAL [Shaw 5L in Tool Tip
1 138 |Denald CCoansll DOCORMEL el
I 198 |Deuglas Cran DORANT | 2 Bhow as Windows
3 200 |Jennifer ‘Whalan JWEALER
4 IM Michaal Hartstain MWHARTSTE FlElitar i
» 3 02 |Pat Fay PF&Y [] Dont Bhow Empsy Result Sais
RE’LIIt vl ew 6 203 |2usan B SMANEIS
7 704/ Hermann Baar HRAER Resull et Maming Scheme
] 105 | Shelley Hagirs SHIDGING Hindex) Fsql) -
9 206 Williarn Gislz WGIETZ Tip
10 21 |Roir Bensson roflaiabnos e
1 100|5ven tin SKING e - ewhRAn hifi, LAmtci
i T TPPePY ko PT-YNTIr T k] menu commend o e [T edior
0.02000.140 see || 1004 || 1-12 toal bar butbon 1o cantral the wiskidy
=== of this pane

L0g| (] Result Set 3] | 8 DAWS Dusut]

'

Editor Controls

Figure: SQL Commander overview

The figure shows the editing area with its controls above and the output view in the lower part of the screen. The following sections
describe all features and controls in the SQL Commander in detail.

Physical Database Connections and Transactions

The SQL Commander supports database transaction control via Auto Commit or manually using commit or rollback. The Use Single
Physical Database Connection setting in connection properties specifies whether DbVisualizer will use one or multiple physical database
connection. This setting is disabled by default and DbVisualizer will then always use at least one physical connection and one for every
SQL editor that is created. Running a statement or sequence of statements in one SQL editor will not lock the rest of the user interface
while it is executing. If however using a single physical database connection all of the UI is locked until the execution in the SQL Editor has
completed. The reason for this behavior is that otherwise it could lead to data corruption if using the same physical database connection.

Another important feature is that the editor status bar show the number of uncommitted requests if auto commit is off. Pay extra attention
to this as it indicates that you should complete the current transaction with either commit or rollback.

Editor

The SQL Commander always have at least one editor. It is called the primary editor and cannot be removed. To create additional editors
use the File->Create SQL Editor menu choice or the appropriate key binding. To close an editor use the right-click menu on the editor
tab or the close operations in the File menu.

69(245)

|] Create SQL Editor

Cti+T |

- lacalhost E

& Close Current SOL Editor
& Close All SOL Editors

Close All But Current

Ctri+F4
CtrH-AlHW

Show; Hide Editor Controls

Figure: Editor tab menu

The SQL editor in DbVisualizer is based on the NetBeans editor module and supports all standard editing features. The right-click menu
have the following operations:

[Execute ~ gD

[>+ Execute Current B,

[% Execute Buffer

M Execute Explain Plan T,

19 Undo -

2 Redo “4ir-7

4p Cut ~of

Copy ~-C

|| Paste N

52 Prinv..

s Print Preview...

S Clear ANl S -E

% Find... ~oF

<% Find Next F3

. Find Previous ir-F3

& Replace... ~_H

4 Goto Line... ~-G

¥ Lower Case “+ir-L

& Upper Case “+ir-U

= Comment Line “+ 1R

== Comment Block “fr-B
|= Format SQL >

Show Auto Completion.. -,

_]Select All

== Select Current Statement “+1r-.

Figure: The SQL editor right click menu

The SQL editor is also used in the Bookmark Editor and when editing CLOBs in the form editor.

Database Connection, Catalog and Schema

You use the Database Connection and Database (or Catalog) lists above the editor to specify which connection and database to use when
executing the SQL in the editor. The list of connections shows all connections as they are ordered in the Database Objects tree, except
that all currently active connections are listed first.

70(245)

http://www.netbeans.org/

Databaze Connection [] sticky Database Schema

|3 oracle 10g: scott [=] | [~] [& scotT [~]
F

i3 MySOL 4.1.12 - localhost
% Oracle 10g; scott
53 Mirner 9.2.2A (mimer_store)

% hwsOL 4.1 12 - lacalhost (Copy
G0 MySOL 41,12 - new FLU
G0y MySOL 4. 1.9 localhost (copyd

=

50 MySOL 5.0, 18 valle
S0 MySOLENC
0y MyS0L: flu

fEy MEOL 4.0, 22 lacalhost MDD
50 Oracle 90 scott -

Figure: Database Connection, Database and Schema lists

If you check the Sticky box above the Database Connection, the current connection selection will not change automatically when passing
SQL statements from other parts of DbVisualizer, for instance, when passing an SQL bookmark from the Bookmark Editor. Consider an SQL
bookmark defined for database connection "ProdDB". If the Sticky checkbox is not checked (i.e., disabled), the database connection is
automatically changed to ProdDB when you pass the SQL from the Bookmark Editor. However, if the Sticky checkbox is checked (i.e.,
enabled), the current database connection setting is unchanged. The Sticky setting is per SQL editor instance.

The Database list (or Catalog) defines which catalog in the connection is the target for the execution. Since not all databases use
catalogs, this list may be disabled.

For most databases, the schema selected in the Schema list is used only to limit the tables the auto completion feature shows in the
completion pop-up; it does not define a default schema for tables referenced in the SQL, because most databases do not allow the default
schema to be changed during a session. For the databases that do allow the default schema to be changed, however, the selected schema
is also used as the default schema, i.e., the schema used for unqualified table names in the SQL. Currently, the databases that support
setting a default schema are DB2, JavaDB/Derby and Oracle. If you don't want the selected schema to be used as the default schema for
these database, you can disable this behavior in the Tool Properties, under the database node's SQL Editor settings.

Limiting Result Set size (Max Rows/Chars)

The Max Rows field is used to control how many rows that DbVisualizer will fetch for each result set. If there are more rows available
than presented in the result set, you will see a warning indicator in the grid status bar.

Setting Max Rows technically means that it is the JDBC driver limiting the rows. This may for some databases also affect non result set
operations such as DELETE. MS SQL Server is one example.

1 select EMPLOYEE_ID, FIRST_MAME... |
| LR | @ | I =
2oleav-nEEEBR »=-nv [o Bl= &
~u EMPLOYEE_ID FIRET_MNAME LAST_MAME EMAIL
L 198|Donald DbYisualizer Personal - Notification Alert x|
2 193 Douglas —
E] 200 Jennifer Wh ': The result set may contain more rows andiar
4 201 Michagl Harl L some columns may be truncated. Adjust the
5 202 Pat Fay Max Rows and Max Chars settings
5 203|Susan ED to fix the problem(s).
7 204 /Hermann Bag
a 205 Shelley Hig
] 206 'William Giet
10 23 Rolf Svensson roffe(atipost se
0.010/0.000 sec | 1 10/4 | 1-10
" Log| (7 Result Set[1] | “m DBMS Output

Figure: Max Rows exceeded warning

Click on the icon below the grid shows more information about the warning.

71(245)

Setting Max Chars limits the number of characters that are presented for text data. A column that contains values with more characters
than the specified Max Chars is shown with a different background color to highlight that it is truncated.

Load from and save to file

The SQL editor supports loading statements from a file and saving the content of the editor to a file. Use the standard file operations,
Load, Save and Save As in the File main menu to accomplish this. Loading a file always loads it into the currently selected editor.

PO EJER S PEES| (> AT

Database Connection |:| Sticky Database Schema Max Rows Max Chars

[5 soL server 2005 jTDs v o]

1 CREATE TABLE CITIEZ (CITY ID INTEGEE HOT HULL COHSTRAIHT cities_pk PRIMARY KEXY,CITY NAME VARCHAR (=
2 CREATE TABLE FLIGHTS (FLIGHT ID CHAR(c) HOT WULL, SEGHMENT_NUMEER INTEGER HOT HULL,ORIG_AIRFORT CHAR
3 (REATE THDEX DESTINDEX OH FLIGHTS (DEST_AIRPORT):

4 CREATE IHDEX ORIGINDEX OH FLIGHTS (ORIG_AIRFORT):

5 CREATE TABLE TUSERS (FIRSTHNAME WARCHAR(40) WOT WULL, LASTHAME VARCHAF. (40) HOT HULL ,USERNAME VARCHAR |
6 CREATE TABLE T3EFR_CEEDIT CARD (ID INT HOT HULL GENERATED' ALWAYS RS IDEHTITY COHSTRATHT user_cc_pk F
7 ALTER TABLE USER_CFEDIT_CAFD ADD COHSTRAIHT USERNAIE FE Foreign Key (username) REFEREHNCES T3ERS (us
§ CREATE TABLE FLIGHTHISTORY (ID INT HOT HULL GENERATED ALWAYS AS IDEHTITY COHSTRAINT user_ fh pk FRIM
9 ALTER TABLE FLIGHTHIXTORY ADD COHSTRATHT T3IERNAME FH FF Foreign Key (username) REFEREHCES T3ER3 (us

b | ¥
c:38 | ms| |Auto Commit: OFF (0)|Encoding: Cp1252[c:\temp\create.sql |

Figure: Loading a file into the SQL Commander

The name of the loaded file is listed in the status bar of the editor. The editor tracks any modifications and indicates changes with an
asterisk (*) after the filename.

When you exist DbVisualizer, you are asked what to do if there are any pending edits that need to be saved.

Load Recent

The File->Load Recent sub menu lists the recently loaded files. When you choose an entry, a file chooser dialog is displayed with that file
selected. The file chooser lets you to select the target SQL editor for the file:

Figure: File Chooser

Editor Preferences

The Editor preferences pane is activated via the SQL->Show/Hide Editor Controls menu option. It keeps settings that control the
appearance of the SQL editor, result sets and the log.

72(245)

General | Log” Query Builder

PRRRO®EoBR S +RE|>S <> 07

Database Connection |:| Sticky Database Schema Max Rows Max Chars

| SalL Server 2005: ... V| D

1 CREATE TABLE CITIES (CITY ID INTEGER HOT MULL COMSTRATHT citi
2 CREATE TABLE FLIGHTS (FLIGHT ID CHAR(5) HOT HULL, SEGMENT NUM
3 CREATE IMDEX DESTINDEX OM FLIGHTS (DEST AIRPORT) :

4 CREATE THDEX ORIGINDEX OM FLIGHTS (ORIG ATRPORT)

5 CREATE TABLE USERS (FIRSTNAME VARCHAR(40) HOT HULL,LASTHAME ¥,
& CREATE TABLE USEFR_CREDIT CARD (ID INT HOT HULL GENERATED ALWA
7 ALTER TABLE TSER_CREDIT CARD ADD COHSTRAINT USERNAME FE Forei
2 CREATE TABLE FLIGHTHISTORY (ID INT HOT HULL GENERATED ALWAYS Result Sets

o ALTER TABLE FLIGHTHISTORY ADD COMSTRAINT USERNAME FH FE Forei (& Show as Tabs

Tabs atTop A

[JTabsin Single Row

Editors
(%) Show as Tabs

73 Show as Windows

Execution
[] stap an Errar

[] stop on Warning

[12ping A1znp B | [1oup370s [|

£ | b4
5:32 |Ins|Auto Commit: OFF (0)|Encoding: cpl252[c:\temp\create.s
v d

[] show SGL in Tool Tip
) Show as Windows
[] Pin Mew Result Sets

[J Don't Show Empty Result Sets

Result Set Maming Scheme
‘${index}: ${sql} v
Tip
Use SOL->Show/MHide Editor Controls
menu command or the editor

tool bar button to control the visibility
of this pane.

Log | [7] Result Set

Figure: Editor preferences pane

All settings made in the editor preferences pane are saved between invocations.

Tip: The Result Set Naming Scheme may include HTML code, typically used to change the style of the elements.
Example: <html>${index}: ${sql} (${rows})</html>

Multiple editors

There is always one default editor named Main Editor. This editor is used when passing SQL bookmarks from the Bookmarks Editor or
when issuing requests from other parts of DbVisualizer that activate the SQL Commander. You can open additional SQL editors with the
File->Create SQL Editor main menu operation. Editors can be organized as tabs or internal windows using the View buttons. To remove
all but the Main Editor select the File->Close all SQL Editors menu operation.

Permissions

All SQL commands executed in the SQL Commanded are checked with the DbVisualizer Permission verifier before being executed by the
database server. The permission verifier use various rules to determine if a specific SQL is allowed, denied or need confirmation before

being executed. Specify in Tool Properties->Permissions the rules for the verifier.

Charsets and Fonts

You can change the SQL editor font, which is useful and necessary in order to display characters for languages like Chinese, Japanese, etc.

73(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498

", sy, e

1 |n5ert into RESTAURANTS (ID, NAME, SPECIALITY, STYLE LOCATION) wvalues
FATOREGOE, T -FRE L, TR, CER

4 |n5ert into RESTAURANTS {ID, NaME, SPECIALITY, STYLE, LOCATION) wvalues f
B2 CHITETANTOROOE, T8

(R +]

5:38 IMS

Figure: SQL Editor with another font

Open Tool Properties and select the Font category to set the font for the SQL Editor. (It is a good idea to set the same font for both the

SQL editor and the grid components).

Displaying data correctly is not just a matter of setting the font, because the character encoding on the client side (in which DbVisualizer

runs) and in the database server may not be compatible. There is experimental support to set encodings to accomplish proper
conversation between different encodings. Please see the Getting Started and General Overview document for more information.

Key Bindings

The editor shortcuts, or key bindings, can be redefined in the Tool Properties Key Bindings category. Select the Editor Commands folder

to browse all editor actions.

Key Bindings

current key map.
Keymaps

Uze these zettings to define the key bindings throughout the application. ou must make
& copy of an existing key map to atter key bindings. The active indicator highlights the

Default (read-only)
Linux-UNIX {active, read-onhy)
Mac 05 ¥ (read-onky)

S0L Query Analyzer (read-onh
TOAD (read-nnld

i

Set Active
take Copy

Remove |

Keyimap Settings

Keymap: |Linux—UNI}<

| Based on; Default {read-onhy)

Action | Key Bindings
) All Bindings
[Lj Editor Commands
'J.j Main Menu
1 File
) Edait
0 Undo Cirl+Skift Minus, Ctrl Z
i Redo [ctri+Skit Z
= Cut Cirl ¥ Klipp ut
Copy Ctrl ©; Clrl Insert; Kaopiera
| Paste Ctrl v, Skift Insert; Ctrl v, Klistra in -
ey Bindings:
Ctri+Skift Z | Add Key Binding... |
| Editkey Binding... |
| Remaove |

Figure: The Key Bindings editor in Tool Properties

Read more about configuring key bindings in the Tool Properties document.

74(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId632432
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html

Client side Comments

Comments in the SQL editor are identified by the comment identifiers in Tool Properties. These are client side comments and are removed
by DbVisualizer before execution.

Sometimes the comments need to be passed to the database. Oracle, for example, uses the block comment identifier to express
optimizer hints for the database. These must be passed to the database for processing. To enable this, just change the delimiters for the
block comment to something that doesn't interfere with the /*+ ... */ notation that Oracle uses.

An example is that you add a space after /*.

Comment Delimitars

Specify the comment identifiers that might appear in a SGL statement. Comments are extracted
fram the SGL statement before execution.

Single Line Identifier 1: [~ |
Single Line Identifier 2:

Block Comment Begin ldentifier: |.l'* End: |*I |

select Id, Name, Address from Emp; -- This is a single line comment

select Size, Age from Type; /f This is a single line comment

J.f*

iThi= i= a block comment)

create table Car (Type warcharz (20, Color warcharZ (10)]);
create index CarInd (Type asc);

*

Figure: The Comments category in Tool Properties

Auto Completion

Auto completion is a convenient feature used to assist you when editing SQL statements.
The following figure shows the completion pop up with table names.

. select * fruml

Choose Tahle

[T] COUNTRIES HR
[~ DEPARTMENTS HR
EMPLOYEES HR
7] JOB_HISTORY HR
= JoBs HR
LOCATIONS HR
7] REGIONS HR
] EMP_DETAILS_VIEW HR

l:15 INS Untitled*

Figure: Auto completion pop up showing table names

Here is another completion pop-up showing column names.

75(245)

' 1 select * from HE.EMPLOYEES eup, HE.DEPARTMENTS dept
Z where emp.DEPARTMENT ID = |

Chaoose Caolurmn

1 -All Columns- HR EMFLOYEES emp

[T “ EMPLOYEE_ID [NUMBER] HRE.EMFLOYEES emp

M FIRST_NAME [VARCHARZ] HR.EMFPLOYEES emp

LAST_NAME [ARCHARZ] HR EMFLOYEES emp

T EMAIL [VARCHARZ HF EMFLOYEES emp

M PHONE_NUMBER [VARCHARZ HR.EMPLOYEES emp

M HIRE_DATE [DATE] HR.EMFPLOYEES emp

JOB_ID [VARCHARZ] HF EMFLOYEES emp

M SALARY [NUMBER] HRE.EMFLOYEES emp

M COMMISSION_PCT [NUMEER] HR.EMPLOYEES emp

i MANAGER_ID [MUMBER] HR.EMFPLOYEES emp

DEPARTMENT_ID [MUMBER] HF EMFLOYEES emp

[-AN Columns- HRE.DEFPARTMENTS dept

T “ DEPARTMENT_ID [NUMEER] HRE.DEPARTMENTS dept

DEPARTMENT_MNAME [VARCHARZ] HR.DEPARTMENTS dept

T MANAGER_ID [NUMBER] HR.DEFPARTMENTS dept

M LOCATION_ID [NUMBER] HRE.DEPARTMENTS dept

2:27 INS Untitled*

Figure: Auto completion pop up showing column names

DbVisualizer currently provides auto completion for table and columns names for the following DML commands:

* SELECT
* INSERT
« UPDATE
- DELETE

To display the completion pop-up, use the key binding Ctrl-SPACE. You select an entry in the pop-up menu with a mouse double-click, the
ENTER key, or the TAB key. To cancel the pop-up, press the ESC key.

Tip: The SPACE key can be configured to select entries in the pop up. Do this in the Tool Properties General->Key Bindings category.
Select the Editor Commands key bindings and add the SPACE key for the Insert Newline editor action.

Note 1: If there are several SQL statements in the editor then make sure to separate them using the statement delimiter character
(default to ";").

Note 2: In order for the column name completion pop up to appear then you must first make sure there are table names in the
statement.

Note 3: All table names that has been listed in the completion pop up are cached by DbVisualizer to make sure subsequent displays of the
pop up is performed quickly without asking the database. The cache is cleared only when doing a Refresh in the database objects tree or
reconnecting the database connection.

Note 4: The Schema list above the editor is used only to assist the auto completion feature to limit what tables to list in the pop up.

General display settings for the auto completion feature are managed in Tool Properties.

Here are some examples of how the auto completion works depending on when it is activated. The <AC> symbol indicates the position
where the auto completion pop-up is requested. The currently selected catalog is empty and the selected schema is HR. (These examples
are when accessing an Oracle database).

SQL Result
select * from <AC> Shows all tables in the HR schema (since HR is the selected schema)
select * from SYS.<AC> The pop up displays all tables in the SYS schema independent of the schema list
selection

76(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId327467

select * from SYS.a<AC> Lists all tables in the SYS schema beginning with the A character

select <AC> from SYS.all_objects Lists all column in the SYS.all_objects table

select <AC> from SYS.all_objects all, EMPLOYEES Lists all columns in the SYS.all_objects and EMPLOYEES table (in the HR

schema)
select emp.<AC> from EMPLOYEES emp Lists all columns in the EMPLOYEES table, here identified by the alias emp
select emp.N<AC> from EMPLOYEES emp Lists all columns in the EMPLOYEES table identified by alias emp starting with

the N character

insert into EMPLOYEES (<AC> Lists all columns in the EMPLOYEES table. Selecting the -All Columns- in the
pop-up results in all columns being added, comma separated.

It is possible to fine tune how auto completion shall work in the connection properties. The following settings can be used to adjust if table
and column names should be qualified.

l i Connection | &3 Database Info | & Data Types | < Search |

% Connection Properties

Database Profile Qualify Objects with SchemajDatabase

Driver Properties Uze theze settings to control whether object names should be be qualified

j Péacle with the databasze or schema name.

— .F Authentication

— i@ Delimited dentifiers scripting: [
— &7 Qualifiers References /Mavigator Graphs: [

o Ba Physical Connection
L &, Transaction

— [£] sOL Statements

— #/ Connection Hoagks

Auto Campletion/Query Builder: [#

— (=] Ohjects Tree Lakels Qualify Columns

— [sqL Editor Use these settings to control whether column names should be qualified
_'_ﬁ Query Builder with the table name.

= tj Data Types Mote: Uzing table name aliases will override this setting.

— [Explain Plan

L Objects Tree Auto Completion/Queny Builder: [#

po
Connection Properties A

Figure: Properties controlling auto completion qualifiers

With Qualify disabled (for both table names and columns):

select Name, Address from EMPLOYEE where Id > 240

With Qualify enabled:

select EMPLOYEE.Name, EMPLOYEE.Address from HR.EMPLOYEE where EMPLOYEE.Id > 240

(The setting of Qualify Columns is ignored when an alias is used for a table name in the SQL).

The property settings in the figure below define whether delimited identifiers should be part of the completed SQL.

77(245)

l W Connection [&3 Database Info] &} Data Tvpes | 9 Search

% Connection Properties

Darabase Profile Delimited Identifiers
Driver Properties

Delimited identifiers are identifiers which do not need to followthe rules of regular

3 IIC)lraEIE o identifiers. Such identifiers can include zequence of printable characters

— |F Authemication excluding thosze which are not allowed to use in delimited identifiers in the actual

— & Delimited ldentifiers database. Usually delimited identifiers are used when you need to use SQL

— E_Q’ Qualifiers reserved word, spaces ahd mixed case sequences as an identifier.

— & Transaction Beain Identifier: ' | End Identifier: [* |

— [£] S0L Staterments

B ?j Connection Hoaks Ex: update SCOTT."Phone #" set "Name' = "Mia" where "ld" = 72

— = Objects Tree

— [soL Editor

— 3 Data Types Use of Delimited Identifiers

— [Explain Plan : N o
Select here what features in DbVizualizer that should generate delimited identifiers

- @ wystermn Tahles fortable and calumn names.

Scripting: []

Auto Completion/Query Builder: [

Defaults

Apphy

Connection Propertias

Figure: Properties controlling delimited identifiers for auto completion

With Delimited Identifiers disabled:

select Name, Address from HR.EMPLOYEE where Id > 240

With Delimited Identifiers enabled:

select "Name", "Address" from HR."EMPLOYEE" where "Id" > 240

SQL Formatter

The SQL->Format SQL feature is used to format the complete editor buffer or current SQL (at cursor position) according to the settings
defined in the Tool Properties SQL Editor->SQL Formatting category. There are many things you can configure. After making some
changes, press Apply and format again to see the result. The formatter can work with the source SQL enclosed in quotes (e.g., when

copied from a program), and it can format the final SQL for inclusion in a program written in languages like Java, C#, PHP, VB, etc.

Example of the SQL before formatting:

select

CompanyName, ContactName, Address,

City, Country, PostalCode from
Northwind.dbo.Customers OuterC

where CustomerID in (select top 2 InnerC.CustomerId
from Northwind.dbo.[Order Details] OD

join Northwind.dbo.Orders O on 0OD.OrderId = 0.0rderID
join Northwind.dbo.Customers InnerC

on 0.CustomerID = InnerC.CustomerId

Where Region = OuterC.Region

group by Region, InnerC.CustomerId

order by sum(UnitPrice * Quantity * (1-Discount)) desc)
order by Region

And after formatting has been applied:

78(245)

SELECT

CompanyName,
ContactName,

Address,

City,

Country,

PostalCode

FROM
Northwind.dbo.Customers OuterC
WHERE

CustomerID in

(

SELECT

top 2 InnerC.CustomerId
FROM

Northwind.dbo. [

ORDER

Details] OD

JOIN
Northwind.dbo.Orders 0
ON

0D.OrderId = 0.0rderID
JOIN
Northwind.dbo.Customers
InnerC

ON

0.CustomerID =
InnerC.Customerld

WHERE

Region = OuterC.Region
GROUP BY

Region,
InnerC.CustomerlId

ORDER BY

sum(UnitPrice * Quantity *
(1-Discount)) desc

)

ORDER BY

Region

SQL History

The SQL Editor keeps track of all executed SQL statements. You can use the Previous and Next buttons in the editor toolbar to walk
forward and backward through the statements. They insert the previously executed SQL, with accompanying settings for Database
Connection, Catalog and Schema (if Sticky is disabled). The SQL main menu also contains operations for walking through the
statement history.

The history entries are also managed as SQL Bookmarks, collected in the History root folder in the Bookmark Editor.

SQL Bookmarks

SQL Bookmarks are used to manage favorite SQL statements between invocations of DbVisualizer. These are handled by the Bookmark
Editor but the execution is performed in the SQL Commander. Please refer to the SQL Bookmarks document for how to use the
Bookmarks main menu operations in the SQL Commander.

Execution

The execution of multiple SQL statements can be controlled using the Stop Execution On controls. These define whether the execution of
the following SQL statements will be stopped based on two states:

79(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

« Errors
Stop the execution if the SQL resulted in an error
« Warnings
Stop the execution if the SQL executed successfully but no rows were affected

The Stop Execution On controls are only effective when executing multiple SQL statements

SQL->Execute

Use the SQL->Execute main menu operation to execute the SQL in the current (selected) SQL editor. The SQL Commander executes the
statements one by one and indicates the progress in the log area. The currently selected Database Connection is used for all statements.
The SQL Commander does not support executing SQLs for multiple database connections in one batch.

The result of the execution is displayed in the output view based on what result(s) are returned. If there are several results and an error
occurred in one of them, the Log view is automatically displayed to indicate the error.

If you select a statement in the SQL editor and choose SQL->Execute, only the selected statement is executed. This is a useful feature
when you have several SQL statements are in the SQL editor and you just want to execute one or a few of the statements.

1 select * from DBA sales_order;

2 Siselect ¥ from OB sales_order_itemns:
3

4 select * from DBA customer,;

5 fiwelect ¥ from DBA fin_code;

B [/ sefect * fram DBA fir_ data;

7 ovefect ¥ fror DBA product; */F

& select * from DBA depantment;

4 select * from DBA emplovee;

4.1 IMN5 File: fhome,/rogge,/work/pureit/apps/dbvis/testscript®

Figure: Selection execute

In the above figure, only the highlighted statement is being executed.

SQL->Execute Current

The Execute Current operation is useful when you have a script with several SQL statements. It lets you execute the statement at the
cursor position without first having to select the SQL statement. The default key binding for execute current is Ctrl-PERIOD (Ctrl-.).

Execute Current determines the actual statement by parsing the editor buffer using the standard statement delimiters.

Tip: If you are unsure what the boundaries are for the current statement then use Edit->Select Current Statement. This will highlight
the current statement without executing it.

SQL->Execute Buffer

Execute Buffer sends the complete editor buffer for execution as one statement. No comments are removed or parsing of individual
statements based on any delimiters is made. This operation is useful when executing anonymous SQL blocks or SQLs used to create
procedures, functions, etc.

SQL->Execute Explain Plan (Oracle, SQL Server and DB2)

Explain Plan is supported for Oracle, DB2 and SQL Server. Explain Plan executes your query and records the plan that the database
devises to execute it. By examining this plan, you can find out if the database is picking the right indexes and joining your tables in the
most efficient manner. The explain plan feature works much the same as executing SQLs to present result sets; you may highlight
statements, run a script or load from file. The explain plan results can easily be compared by using the pin feature in combination

with window style presentation.

80(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/sqlCommander.html#mozTocId942744

DbVisualizer presents the plan either in a tree style format or in a graph. What information is shown depends on what database it is. In
the tree view put the mouse pointer on the column header for a tooltip description what that column represents. The following screenshot
shows the SQL in the editor at top and the resulting explain plan as result.

FROM

1
2
5
4
5
=S
i
g
) WHERE
10

il

12
i3
14
15
16

o

SELECT d."DEFARTMEMT_NAME",

T."CITY",

c. "COUNTEY_NAME",
r."REGION_MNAME"

HR. "DEPARTMENTS" d,
b, "LOCATIONS" 1,
hr. "COUNTRIES" c,
hr . "RECIONS" r

o, "LOCATION_ID"

and 1."COUNTRY_ID"
and c."RECION_ID"
and d."MANAGER_ID" in

iSELECT "EMPLOYEE_ID"
FROM HE."EMPLOYEES"
WHERE "FIRST_MAME" 1ike 'A%

T."LOCATION_ID"
c. "COUNTRY_ID"

= r."RECION_ID"

16:6 INS

Untitled*

I # EXPLAIN 1: SELECT d"DEPARTMEMNT _MAME', I

@ & 0 o & @ Tree Yiew (O Graph Yiew
Dperation [Mode Cost 3] Cost| CPU Cost] 10 Cost]| Optimizer | Cardinality]

woh SELECT STATEMEMT 0.0x & Zeida2 & ALL_FOWS 2
(E)— v MESTED LOOPY 0.0% B Zeida2 & 2
&- &% NESTED LOOPS 16.7 % 5 338468 5 3
208 MESTED LOOPS 0.0 3 244292 2 11

34 MESTED LOOPS 0.0% 2 150072 2 23

o HE.COUMTEY _C_ID_PE INDEX (FULL SCAR) 16.7 % 1 12121 1 AMALYZED 25

{E} HE.LOCATIONS TABLE ACCESS (BY INDEX ROWIDY 16,7 % 1 BET1 1 ARALYZED 1

[v HELOC _COUNTEY_IX INDEX (FAMGE SCTAM) 0.0 % 0 1250 O ARALYZED 2

{E} HFE.DEPARTMERMTS TABLE ACCESS (BY INDEX ROWIDY 16,7 % 1 9e89 1 AMALYZED 1

L v HE.DEPT _LOCATIORM_IX INDEX (RARMCE SCAR) 0.0 5 0 1650 0 ARALYZED 4

{E} HE.EMPLOYEES TABLE ACCESS (BY INDEX ROWID) 16.7 % 1 8561 1 ARNALYZED 1

L o HE.EMF_EMF_ID_PE INDEX (UMIQUE SCARMN) 0.0% o] 1050 0 AMALYZED 1

o {5} HE.FEEGIOMNS TABLE ACCESS (BY IMDEX EOWIDD 16.7 % 1 2341 1 AMALYZED 1

L v HE.REG_ID_PE INDEX (UNIQUE SCARN) 0.0 5 0 1050 0 ARALYZED 1
e] 3

Figure: Explain Plan presented as a tree

The Graph View shows the plan as a graph. The graph can be exported to an image file or printed. Use the File menu choices to export

and print.

81(245)

l P ExPLAIN 1 SELECT o "DEPARTMERMT _MAME", I,
() Tree Wiew @& Graph Yiew

SOLCCT STATOMENT
WrCrim IAR
e .
e I tan
yace .
hCATID Lok
[T
e .
voe
poem
I
[
LTI Lot BRECC_IC. FK_IhD: (uhlUE 22 8h3]
IO e oD
e \ e '
o e i
yaces .

Ee 4w
e '

RCSTID LOCES WRINF, NP I M IhDCE (uhl QU SCahy)
(== o £t [
= 2 e .
o o et)
L] [

oy 2

BREDOPT_LOCATICh I I1hDC: (RAhCE S4h)
]
.
[t
[

o Ol s
)

o e
¥oEe

BRLOC_COUhTRT_|% IhDC: (RahC $Cahy
wa
[

[,
o

o e
yoees

| Log | [Resurtset[1] | 4m DBMS Dutput

134
[

Figure: Explain Plan presented as a graph

Each of the supported databases use different techniques to manage their explain plan support. To control this, either click the
Preferences toolbar button or go to Connection Properties->[database]->Explain Plan.

I W Connection [g Database Info] 5§ Data Types] < Search]

[% Connection Properties

Database Profile Explain Plan Table
Driver Properties Usze these properties to control the explain table for Oracle.
[# Oracle
@ Use Default Plan Tahle

— L Autherntication

@ Delimited Identifiers () Use User Defined Flan Tatle

— 57 qualifiers
- ®a Physical Connection Schema Mame: | |
|_ .
Q‘ Transaction Plan Table Mame: |p|an_tab|e |
— [Z] 50L Staternerts
Create Plan Table if not Exists: [#

— #/ Connection Hoaoks
— =] Okjects Tree Lakels

— [SqL Editar
— ™= Query Builder Explain Coloring
— &} Data Types))
| [t.".' Seaaleiin P Usze these property settings to control wetherto color code the highest
F:_' cost nodes.
— [E] Objects Tree
Color Critical Modes: [

Critical Threshold: | 20[|% of total cost
irarning Threshald: % of total cost .7

by

Connection Properties

Figure: Explain Plan configuration

The configuration options are different for each of the supported databases.
82(245)

Auto Commit, Commit and Rollback

The commit and rollback SQL commands and the accompanying operations in the Database main menu are enabled if the Auto Commit
setting is off for the actual SQL editor. The default setting for Auto Commit is on, which means that the driver/database automatically
commits each SQL that is executed. If Auto Commit is disabled, it is very important to manually issue the commit or rollback operations
when appropriate.

The following commands can be executed in the SQL Commander for database independent commit and rollback:

@commit
@rollback

The Auto Commit setting is enabled by default and can be adjusted in the Connection Properties. You may also adjust the auto commit
state for the SQL editor you are using in the SQL Commander with the following command:

@set autocommit true/false

SQL Scripts

An SQL script is composed of several SQL statements and can be executed in a batch. Each SQL statement is separated by a single
character, a sequence of characters, or the word "go" on a single line. The default settings for the separator characters are defined in Tool
Properties and can be modified to match your needs.

SGL Statement Delimiter
The character(s) that delimits one SGEL statement from another during execution.

The delimiter iz ignored if found within apostrophes (7, doukle gquates" ", in a single line
comtment ar in & block comment. | iz also ignored if found ina Yariable.

SOL Staterent Delimiter 1: [, |
SOL Staternent Delimiter 22 [, |

Allow "go" as Delimiter

Check to enable go a5 the only word on & line a3 an additional SGL statement delimiter

Allows "go" as Delimiter: (]

Anonyimous SQL Block Identifiers

The character(s) uzed in the SOL Commander to identify the begin and end of an anonymous

Sl block.
Begin [dentifier:
End Identifier

Figure: Statement Delimiters

The following SQL script illustrates some uses of the SQL statement delimiters based on the settings in the previous figure:

select * from MyTable; /* Stmt 1 */

insert into table MyTable /* Stmt 2 */
(Id, Name) /* This is a comment */ values (1, 'Arnold')

go

update MyTable set Name = 'George' where Id = 1; /* Stmt 3 */

select * from /* Stmt 4 */

MyTable; // This is a comment

83(245)

Anonymous SQL blocks

An anonymous SQL block is a block of code which contains not only standard SQL but also proprietary code for a specific database. The
anonymous SQL block support in the SQL Commander uses another technique in the JDBC driver to execute these blocks. The way you tell
the SQL Commander know that a SQL block is to be executed is to insert a begin identifier just before the block and an end identifier after
the block. The figure in the previous section shows these settings and the default values for Begin Identifier it is --/ and for End
Identifieritis /.

Here follows an example of an anonymous SQL block for Oracle:

--/ script to disable foreign keys

declare cursor tabs is select table_name, constraint_name

from user_constraints where constraint_type = 'R' and owner = user;
begin
for j in tabs loop
execute immediate ('alter table 'llj.table_namell|l' disable constraint'l|j.constraint_name);
end loop;
end;

/

If you want to execute the complete editor buffer as an anonymous SQL block, use the SQL->Execute Buffer operation. In this case, you
do not need the begin and end identifiers.

Stored Procedures

Executing stored procedures is not officially supported by DbVisualizer even though it works for some databases. The best way to figure it
out is to test.

Our internal tests show that the Sybase ASE and SQL Server procedure calls work okay with literal IN parameters in the SQL Commander.
DbVisualizer also presents multiple result sets from a single procedure call as of version 4.0 for these databases.

Client Side Commands

The SQL Commander supports a number of DbVisualizer specific editor commands. An editor command begins with the at sign, "@". The
following sections describe the available commands.

@run - run SQL script from file

@cd <directory> - change directory

@<file> - run SQL script from file

Use the following commands to locate and execute SQL scripts directly from a file without first loading the file into the SQL editor. This is
useful if you are using an external editor or a development environment to edit the SQL but use DbVisualizer to execute it.

e @run <file>
Request to execute the file specified as parameter
* @cd <directory>

Change the working directory for the following @run or @<file> commands
o @<file>
Same as @run <file>

Example of a script utilizing the file referencing commands:

84(245)

select * from MyTable; -- Selects data from MyTable
@run createDB.sql; -- Execute the content in the
-- createDB.sql file without loading into the SQL editor.
-- The location of this file is the same as the working
-- directory for DbVisualizer.
@cd /home/mupp; -- Request to change directory to /home/mupp
@loadBackup.sql; -- Execute the content in the loadBackup.sql
-- file. This file will now be read from the

-- /home/mupp directory.

@export - export result sets to file

The @export commands are used to declare that any result sets from the SQL statements that follows should be written to a file instead
of being presented in the DbVisualizer tool. This is really useful, since it enables dumping very large tables to a file for later processing or,
for example, to perform backups. The following commands are used to control the export:

+ @export on

Defines that the SQL statements that follows will be exported rather then being presented in DbVisualizer

e @export set parml="valuel" parm2="value2"

The set command is used to customize the export process. Check the table below for the complete set of parameters.

« @export off

Defines that SQL statements that follows will be handled the normal way, i.e., the result sets are presented in the DbVisualizer

tool

These parameters are supported:

Parameter Default
AppendFile false
BinaryFormat Don't Export
CsvColumnDelimiter \t (TAB)

CsvIncludeColumnHeader true

CsvIincludeSQLCommand false

CsvRowCommentlIdentifier

CsvRowDelimiter \n
DateFormat yyyy-MM-dd
DecimalNumberFormat Unformatted
Destination File
Encoding UTF-8
Filename REQUIRED
Format Csv

HtmlIncludeSQLCommand false

HtmIIntroText

Valid Values

true, false, clear

Don't Export, Value, Hex, Base64

true, false

true, false

\n (UNIX/Linux/Mac OS X), \r\n (Windows)

See valid formats in Tool Properties document

See valid formats in Tool Properties document

File

CSV, HTML, XML, SQL, XLS

true, false

85(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566

HtmITitle DbVisualizer export output

NumberFormat Unformatted See valid formats in Tool Properties document
QuoteTextData None (ANSI if Format="SQL") None, Single, Double, ANSI

Settings

ShowNullAs (null)

SqlIncludeCreateDDL false true, false

SqglincludeSQLCommand false true, false

SqglRowCommentIdentifier

SqlSeparator ;

Can be set if DbVisualizer cannot determine the value for the ${table}
TableName .

variable
TimeFormat HH:mm:ss See valid formats in Tool Properties document
TimeStampFormat yyyy-MM-dd HH:mm:ss.SSSSSS See valid formats in Tool Properties document
XmlIncludeSQLCommand false true, false

XmlIntroText

Example 1: @export with minimum setup

The following example shows the minimum commands to export a result set.
The result set produced by the select * from Orders will be exported to the C:\Backups\Orders.csv file, using the default settings.

@export on;
@export set filename="c:\Backups\Orders.csv";
select * from Orders;

Example 2: @export with automatic table name to file name mapping

This example shows how to make the filename the same as the table name in the select statement. The example also shows several select
statements. Each will be exported in the SQL format. Since the filename is defined to be automatically set, this means that there will be
one file per result set and each file is named by the name of its table.

There must be only one table name in a select statement in order to automatically set the filename, i.e if the select joins from several
tables or pseudo tables are used, you must explicitly name the file.

@export on;

@export set filename="c:\Backups\${table}" format="sql";
select * from Orders;

select * from Products;

select * from Transactions;

86(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566

Example 3: @export all result sets into a single file

This example shows how all result sets can be exported to a single file. The AppendFile parameter supports the following values.

« true

The following result sets will all be exported to a single file
- false

Turn off the append processing
¢ clear

Same as the true value but this will in addition clear the file before the first result set is exported

@export on;

@export set filename="c:\Backups\alltables.sql" appendfile="clear" format="sql";
select * from Orders;

select * from Products;

select * from Transactions;

Example 4: @export using predefined settings

The Export Grid Wizard lets you save export settings to a file for later use. Such an export settings file can be referenced in the @export
set command.

@export on;

@export set settings="c:\tmp\htmlsettings.xml" filename="c:\Backups\${table}";
select * from Orders;

select * from Products;

select * from Transactions;

The example shows that all settings will be read from the c:\tmp\htmisettings.xml file.

@exit [nocheck] - Exit DbVisualizer

The @exit command is the same as selecting the File->Exit operation. This command can be useful if you start DbVisualizer using the
-invisible, -sql and -execute program arguments. Having @exit last in the loaded SQL file forces DbVisualizer to exit once the script has
been executed. The nocheck argument defines that no confirmation dialogs should be displayed during exit.

@echo - Echo text

The @echo command simply echos the supplied text in the output.

@window iconify - Iconify the main window

This command results in the main window being lowered (iconified).

@window restore - Raise the main window

This command results in the main window being raised (if iconified).

@desc table - Describe the columns in table

Use the @desc command to show column information for a table. For tables that are not in the current database or schema, you need to
qualify the table name properly.

87(245)

@desctable;
@desc database.table;
@desc schema.table;

@spool log - Save log to file
The @spool log command is used to save the log to file. (The log is not cleared after being saved).

@spool log mylog.txt

@stop on error - Stop execution if any error occurs

@stop on warning - Stop execution if any warning occurs

The @stop on error and warning can be used to control that the script processing should stop if any error or warning occurs. The
corresponding @continue on xxx command is used to ignore any error or warning conditions.

@stop on error;

@stop on warning;
@continue on error;
@continue on warning;

@set autocommit - Sets the auto commit state

Pass either true or false as a parameter and it will set the auto commit state accordingly.

@commit - Commits the current transaction

Commits the current transaction via this database independent command.

@rollback - Rollback the current transaction

Rollback the current transaction via this database independent command.

@set serveroutput - Enable/disable the DBMS output management for Oracle

Pass either true or false as a parameter to start or stop the DBMS output management for Oracle.

Variables

Variables are used to build parameterized SQL statements whereas the values are prompted by DbVisualizer when the SQL is executed.
This is handy if you are executing the same SQL repetitive times just wanting to pass new data in the same SQL statement.

Variable Syntax

The variable format supports setting a default value, data type and a few options as in the following example:

88(245)

${FullNamel |Anderssonl |Stringl Iwhere pk }$

Here is the complete variable syntax:

${name |1 value Il type Il options} $

* name
Required. This is the name that appear in the substitution dialog. If multiple variables have the same name, the substitution
dialog shows only one and the entered value will be applied to all variables of that name.

+ default
The default value that appears in the substitution dialog

+ type
The type of variable - String, Integer, Float, etc. This is used to determine if the value should be enclosed by quotes or not. If no
type is specified, it is treated as an Integer (no quotes).

« options
The options part is used to express certain conditions:

. pk
Indicates that the variable is part of the primary key in the final SQL. Represented with a key icon

* where
Defines that the variable is part of the WHERE clause. The green star icon further illustrate this condition

* noshow
This option define that the variable should not appear in the substitution dialog. A proper default value must be set if
using noshow

There must be a whitespace character following a keyword in the options section).

Pre-defined Variables

A few pre-defined DbVisualizer variables can be used anywhere in the SQL. These are replaced with actual values just before the SQL is
sent to the DB server. The final value for these variables are self explanatory and their output formats are the same as defined in Tool
Properties->Data Formats.

${dbvis-date}$
${dbvis-time}$
${dbvis-timestamp}$

The following variables can be used only when monitoring a SQL statement that produce a result set and the Allowed Row Count for the
monitor is > 0. The output format is seconds and milliseconds. Ex: 2.018

${dbvis-exec-time}$
${dbvis-fetch-time}$

Note that none of the above variables will appear in the Variable Substitution window explained belo

Variable Substitution in SQL statements

For variable processing to work in the SQL Commander, make sure the SQL->Process Variables in SQL is enabled.

A simple variable may look like this:

${FullName}$

The existence of a variable is identified by the start and end sequences, ${ ... }$. (These can be re-defined in Tool Properties). During
execution, the SQL Commander searches for variables and displays a window with the name of each variable and an input (value) field.
Enter the value for each variable and then press Execute as this will then replace the variable with the value and finally let the database
execute the statement.

Consider the following SQL statement with variables. It is the simplest use of variables as it only contains the variable names. In this case

it is also necessary to enclose text values within quotes since the substitution window cannot determine from these variables the actual
data type.

89(245)

INSERT

INTO
"SCOTT". "EMP"

VALUES

(
${EMPNO}$,
"${ENAME}$",
'${JOB}S$",
${MGR}$,
"${HIREDATE}$",
${SAL}S,
${CoOMM}$,
${DEPTNO}$

Executing the above SQL will result in the following window being displayed:

E Enter Data for Variables

R BE 0 v -5vK = |
Key Wariahle Value

EMPNO

ENAME (nully

JOB (nully
MGR (nully
HIREDATE |(null}
SAL (nully

COMM (nully
DEPTNO | (null)

EMPNOD
Allow MULL
Show SQL [Conkinus J [Cancel
S0L Preview
B2 @ -
1 THSERT
Z THTO
3 TRCOTT™ . "EMPT WALUES
4 {
5 HULL,
] 'ull',
7 'ull',
& HULL,
9 'ull',
10 HULL,
11 HULL,
12 HULL
13]

Figure: The substitute variables window

The substitution window have the same look and functionality as the Form Data Editor i.e. you can sort, filter, insert pre-defined
data, copy, paste. and edit cells in the multi line editor, plus a lot of other things. In addition the substitution window add two new
commands (leftmost in the toolbar and in form right click menu) specifically for the substitution window:

+ Set Default Values

This will set the value to the default value for the variable. If a default value was not specified in the variable, (null) will appear
+ Set Previously Used Values

Set the value for each variable to the values used in the previous run (if there is no matching set of variables then this button is

90(245)

disabled).
The substition window will remember and automatically display the previously used values if:

« The variable set is the same as in a previous execution (by name). Note that multiple variable sets are supported and not only
the last used.
« If there are no default values set in the variable definition(s)

The lower, SQL Preview area show the statement with all variables substituted with the values.

Here is an example of a more complex use of variables.

update SCOTT.EMP set
EMPNO = ${EMPNOI 7698 |BigDecimall Ipk ds=22 dt=NUMERIC }$,
ENAME = ${ENAME| IBLAKEI IStringlInullable ds=1@ dt=VARCHAR }$,
JOB = ${JOBI IMANAGERI| IStringl Inullable ds=9 dt=VARCHAR }$,
MGR = ${MGRI17839||BigDecimall Inullable ds=22 dt=NUMERIC }$,
HIREDATE = ${HIREDATE| 1981-05-01 00:00:00.0| | Timestamp| Inullable ds=7 dt=TIMESTAMP }$,
SAL = ${SALI|128501| |BigDecimall Inullable ds=22 dt=NUMERIC }$,
COMM = ${COMMI | Cnull) | IBigDecimallInullable ds=22 dt=NUMERIC }$,
DEPTNO = ${DEPTNOI I30@1I IBigDecimall Inullable ds=22 dt=NUMERIC }$
where EMPNO = ${EMPNO (where)|176981|BigDecimal | Iwhere pk ds=22 dt=NUMERIC }$

This example use the full capabilities of variables. It is in fact generated by the Script to SQL Editor->INSERT COPY INTO TABLE right
click menu choice in the Data tab grid.

B Enter Data for Yariables

VR BRE Y|y = -5|vK Q- |
Key ariable Yalue
| EMPNO 7698

ENAME Ostman

JOB MANAGER

MGR 7834

HIREDATE 1881-05-01 00:00:00.0

SAL 2850

comMm {nully

DEPTNO 30
< |2 EMPNO (where) 7698

EMPNO NUMERIC
Mot NULL, Key Column

[w] Show SQL [Conkinus J[Cancel
SOL Preview
Ea e -
1 UFDATE
2 3COTT.EMF
3 SET
3 ENFNO = 7093,
5 ENAME = 'fistman',
| J0E = 'MANAGER',
7 MGER = 7835,
g HIFEDATE = '1351-05-01 00:00:00.0°",
E 3AaL = 2850,
10 COMM = HULL,
11 LEPTHO = 50
12 WHEFE
13 ENFNO = 7595

91(245)

Figure: The substitute variables window

To highlight that a variable is part of the WHERE clause in the final SQL it is represented with a green icon in front of the name.

Parameter Markers

Parameter markers are are usually represented in a SQL statement with a question mark, ? or a string prefixed with a colon, :somename.
Example:

select * from EMP where ENAME = ? or ENAME = ?

Parameter markers are primarily used in prepared SQL statements that will be cached by the database server. The purpose with cached
statements is that the database server will analyze the execution plan once when the SQL is first executed. Subsequent invocations of the
same SQL will then only replace the parameter markers with appropriate values, at the end it will give much better response than
executing SQLs with dynamic values direct in the SQL.

Parameter marker processing is managed by the JDBC driver and not all drivers supports it. One example is the Oracle JDBC driver which
lacks support completely.

The following window will appear when executing the previous SQL statement.

E. Enter Data for Parameter Markers

R BE O v -5vK [a- |
ey “ariable Walue
Parameter 1 [BE1EEN
Parameter 2 Larsson

Parameter 1 CHARACTER WARYING(2S)
Allow NULL

[Shaw oL [Cankinue][Cancel

Figure: The parameter marker substitution window

(For parameter marker processing to work in the SQL Commander, make sure the SQL->Process Parameter Markers in SQL is
enabled).

Output View

The Output View in the lower area of the SQL Commander is used to display the result of the SQLs being executed. How the results are
presented is based on what type of result it is. A log entry is always produced in the Log view for each SQL statement that is executed.
This entry shows at a minimum the execution time and how many rows were affected by the SQL. There may also be a result set if the
SQL returned one. These result sets are presented either as tabs or windows based on your choice.

92(245)

| P 1: select*from DEPARTMENTS | # 2: select EMPLOYEE_ID, FIRST_NAME..| © 3: select™ fom JOB_HISTORY |
® &% V- EEHE R »yvo=-% 0 Q- BE =
S EMPLOYEE_ID = START_DATE END_DATE JOB_ID DEPARTMENT_ID
1 102/1993-01-12 00:00:00.0 |1992-07-24 00:00:00.0 |IT_PROG 60 ~
2 101/1989-09-21 00-00:00.0 |1993-10-27 00:00:00.0 | AC_ACCOUNT 110
3 101/1993-10-22 00-00:00.0 |1997-03-15 00:00:00.0 AC_MGR 110
I 201/1996-02-17 00-00:00.0 |1995-12-19 00:00-00.0 | MK_REP 20
5 114/1998-03-24 00-00:00.0 |1995-12-31 00:00:00.0 | ST_CLERK 50
5 22/1999-01-01 00:00:00.0 |1995-12-31 00:00:00.0 | ST_CLERK 50 E
7 200/1987-09-17 00:00:00.0 |1993-06-17 00:00:00.0 AD_ASST a0
3 176/1998-03-24 00-00:00.0 |1998-12-31 00:00:00.0 | SA_REP 80 ¥
0.010/0.010 sec || 1015][1-9
Loa| (™ Result Set[3] | “# DBMS Output

Figure: The output view

If an error occurs during execution, the SQL Commander automatically switches to the Log view so that you can further analyze the
problem.

Log

At the top of the Log tab, you can choose to log information about the execution of your SQL statements to the GUI or to a file.

@ Log to Gl) Log 1o File ||._TJ

Figure: The Log destination controls

If you choose to log to file, you can enter the file path in the text field or click the button to the right of the field to launch a file browser.
By default, the log information is written to the GUI, below the log destination controls.

The log keeps an entry for each SQL statement that has been executed. It provides generic information, such as how many rows were
affected and the execution time. The important piece of information is the execution message which shows how the execution of that
specific statement ended. If an error occurred, the complete log entry will be in red, indicating that something went wrong.

08:26:55 [SELECT - 25 row(s), 0.015 secs] Feszult se1 fetched

08:26:55 [SELECT - 27 row(s), 0,015 secs] Result set fetched | [l Copy Crr+-C
08:26:56 [SELECT - 107 rows), 0.004 secs] Feszult set fetchad k_! Save As.. Ctr+Shift+5
08:26:36 [SELECT - 0 row(sy, 0.113 secs] [Error Code: 942, 5QL State: 42000] ORA4 & Clear Log CrlDelete

08:26:56 [SELECT - 10 rowis), 0.019 secs] Fesult set fetched

08:26:56 [SELECT - 23 rows), 0.016 secs] Fesult set fetched

08:26:57 [SELECT - 4 row(s), 0.003 secs] FEesult set fetched
w 7 Statement(s) executed, 196 rowis) affected, database exec time 0,185 sec [& succe Clear Warning Entries

Clear Success Entries
Clear Error Entries

Lag | (71 ResultSet[6] | i@ DBMS Output |

Figure: The Log with one failed statement

The detail level in an error message is dependent on the driver and database that is being used. Some databases are very good at telling
what went wrong and why, while others are very quiet.

Clicking the icon to the left of each log entry selects the corresponding SQL statement in the SQL editor. The icon also has a right-click

menu with two choices: Load SQL into Editor and Insert SQL into Editor. The first choice replaces the current content of the SQL
Editor with the SQL statement corresponding to the log entry, while the second inserts it at the caret position in the SQL Editor.

93(245)

Log controls

The Editor Control area contains a Log tab where you can control the log content. Use the Show controls to define which information you
want to appear in the log. The Filter controls are used to specify which entries should be displayed.

Auto clear log

If you enable the Auto Clear Log control, the SQL Commander automatically clears the log between executions.

Result Set

A result set grid is created for every SQL that returns one or more result sets. These grids can be displayed in a tab or window style view,
similar to how the SQL editors are displayed. Each grid shares the common layout and features as described in the Getting Started and

General Overview document. The format of the result can be one:

« Grid

The result is presented in a grid.
« Text

The result is presented in a tabular format.
*+ Chart

Read more in Monitor and Charts.

: @ Objectview| & SQLCDmmander‘

PRRROGECER S DR (<> @[Ee

ol ok

44d-12-31 00:0]

1899-12-31 00:0

1993-06-17 00:0

1985-12-31 00:0

1998-12-31 00:0
.

A0OD 47 24 an-ne

22

0.010/0.030 sec

; @ Load SOL into Editor TR
T ® 25 V- GHEHEE v ;
| | | | | | & Insert SQL into Editar
- DEPARTMENT_ID DEPARTMENT_MAME MA
- 10| Administration 3 close Current Cirl+F4
2 20| Marketing Close All
3 30|Purchasing Close All But Current
4 40 Hu.rna.n Resources Close All Empty
5 S0{Shipping
B ROl ¥ PinCurrent
7 TO|Public Relations # Unpin Current
3 80 Sales Pin All
g 90 |Executive
10 100 Finance j) |
11 110/ Accounting Close All Pinned
Close All Unpinned
sl | @ Show Grids Crl+4 .
2. select EMPLOYEE 1D, FIRST MNAME... :
: i e = Show Texts ciri+5 000
i 00.0
20|25 Y- &EEE B v 4@ showchats cis | oo
o EMPLOYEE_ID FIRET_MAME LAST_MA 176/15999-01-01 00:00:00.0
1 184 |Donald OConnelly 40 . jnﬂ""*“_r{_nf o o.nn-an.0
2 199|Douglas Grant S
3 200 Jennifer Whalen |
e—11 11111
4 201 |Michael Hartstein MHARTSTE
i} 202 Pat Fay PFAY
§ 203 Susan Mavris SMAVRIS
T A Harmiann Baor HEAER

* Log| (7] Result Set[3] | ‘# DBMS Output

[12p1ng Lianp 2w | [1o1p3 0s [| |

Figure: The windows output view

94(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

The figure above shows the windows output style with three result set grids. A result set grid can be closed using the red cross in the

window frame header.

With the tabs style, you use the Close right click menu choice when the mouse pointer is in the tab header to close a result set:

: @ ObjectView| B S@LCommander|

PRRARO B CEE || +DE|2(<> (RS

[Bing fiano 2= | [iowp3 108 []]

F .
| P 1:select* from DEPARTMENTS| P 2 select EMPLOYEE_ID, FIRST biauc_|_& A oo LunTepny
: ; T —_— : (9 Load SQL into Editor !
O LY GEEEER y=-» ¥ 51 InsertSQL into Editor 0| E
= EMPLOYEE_ID FIRST_MAME LAST_MAME EMAIL X Close Current Cirl+F4
1 198 Donald OConnell DOCOMMEL o ~
2 199 Douglas Grant DGRANT
3 200/ Jennifer Whalen JWHALEN Close All But Current
4 201 | Michael Hartstein | MHARTSTE Close All Empty
5 202|Pat Fay PEAY G
i} 203 Busan Mavris SMAVEIS £ Pin Current
7 204 |Hermann Baer HBAER :
g 205 Shelley Higains SHIGGING Fin All
g 206 William Gietz WGIETZ i A
10 23|Ralf Svensson roffe(at)post.se ce Al Pinne
11 100 Steven King SKIMG > .
12 101 |Neena Kochhar | NKOCHHAR e s
13 102 |Lex Da Haan LDEHAAMN & Show Grids Ctrl+4
14 103 Alexander Hunaold AHUMOLD E| show Texts Ctrl+5
15 104 |Bruce Ernst BERMNST ShnwEhans EWE
16 105 David Austin DAUSTIM = =
17 106 Valli Pataballa WPATABAL
18 107 | Diana Laorentz DLORENTZ
149 108 | Mancy Greenberg |[NGREEMBE
20 108/ Daniel Faviet DFAVIET
21 110/John Chen JCHENM
22 111 Ismael Sciarra ISCIARRA
23 112 Jose Manuel [Urman JMURMAR
24 113/ Luis Popp LFOPP
a5 114 Naon BRanhacly NPAPE &) b
0.010/0.030 sec | 108/4 | 1-25
" Log| ("] Result Set[3] | “# DBMS Output

Figure: The right click menu for tabs

Result set menu

The result set menu is available by right-clicking on a tab or on the result set desktop (window style). It contains options to control the
current result set and all result sets. The following actions are available:

Menu Choice

Load SQL into Editor

Insert SQL into Editor

Close Current

Close All

Description

Loads the SQL for the selected result set tab or window into the current editor.

Inserts the SQL for the selected result set tab or window into the current editor at the cursor

position.

Closes the current result set

Closes all result sets

95(245)

Close All But Current

Close All Empty
Pin Current

Unpin Current

Pin All

Unpin All

Close All Pinned
Close All Unpinned
Show Grids

Show Texts

Show Charts

Editing

Closes all but the current result set

Closes all result sets that are empty (no data)

Pins the current result set (preventing it from being removed at the next execution).

Unpins the current result set

Pins all result sets. Pinning a result set prevents it from being removed at the next execution.

Unpins any pinned result sets, making them candidates for removal during the next execution.

Removes all pinned result sets directly.

Removes all unpinned result sets directly.

Changes the display mode to show the grid tab for all result sets

Changes the display mode to show the text tab for all result sets

Changes the display mode to show the chart tab for all result sets

A result set grid may be enabled for editing based on the following criteria:

1. The result really is a result set

2. The SQL is a SELECT command

3. Only one table is referenced in the FROM clause

4. All columns in the result set exist in the table with exactly the same names

If all of the above is true, the standard editing tool bar appears just above the grid. Read more about editing in the Edit Table Data

chapter.

Multiple result sets produced by a single SQL statement

Some SQL statements may produce multiple result sets. Examples of this are stored procedures in Sybase ASE and SQL Server. The SQL
Commander checks the results as returned by the JDBC driver and add grids to the output view accordingly. The following shows the
sp_help Emps command which returns several result sets with various information about the Emps table.

96(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/editData/editData.html

Database Connection [&] Sticky Database Schema Max Rows Max Chars
(i@ Sybase ASE 15.0 [=] [@ master [~] so0 | o |

sp_help
1:8 ING Untitled*

| #sp_heipeny | 2 2spnep@ [P aspnen@ | 0 4spneip@ |

view: [0 =) i

E

Mame | wher | Object_type |
sysguerymetrics dho wiew
iidhc_function_escapes dbo usertable
jdbec_function_escapes |dho usertable
spt_ijdbc_conversion dho usertable
spt_ijdbc_mda dho usertable
sp_ijdbc_table_types dho usertable
spt_jdbo_conwversion dho usertable
spt_jdbe_table_types dho usertable
spt_jtext dho usertable

Figure: Multiple result set grids produced by a single SQL statement

The result set grids in the figure above all share the same label, sp_help Emps. The number after the label represents the order number
for the actual result. A stored procedure can return different results, not all being result sets. The number helps you identify which entry
matches which result set grid in the log. Here is the Log output view for the previous example.

Databaze Caon

nection [] Sticky Database Schema

Max Rows Max Chars

|8 svbase ASE 15.0 [=] |3 dwis =] (10000 | [0
gp_help Tlogl
1:15 INS Untitled®
12:38:28 [SP_HELP - 1 rows), 0.826 secs] Command processed
Code: 0 ---
Code: 0 --- Object does not have any indexes.
Code: 0 -—- Mo defined keys for this ohject.
Code: 0 ---
Code: 0 --- Lock scheme &11pages
Code: 0 --- The attribute 'exp_row_size' 15 not applicable to tables with allpages lock scheme.
Code: 0 --- The attribute 'concurrency_opt_threshold' is not applicable to tables with allpages Tock scheme.
Code: 0 ---
Code: 0 S0L State: 010P4 --- 010P4: An output parameter was receiwed and ighored.
12:38:28 [SP_HELP - 1 rows), 0.000 secs] Fesult set fetched
12:38:28 [SP_HELP - 1 rows), 0.000 secs] Fesult set fetched
12:38:28 [SP_HELP - 1 rows), 0.000 secs] Fesult sat fetched
12:38:28 [SP_HELP - 1 rows), 0.000 secs] Fesult set fetched
12:38:29 [SP_HELP - 1 rows), 0.000 secs] Fesult set fetched
12:38:29 [SP_HELP - 1 rows), 0.000 secs] Fesult sat fetched
12:38:29 [SP_HELP - 1 row(s), 0.000 secs] Fesult set fetched
12:38:29 [SP_HELP - 1 rows), 0.000 secs] Fesult set fetched
« 3 statement(s) executed, 9 row(s) affected, database exec time 0.826 sec [5 successful, O warnings, O errors]

Log | (7 ResultSet[8] |

Figure: The Log after executing an SQL statement that returns multiple results

All entries with the log message "Result set fetched" are represented in the previous figure.

97(245)

Text

The Text format for a result set presents the data in a tabular style. The column widths are calculated based on the length of each value
and the length of the column label.

The column widths may vary between executions of the SQL.

| © & select EMPLOYEE_ID, FIRST_NAME... |

wiew: [O]=

EMPLOYEE _ID' FIRST NAME LAST NAME EMATL PHONE_NUMEER HIRE L=
193 Donald OComnmnell DOCONKEL G50, 507.95833 1999-0
199 Douglas Grant DGRANT G50, 507.9544 Z000-0
200 Jennifer Whalen JUHALEN 515.125. 4444 1337-0
201 Michael Hartstein MHARTSTE El15.123.5555 199&-0
202 Pat Fay PFAT G03.123. 6666 1997-0
203 Susan Mavris SMAVEIS 515.123.7777 1334-0
204 Hermann Baer HEAEER. 515.123.5588 1994-0
205 Shelley Higgins SHIGGINS E15.123. 8080 1994-0
Z06 William Giets WEIETZ §15.123.8181 1994-0
23 Rolf Swensson roffe(at)post.se &7 2006-0
loa0 Steven King SKEING El5.123.4567 1987-0
il T I

0.040 zeci0.060 sac |1EIE 11

Figure: The Text result set format

Chart

A result set can be charted using the Chart view in a grid. Please read more about it in the Monitor and Charts document.

DBMS Output (Oracle)

The DBMS Output tab for Oracle is used to enable and disable capturing of messages produced by stored procedures, packages, and
triggers. These messages are typically inserted in the code for debugging purposes. For SQL*Plus users, the corresponding feature is
enabled via the set serveroutput on command. To enable display of DBMS messages in DbVisualizer, select the DBMS Output tab and

press the Enable button.

Once DBMS output is enabled, the icon in the tab header is changed. Invoking a stored procedure in the SQL editor will result in the

following being displayed in the output tab. (Each block of output is separated with a timestamp).

98(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html

Databaze Connection [] sticky Database Schema

Max Rows Max Chars

Untitled®

| orarle 10g: scom =] | ~| |& scotT [#] [10000 | [0
call scutt.emp_r‘epur‘tﬂﬂ
1:24 INS

@ B g BufferSize:
1 -—- 12:50:29 ——-

2 Empno Ename Jah
Ty
4 8012 BURK PRO

5 7369 SMITH ARCHITECT
6 7499 ALLEN SOLESMAN
77521 WARD SOLESMAN
8 7566 JONES MANAGER
O 7654 MARTIN SALESMAN
10 TASE BLAKE MANAGER
11 7782 CLARK MANAGER
12 7yBE SCOTT ANALYST
12 THID KING PRESIDENT
14 7844 TURKNER SOLESMAN
15 7878 ADAME CLERK

16 7900 JAMES CLERK

17 7902 FORD ANALYST
18 7934 MILLER CLERK

19 1211 BUPP PRD

20

Log | [7) Result Set | & DEMS Output

Figure: DBMS Output tab

99(245)

Query Builder

Introduction

The Query Builder provides and easy way to develop database queries. The Query Builder provides a point and click interface and does
not require in-depth knowledge about the SQL syntax.

The Query Builder is part of the SQL Commander, alongside the SQL Editor. To open the Query Builder, make sure the SQL Commander tab

is selected and then choose either the SQL->Show Query Builder menu choice or click the vertical Query Builder button to the right in
the SQL Commander. When you are ready to test a query built with the Query Builder, you just load it to the SQL Editor for execution.

This document talks only about Tables even though the Query Builder supports both table and view objects.

B Db¥isualizer Personal - Untitled
Flz= Edt “ew Database 50L Boomarks Tools 'Window Help

| o 4,
vEHR IR BRI
w0] — -
zovmd®™ 3|12, Coiectien | I =2 Commander
= 0 Dracle 2l o
i~ gl Orache Lig: Dakalirec: * i
= - Oracle 10g: HA Dalabase Connedion] Stidey Dratabrass - Schama Max Fows Max Chars

- & Schemss Grade 109 HE w - ~ |a 18
| =& W (Default) @ | 3 [[as |

oA s |

] DEPARTMENTS degt

+

3

& 7] EMPLOYEES

2 IL:I i o [IDEFF-R'I'.'dEr\T_ID + [] EMFLOYEE_ID
: NAME [FIRST_MAME
1
5

BRI ARND Sm

- Jogs
o LW AGER D LAST_V e
-5 FLAN_TABLE O LoGaTsOM_ID =
' J_l.rJ D:;Fmi [CIPHOME_HUMBER @ +4+— Diagram area
E o Symanyms
+- g Indaxes
E- @ Sequances
+- a4 Mstanzized Vews

. HRLOCATIONS

& 4% Functions loc

+ P Pr.:l:el:urei «] LOCATION_D
; gﬁa&wﬁm_s s [l STREET_AODORESS
@ Jsrafqur'.e:.- C1POSTAL_CODE
& [1ava Classes L
=i L T STATE_PROMIMGE
& £ Object Types
#- &8 RecydaBin

| @& & Invald Objects

i~ F] Session Propertiss

= 4 peaviews

i Users

. Rolas

-4g Seszons

b Lads

- Recyoe Bn

-] Storage

[424 Shatistics

r s6A

:

Drag tables/views
from objects tree

:
2]
¥

dept, "FEPARTEENT_KAHE” .

“HR™. "COUNTRIES" . "COUNTHRY_BLAME",
eop. "FIRST _HAME",

-"LAST WAKE™,

epp. "EAAIL",

log. "CITT"

+— Query details

- E
@ =1 Thoin B W e
-
=]

:l Dea‘.i‘. [@ S4LFraview

|4

Figure: The query builder

Current Limitations

These are the current limitations in the Query Builder:

* Unions and sub queries are not supported.
* Not all join types are supported when joins are expressed as WHERE clause conditions. The Inner join type is supported for all
databases, but the Left and Right types are only supported for databases with proprietary syntax to express these types, e.g.,

100(245)

Oracle, SQL Server and Sybase. The Full type is not supported for any database. If a join type is not supported, the setting in
the Join Properties dialog is silently ignored.

« When importing an SQL query from the SQL Editor, unsupported keywords and statement clauses are ignored. A dialog tells you
which parts of the query are being ignored when unsupported parts are found in the imported statement.

Creating a Query

To create a query, open the query builder using the SQL->Show Query Builder menu choice or click the Query Builder button in the SQL
Commander as described earlier. Make sure that the controls in the top section of the Query Builder are set correctly, as described in
Database Connection, Catalog and Schema.

o, Object View | [sqL Cammander§|

L RS RRENRF i
i

Database Connection |:| Sticky Database Scherna Max Rows Max Chars |2
= m
|58 Oracle 10g: HR v | 2 HR v o s ||g
o

[=]

[

&, E

\ =

q l a
Drag tables from the objects tree and drop he.reb EX

Colurns |Cnnditinns || Grauping || Serting]|

[[] select only unique recards (DISTINCT)

Column/Expression Alias Aggregate Group By N
]

v

4

E] Details | (@ sqL Previewl

Figure: The initial appearance of the query builder

The easiest way to jump between the Query Builder and the SQL Editor is by clicking the vertical control buttons to the right in the SQL
Commander. Clicking these buttons changes the display, but does not copy the query from one display to the other. To copy the current
query from the Query Builder to the SQL Editor, use the toolbar buttons at the top of the Query Builder:

B el |

Figure: Query builder toolbar

The first button (from left) replaces the content of the SQL Editor with the query SQL and executes it
The second button replaces the content of the SQL Editor with the query SQL, without executing it
The third button adds the query last in the SQL Editor

The fourth button copies the query to the system clipboard

The fifth button opens the editor properties

vhwhr

The first three buttons automatically change the display to the SQL Editor.

You can also load a query from the SQL Editor into the Query Builder, as described in detail below.

101(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId255438

Adding Tables

To add tables, make sure the database objects tree and the table and/or view objects are visible. Then select and drag nodes from the
tree into the diagram area.

=] Oracle - o]
‘g Oracle 10g: DataDirect LR e E’l
5@ Oracle 10g: HR Databiase Connaction |:| Sticky Database Schama Max Rows Max Chars |'2
- = m
Ea Schemas |Bﬁ Oracle 10g: HR vl 2 Hr v| |g | |15 | =8
=& HR (Default) K3
=-{7] Tables - — —
= COUNTRIES ~ HR.EMPLOYEES x| HR.DEPARTMENTS %] g
-
g EPLH?:TESEY ~ []EMFLOYEE_ID ~] DEPARTMENT_ID 5
1085 [JFIRST_MAME [] DEPARTMENT_MAME ==
#-[7] LOCATIONS [LasT_MAME [MAMAGER_ID =
#-[7] PLAN_TABLE [EmalL [LocATION_ID
-] REGIONS] PHONE_MNUMBER
- (3] Views] HIRE_DATE

~a Synonyms JuoBE_ID
i Indexes [sALARY

<@ Sequences
< Materizlized Views [coMMISSION_PCT

403 Functions [MANAGER_ID

¥ Procedures [DEPARTMEMT_ID

43 Packages

L@, Package Bodies
@ Java Sources
B 1ava Classes S A—
Triggers Calumns | Conditions || Grouping | Sarting|

i} Object Types
@ Recycle Bin [] select anly unique records (DISTINCT)

/2 Invalid Objects

-) ColumniExpression Alias Aggregate Group By FY
------ E Session Properties
=} DBA Views O v
- Users
.- Roles
[+ Sessions || E] Details | (8 sqQu Previewl

Figure: Adding tables to the query builder

To add a table, drag it from the object tree to the diagram area of the Query Builder. When the table is dropped in the diagram area, it is
shown as a window with the table name as the window title.

Below the title is a text field where an optional table alias can be entered. If a table alias is specified, it is used in the Query Builder and
the generated SQL statement to refer this table.

Under the table alias field is a list of all table columns. A check box in front of each name is used to select whether the column should be
included in the query result set. Columns selected for the query result set also appear in the Columns and Sorting details tabs.

Joining Tables

Manually Joining Tables

To join two tables, select the column in the source table window with the mouse, drag it to the target table column, and drop it.

102(245)

HR.EMPLOY EES

< [] EMPLOYEE_ID
[FIRST_MAME
[J LAST_MAME
[EmMAIL
[] PHOME_MNUMBER
] HIRE_DATE
[JJoB_ID
[] saLARY
[coMmissIoN_PCT
[MaMAGER_ID
B DEPARTMEMT_ID

__HR.DEPI.RTME TS E|

— 0= [l DEPARTMENT_ID

[DEPARTMEMNT_MAME
[MAMAGER_ID
[LoCATION_ID

Columns | Conditions | Grouping | Sarting|

[] select anly uniqus records (DISTINCT)

Column/Expression Alias

Aggregate Group By F.
O

A4

b 4

Figure: Joining two tables

The two columns now represents a join condition, represented by a link between the columns. If more than one join condition is needed,
link additional columns in the two tables by dragging and dropping the columns in the same way as for the first join condition. The default
join type is an Inner join and the default condition is "equal to" (=), represented as an icon with overlapping circles with the shared area

shaded and an equal sign below them.

Joining Tables Automatically

Some database schemas declare how tables are related using primary and foreign keys. Other schemas use column names to indicate
these relationships. For instance, in the figure above, the EMPLOYEES table has a column named DEPARTMENT_ID, which refers to the
column with the same name in the DEPARTMENTS table. The Query Builder can be configured to use both kinds of rules to automatically

join the tables you add to the query builder.

The auto-join feature is disabled by default. You can enable it in the tool properties for the database type (Tools->Tool Properties,
under the Database tab) or for a specific connection (the Properties tab at the bottom of the Object View window when the connection

is selected in the object tree).

103(245)

DbVisualizer Personal - Tool Properties

General | [Database |

Query Builder Auto-Join Properties

il
=
3
o
L

o
—

[>

With Auto-loin enabled, columns in a table added ta the Query Builder are compared to columns in
tha tables already present, IF a match is Found (either by matching FE/PE daclarations or matching
column names, depending on the selacted auta-join type), the tables are joined autamatically,

Auta-Jain Enabled:

{#) Match columns by FE[PE declarations

=@ Physical Connection Auk-dain Tvps:
-@, Transackion

...... [£] sqQL statements

------ #/ Connection Hooks

{3 Match columns with equals names

Generate JOIN Clause in Query Builder

Specifies if joins should be generated as a JOIM clauses or as conditions in the WHERE clause,

g QuEry Builder Generate JOIN Clause in Query Builder: []
------ 5} Data Types

...... [Explain Plan
..... System Tables
Pervasive B

& e (e

Figure: Query Builder Properties

The Query Builder node lets you enable the auto-join feature and select whether to use key declarations (FK/PK) or column names to find
out how the tables are related.

When you add a new table with auto-join enabled, the Query Builder automatically joins it to the tables already in the builder if table
columns match the selected matching rule.

If columns in the table you add are related to other columns in the same table, the Query Builder creates two windows for the table and

joins them based on the matching rule. In this case, a table alias is also added for one of the windows so that you can tell the two
windows for the same table apart.

Join Properties

A Join Properties dialog can be opened by double-clicking the icon or selecting Join Properties from the right click menu while the mouse
pointer is over the join icon. The Join Properties dialog shows the source and target table columns and the conditional operator.

You can change the join type and the conditional operator in the Join Properties dialog. The join type defines how the records from the
tables should be combined:

¢ Inner
This is the most common join type as it finds the results in the intersection between the tables.
* Left
This join type limits the results to those in the left table leaving 0 matching records in the right table as NULL.
« Right
This is the same as left join but reversed
e Full

A full join combines the results of both left and right joins.

104(245)

&, Join Properties

Dperator
Tahle: EMPLOYEES

Jain Type

@ Inner (D)
OLet @D
O Right (00
OFul @D

DEPARTMEMNTS

Column: DEPARTMENT_ID DEPARTMENT_ID

Apply H Cancel

Figure: Join Properties dialog

If you have multiple join conditions (linked columns) between two tables, you can specify different conditional operators for each join
condition, but the join type is shared between all join conditions; if you change it for one join condition, it is changed for all the other join

conditions linking the two tables. This is not a restriction in the Query Builder but rather how SQL is defined.

Here is the sample SQL generated from the previous join definition:

SELECT

*
FROM

HR.EMPLOYEES
INNER JOIN

HR .DEPARTMENTS
ON

(HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID)

Remove Tables and Joins

A table window is removed by clicking the close icon in the window header. A join is removed by selecting Remove Join in the right click
menu while the mouse pointer is over the join icon.

D Join Properties...

= Remove Jain

Remove All Joins
Remove All Tables

Figure: Diagram right click menu

All tables and joins may be removed via Remove All Joins and Remove All Tables.

Query Details

The Details tabs below the diagram area are used to define the various parts of the query. The tabs briefly represents the following parts

of the final SQL:

SELECT <Columns>
FROM <Tables>
WHERE <Conditions>

105(245)

GROUP BY <Columns>
HAVING <Grouping>
ORDER BY <Sorting>

style="font-weight: bold;"> (The <tTables> clause is defined in the diagram).

Columns

Use the Columns tab to specify characteristics of the columns that are included in the query. The list is initially empty until a column is
checked in a table window or if manually adding a column expression. Columns will appear in the list in the same order as they are
checked but may be manually moved at any time with the up and down buttons. To include all columns from a table, right click in the
column list in the table window and choose Select All.

HR.EMPLOYEES | ~ HR.DEPARTMENTS (|

< []EMPLOYEE_ID < [DEPARTMENT_ID
FIRST_MAME DEPARTMENT_NAME
LAST_MAME [MaMAGER_ID
EMAIL [LocATION_ID
] PHOME_NUMBER
] HIRE_DATE
C]JoB_ID
SALARY
O] COMMISSION_PCT
] MANAGER_ID
] DEPARTMENT_ID

Columns | Conditions | &rouping | Serting|

[] Select only unique records (DISTINCT)

Column/Expression Alias Agaregate Group .| | A
EMPLOYEES.FIRST_NAME "Férenamn’ O
EMPLOYEES.LAST_NAME "Efternamn’ O
EMPLOYEES.EMAIL "E-post’ O X
[DEPARTMENTS DEPARTMENT_NAME ["Avdeining” | | H |
EMPLOYEES.SALARY "Lon’]

Ol

Figure: The Columns tab

The previous screenshot shows a total of 5 checked columns in the two tables. These are presented in the columns list by their full column
identifier, qualified by either the table name or the table alias. To remove a column from the list, uncheck the corresponding column in the
table window.

The alias field is used to specify an optional alias identifier for the column. The alias is used as the identifier for the column in the final
query and also appears as the column name in the result set produced by the query. Check the documentation for the actual database
whether the alias must be quoted since the Query Builder does not do this for you.

The Aggregate and Group by fields are used in combination:

« The Aggregate field lists the available aggregation functions (AVG, COUNT, MAX, MIN, SUM) that may be used for columns
* The Group By field specifies whether the column should be included in the group for which aggregate columns are summarized

The Group By field is disabled unless an aggregate function is selected for at least one column, and once you select an aggregate function
for one column, you must set Group By for at least one of the other columns to form a valid query. If you remove the aggregate function
for all columns, Group By is automatically reset for all columns. Group By and aggregate are also mutually exclusive options for one
column, so when you select one of them, the field for the other is disabled for that column.

A custom expression may be added by entering data in the empty row last in the list, e.g., "coll + col2" or "TO_CHAR(ts_col, 'DD-

MON-YYYY HH24:MI:SSxFF')". Once entered, press enter to insert a new empty row. You can remove a custom expression by selecting
it and clicking the Remove button.

106(245)

Conditions

The Conditions tab is used to manage the WHERE clause for the query. A WHERE clause may consist of several conditions connected by
AND or OR. The evaluation order for each condition is defined by indention in the condition list. Each level in the list will be enclosed by
brackets in the final SQL.

Here is an example from the Conditions tab.

i HR.EMPLOYEES ‘i| HR.DEPARTMENTS |§|

emp dept
<+] EMPLOYEE_ID < [] DEPARTMENT_ID
FIRST_MAME J DEPARTMENT_NAME
LAST_MAME [MaMAGER_ID
EMAIL [LocATION_ID

] PHONE_MNUMBER
(] HIRE_DATE
(JJoB_ID

SALARY

(] COMMISSION_PCT
] MANAGER_ID

[DEPARTMENT_ID

Columns | Conditions | Grouping | Serting|
[][+]of the conditions i this branch must match
: { 1.1 ”empEALARY |[:]|= + ||4000 |[:]
B oF the conditions in this branch must match
vt =]

5m{ 1.2.2 “depLDEPARTMENTJ[:]|uKE + | 'Human Resources |[:]

Figure: Condition settings

To create a new WHERE condition, press the indexed button in the list. In the menu that is displayed you may choose to create a new
condition on the same level, a compound condition or delete the current condition.

For compound conditions you may choose whether All (AND), Any (OR), None (NOT OR) or Not All (NOT AND) conditions must be met
for its sub conditions. The SQL for the Conditions tab in the figure is:

WHERE
emp.SALARY > 4000
AND
C
dept.DEPARTMENT_NAME = 'Human Resources'
OR dept.DEPARTMENT_NAME = 'IT'

Next to the input field for each condition, there is a drop down button. When pressed it shows all columns that are available in the tables
currently being in the Query Builder. You can pick columns from the list instead of typing these manually.

’ 122]|HR.DEPARTMENT5.[|B|LIKE v”'HumanRes-:-urces' Hﬂ
HR.EMPLOYEES 3
HR.DEPARTMEMTS W DEPARTMENT_ID

| DEPARTMENT_NAME

MANAGER_ID
LOCATION_ID

Figure: List of columns in the Conditions tab

107(245)

Grouping

The Grouping tab is used to define the conditions for the HAVING clause that may follow a GROUP BY clause in an SQL query. This tab is
only enabled when at least one of the columns in the Columns tab is marked as a Group By column.

The HAVING clause is similar to the WHERE clause, except that the HAVING clause limits what rows are included in the groups defined by
the GROUP BY clause, after the WHERE clause has been used to limit the total number of rows to process.

You work with conditions in this tab in the same way as described in the Conditions section, with one exception regarding to the drop-
down button for the fields in a condition. In the Grouping tab, the drop-down shows all columns listed in the Columns tab, with an
aggregate function expression for columns that have an aggregate function defined. This is because (according to the SQL specification)
the conditions in a HAVING clause must only refer to columns that are being returned by the query.

Sorting

The sorting tab is used to specify how the final result set will be sorted. All columns for the tables in the graph, plus any custom
expressions created for the selection list in the Columns tab, are listed in the Sorting tab.

| Columns | Conditions || =rouping | Serting l

Available Columns Sorted Columns Descending
DEPARTMENTS.DEPARTMENT_ID & EMPLOYEES.FIRST_NAME
DEPARTMENTS.DEPARTMENT_NAME | E] EMPLOYEES.LAST_MAME O A

DEPARTMENTS.LOCATION_ID

DEPARTMENTS MAMNAGER_ID)

EMPLOYEES.COMMISSION_PCT
EMPLOYEES.DEPARTMENT_ID w

Figure: The Sorting tab

All columns listed in the Columns tab are initially listed in the Available Columns table. Select the ones you want to use in the sorting
criteria and click the Move Left button to move them to the Sorted Columns table.

In the Sorted Columns table, you can change the default sort order (ascending) by clicking the check box in the Descending Order
column. You can remove columns from the sorting criteria by selecting them in the Sorted Columns table and clicking the Move Right
button.

SQL Preview

The SQL Preview tab at the bottom of the query builder is used to show a preview of the final SQL. This is a read-only view and cannot be
modified.

Testing the Query

To test the query, simply press the appropriate toolbar buttons in the Query Builder to copy the SQL to the SQL Editor. Then execute the
SQL as usual in the SQL Editor.

108(245)

PRRROE JER S +PE>R(C> @[Eee

Database Connection ——— D Sticky Database Scherna Max Rows Max Chars
| Oracle 10g: HR | & HR | o [|
1 SELECT ~
2 "HE" ,EMPLOYEES, "FIRST NaME™ RS "Firenamn™,
3 "HE".EMPLOYEES. "LA43T_HNAME™ RS "Efternamn'’,
4 "HR".EMPLOVEES. "EMATL™ RS "E-post”, =
5 "HE" . DEPARTHMENTS . "DEPARTHMENT NAME™ AS "iwvdelning™,
& "HRE" .EMPLOVEES. "SALARY'™ RS "Lin"” B
7 FROM
g "HE". "EMPLOYEES™
O THHER JOTH
10 "HR". "DEPARTMENTS"™]
o:12 |ms| |Aute Commit: on| [untitileas|
.

11 SELECT "HR".EMPLOYEES."FIRST_M...

2O S Q- [=EN"
Farenamn Efternamn E-post Avdelning Lén
il Winston Taylor WTAYLOR | Shipping 3200 fad
2 William Gietz WGIETZ Accounting 8300 N
3 William Smith WSMITH |Sales 7400
4 Vance Jones WVIOMES | Shipping 2800
5 Walli FPataballa |VPATABAL |IT 4200
G Trenna Rajs TRAJS Shipping 3500
7 TJ Olson TJOLSOM |Shipping 2100
8 Timaothy Gates TGATES Shipping 2400 b

10.030/0,030 sec | 108/5 |

Figure: Testing the SQL

To further refine the SQL press the Query Builder button and apply the necessary changes.

Loading a Query from the SQL Editor

If you have an existing SQL query that you want to modify using the Query Builder, you can load it from the SQL Editor into the Query
Builder by clicking the rightmost button in the SQL Editor toolbar:

&

It's important to be aware that the Query Builder does not support all features of the SQL SELECT statement, such as comments, UNION,
and database-specific keywords. If you load a query into the Query Builder that contains unsupported constructs or keywords, they are
ignored and a dialog pops up with a warning about this fact. You can then use the SQL Preview tab in the Query Builder to compare the
SQL as it is represented in the Query Builder with the original SQL that you loaded to understand what was ignored.

Properties controlling Query Builder

There are a few properties that control how the Query Builder works and the SQL it generates. You can set these properties for the
database type (Tools->Tool Properties, under the Database tab) or for a specific connection (the Properties tab at the bottom of the
Object View window when the connection is selected in the object tree). Check the following sections for details.

Express joins as JOIN clause or WHERE condition

The Generate JOIN Clause in SQL Builder property is available in the [Database Type]->Query Builder node. Joins can be
expressed either via the standardized SQL JOIN clause or a WHERE clause, using database-specific syntax for the Left and Right join
types. The database-specific WHERE clause syntax is somewhat different between the supported databases and the Full outer join type
is not supported. The default for this property is to use a JOIN clause.

109(245)

A simple inner join expressed as a JOIN clause:

FROM HR.EMPLOYEES
INNER JOIN HR.DEPARTMENTS
ON (HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

Here is the same join expressed as a WHERE condition:

FROM HR.EMPLOYEES, HR.DEPARTMENTS
WHERE HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

The syntax for expressing Inner and Outer joins in WHERE conditions is different between databases. Oracle, for example, uses the "(+)"
sequence to the left or right of the conditional operator to express left or right joins. SQL Server and Sybase use "*=" or "=*" for the
same purpose.

DbVisualizer automatically sets the correct join notation when generating joins as WHERE conditions for databases that support left and
right joins using WHERE conditions. For databases that do not provide syntax for left and right joins, the join type is ignored and the
WHERE condition that is generated produces an inner join result.

Table and Column Name qualifiers

Whether to qualify table names with the schema or database name and whether to qualify column names with table name are defined in
the [Database Type]->Qualifiers node.

Delimited Identifiers

Identifiers that contain mixed case characters or include special characters need to be delimited. Define this in the [Database Type]-
>Delimited Identifiers node.

Drag style and Diagram Size

If you enable the editor controls from the Query Builder or SQL Editor toolbar, you can also set the style table windows in the Query
Builder diagram should have when moving them, as well as the default size for newly added table windows.

110(245)

Monitor and Charts

Introduction

With the monitor feature, you can track changes in data over time, viewing the results of one or many SQL statements either as grids or
graphs. Typically, you configure the monitor to run the statements automatically at certain intervals.

The monitoring feature combined with the charting capability in DbVisualizer Personal is really powerful, delivering real time charts of
many result sets simultaneously. For example, you can use monitoring to spot trends in a production database, surveillance, statistics,
database metrics, and so on. At Minq Software, we have a dedicated workstation that uses the monitoring feature to automatically present
live chart information from our Internet servers and customer database.

Any SQL statement defined as an SQL Bookmark that produces a result set can be monitored, and when you monitor multiple statements,
different statements may use different database connections concurrently.

e gdt

I sin

ElEC X Y

& 3: Closed Bug Reports per Hour |0

New Tasks per Mont]

=]
EER BT EOEET TS EEE EDEEETEE

Computers Sold per Month Closed Bug Reports per Hour

New Tasks ps

—

f
R

|

2780 LR TR TR T 1)

o sca o s 70 oo sec 202 [oo a0 ec o0

2000
o

!)

The Monitor window with four monitored SQL Bookmarks. The results can be viewed as windows or The same monitored SQL Bookmarks as ir

tabs. This example shows the grid data as returned from each SQL statement. Personal)

The chart customization covered in this document is also applicable to the charts for result sets in the SQL Commander (DbVisualizer
Personal).

Monitor an SQL statement

To monitor an SQL statement, you first define it as an SQL Bookmark in DbVisualizer. A bookmark is an SQL statement with associated
information about the target database connection and (optionally) the catalog (the JDBC term which translates to a database for some
databases, like Sybase, MySQL, SQL Server, etc). You use the Bookmark Editor to create and organize SQL bookmarks in a tree structured
folder view. This is also where you mark which SQL Bookmarks should be available for monitoring. All information about the SQL
Bookmarks is saved in an XML file between invocations of DbVisualizer.

You can read more about SQL Bookmarks in general in the SQL Bookmarks chapter; here we focus on the parts of interest for monitoring.

Starting and stopping the monitoring takes place in the Monitor window, described in the next section. But first, let's see how you enable
monitoring of an SQL Bookmark.

111(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

% Db¥isualizer, Personal - Bookmark Editor

File Edit View Bookmarks

Rid +E O Aav P

i Database Catalog i Contain hdulti
Connectian Yariahles| Sal
@ & Personal (119} -
test A
) Irventory B
] Cormputer Parts
e+ This is rmy chartilll SGL Server 2000: DataDirect |
f+ TimeChart - Il
f+ Computers Sold per Month WySQL 5.0.22 localhost | puredh [d
e Mew Tasks per Month MySQL 5.0.22; localhost puredhb [l
e+ Car Suppliers - Sales PerMa |
% Closed Bug Reports per Hou |
g il PureDE
[Database Tests
W Mew (6)
T I— i+ DEPARTMEMT: Row Count Char DB2: localhost | @
1 select YERR (CreatedDate) as Year, | Apply Edit
{2 MOHTH (CreatedDate] as Monthiium,
o concat (YERR [CreatedDate)), ' ', MONTHNAME [CreatedDate] as Month, Export

4 count (MOHTH (CreatedDate)) AS Count | Import
5 from Feglustoner

& GROUP BY Year, Monthilum
7 OBDER BY Year ASC, Monthlum ASC

i1 s Untitled
Mote

SalL | Monitor

Figure: Bookmark Editor

The figure above shows the Computers Sold per Month bookmark and the SQL that is associated with it. The Monitor field in the tree is
used to determine whether the SQL Bookmark is a monitor. Click on the checkmark to make the bookmark appear in the Monitor window,
i.e., make it possible to monitor. Uncheck it to remove it from the Monitor window.

The following is an example of the result set the above SQL Bookmark produces:

wiew: [T =]
Monthium tfonth | Count |
2119949 February 3/[=]
31998 March 10 E
411999 April 10
A1999 May 258
61999 June 3
711999 July
21999 August T2
91999 September
1019949 Cctober
111999 Novemher
121999 Decemher
12000 January

212000 Fehruary
2000 hdarek

3.585 sec/0.000 sec

112(245)

Figure: Monitor showing the result in Grid format

The interesting columns in the result are the Month and Count. The Year and MonthNum are there just to get the correct ascending
order of the result.

You can read more about how to manually create and edit bookmarks in the SQL Bookmarks chapter. The following sections describe how
you can get help creating the bookmarks for a couple of cases that are commonly used for monitoring.

Monitor table row count

It is very common to want to keep track of how the number of rows in a table varies over time. The right-click menu in the Data tab grid
therefore has a Create Row Count Monitor operation that creates a monitoring enabled SQL Bookmark for you automatically.

It creates a monitor with SQL for returning a single row with the timestamp for when the monitor was executed and the total number of

rows in the table at that time. Every time the monitor is executed, a new row is added to the grid, up to a specified maximum number of
rows. When the maximum row limit is reached, the oldest row is removed when a new row is added. Example:

PollTime RowCount
2003-01-23 12:19:10 43123
2003-01-23 12:11:40 43139
2003-01-23 12:21:10 43143

2003-01-23 12:22:40 43184

Figure: Example of the result from a Table Row Count monitor

The SQL for this monitor uses two variables, DbVis-Date and DbVis-Time. These variables are substituted with the current date and
time, formatted according to the correspondng Tool Properties settings. The reason for using these variables instead of using SQL
functions to retrieve the values is simply that it is almost impossible to get the values in a database independent way. Another reason is
that we want to see the client machine time rather than the database server time. You can, of course, modify the SQL any way you see
fit, as long as the PollTime and RowCount labels are not changed.

1 select '$$0bYis-Date$$ $$00Vis-Time$s' as PollTime, Apply Edit

2 counti™) as FEowCount

3 from Computers Export SOL...
Import S0L...

4

39 NS |
Mote
S0OL Manitar

Figure: Sample of the SQL for the Table Row Count monitor

DbVisualizer keeps the result for previous executions of the SQL Bookmark, up to the specified maximum number of rows, so that you can
see how the result changes over time. You define the maximum number of rows with the Allowed Row Count property in the Bookmark
Editor, under the Monitor tab. This property is automatically set to 100 when you use Create Row Count Monitor to create the monitor.

113(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

Allowed Row Count Apphky Edit
Enter number of rows that is allowwed in the grid. Reaching Export SOL...
thiz limit will cauze the leading rows to be removed.

Import S0L...
Rows.

50L | Monitor

Figure: Allowed Row Count property pane

You can change the value in the Bookmark Editor, to limit or extend the number of rows that DbVisualizer should keep. Setting it to 0 or a
negative number tells the DbVisualizer to always clear the grid between executions of monitors. Click the Apply Edit button to save the
new value.

Monitor table row count difference

In addition to tracking the number of rows in a table over time, you may want to see by how many rows the value changes. You can
create a monitor for this purpose with the Create Row Count Diff Monitor operation, available in the righ-click menu for the grid in the
Data tab.

In addition to the Row Count Monitor, the Row Count Diff Monitor reports the difference between the number of rows in the last two
executions:

PollTime RowCount RowCountChange
2003-01-23 12:19:10 43123 0
2003-01-23 12:11:40 43139 16
2003-01-23 12:21:10 43143 4
2003-01-23 12:22:40 43184 41

Figure: Example of the result from a Table Row Count Difference monitor

The SQL for this monitor adds a third column, named RowCountChange. It utilizes the fact that DbVisualizer automatically creates
variables for the columns in a monitor result set, holding the values from the latest execution. The RowCountChange column is set to the
value returned by the count(*) aggregate function for the current execution minus the value from the previous execution, held by the
RowCount variable. All columns in a monitor result set can be used like this to reference values from the previous execution of the
monitor.

1 select '$%0kYis-Date$d $500Yis-Time$d' as PollTime, Agply Edit
2 counti™) as FowCount,
E count™) - $$RowCount]|counti*i$ % as RowCountChange Export 5QL...

4 from Computers
_ul“
364 NS
Mote

|
0L [Maonitor

Figure: Sample of the SQL for the Table Row Count Difference monitor

114(245)

Monitor window

The Monitor window, launched via the Tools->Monitor menu option, is where you browse the active monitors. The monitors can be
organized either as tabs or internal windows. The monitor results can be viewed only as grids in DbVisualizer Free, while DbVisualizer
Personal adds the capability to view them as charts. The following figure is a screenshot of the Monitor window:

& DbVisualizer Personal - Monitor

File Edit View Run Window
Ee > O
[T 1: Computers Sold per Manth l [T 2: New Tasks per Month || [7] 3: Closed Bug Reparts per Hourl
2083 e =
Year MonthMum Month Count
1 149949 411599 April g ~
2 19949 511999 May 24
3 1999 61999 June 30 L
4 1999 71999 July 138
5 1999 21999 August 72
5 1999 91999 September 158
7 19949 1011999 Qctober 406
a 19499 111998 Movernber 151
] 19499 121998 December 2549
10 2000 12000 January 367
11 2000 212000 February 3497
12 2000 312000 March 445
13 2000 412000 April 37
14 2000 512000 May 342
15 2000 L2000, Iune 585 V%
0.460/0.000 sec || 97/4 ||E
|Auto Reload Seconds: |14 || []

Figure: The Monitor window with all monitors organized as tabs

The Monitor window has a menu and a toolbar at the top, an area for the monitors (i.e., monitoring enabled SQL Bookmarks) in the
middle, and an Auto Reload Seconds field and status bar at the bottom. The screenshot is from DbVisualizer Personal, with View
buttons in a toolbar for the selected monitor; these buttons are not included in DbVisualizer Free.

The main toolbar buttons have the following functions:

Toolbar Button Description
Reload Reloads all grids (i.e., executes all monitors and updates the result set grids)
Clear Current Clears the currently selected grid. To clear all grids at the same time, use the Edit->Clear All Monitors menu choice

Show Bookmarks Launches the Bookmark Editor

Start Monitors Starts auto-update of all monitors, repeatedly executing all monitors at the intervals specified by the Auto Reload Seconds fi
Stop Monitors Stops the auto-update
Show as Tabs Shows the monitors as tabs

Show as Windows Shows the monitors as internal windows

The Auto Reload Seconds field at the bottom of the main window is used to control how often to execute the monitors when auto update

115(245)

is running. Use the field to specify how many seconds to wait between auto-reloads. The status bar shows the time until the next auto-
update.

The specified number of seconds may be increased automatically by DbVisualizer if the total execution time for all monitors is longer than
the specified value.

The Window menu contains choices to control the appearance in the Monitor:

Show Grids Ctrl+4
= Show Texts Ctrl+5
ls? Show Charts Ctrl+6

Select Next Tab/Window Alt+Right

Select Previous Tab/Window Alt+Left
[® Cascade Windows Alt+C
[T] Tile Windows Yertically Al
= Tile Windows Horizontally Alt+H

Figure: Window menu operations

Show Grids, Show Texts and Show Charts toggle the monitor display between the selected views. Cascade and Tile are used to
automatically arrange the windows in the Windows view.

Charts

This section is only applicable to DbVisualizer Personal.

Charts in conjunction with the Monitor feature is really powerful, since monitored data is very often a good candidate to be charted. The
charting capability in DbVisualizer Personal is also available in the SQL Commander; everything described here also applies to the grids for
the result sets in the SQL Commander.

The basic setup of a chart is really easy. It is just a matter of selecting one or more columns that should appear as series in the chart. The
basic requirement is that the monitor has been executed, so that there are columns to choose the series from. The appearance of the
charts can be thoroughly customized using the advanced customization editor.

The chart view is controlled by the buttons in toolbar shown in the monitor area when the graph mode is selected:

E/J N

Red Aler:
i

140]—‘

Figure: Chart control buttons
The controls are from the left:

1. Show/Hide chart controls pane
2. Reset any zoom

The following sections explain the features and how to setup the chart.

Chart Controls

The chart controls are used to customize the Data that shall be displayed in the chart, optional axis labels, titles, etc. It is also used to
control the Layout of the chart in terms of chart type, legend type, etc.

116(245)

Data

Use the controls in the Data tab to customize which data shall appear in the chart.

Data | Layout
X-Axis Label: | -]
Serie | Column | Label]| Type|
[1 |year Long
S [|week vecka Long
EMES 1" Label String
[/ |Count Lang

Chart Title: |Red Alers per maonth

H-Axis Title: Eotation: [Mone
Y-aAxis Title: Fotation: |Mone

e

Figure: Data customizer

Select at least one Series from the list of columns. As soon as you select the a series, it is immediately added to the graph. The Label
field can be used to specify an optional label for the series as it will appear in a legend. The column name is used if no label is specified.

The X-Axis Label box is used to specify the column in the result that should be used to render the labels of the X-axis. Chart Title
specifies the main title of the chart. Thie SQL Bookmark name, as defined in the Bookmark Editor, is used as the default title. X-Axis Title
and Y-Axis Title specifies the titles for the X and Y axis. You can use the Rotation settings if you want the X and Y axis text rotated.

Layout

The layout tab is used to configure the appearance of the chart, primarily the type of chart want to use. Note that all settings are per

monitor. The following screen shots show some of the most commonly used chart types.

Support issues per month

Support issues per month

goo

400 rfﬂv

200 ﬂ“wd " T
Mo O MmO M O e e e
s om O o o T H d T o oM
o om om0 O 0 O O oA o0 O O
e = R N R A = = =1
e T = N e I = B Y Y = B VI S R YR oY

— ™ ™

117(245)

Support issues per month Support issues per month

00

&0

400

1999 2
1999 6
z00o 2
Z000 &
2001 2
z001 &
200z 2
2002 5
z00z 9
20031

1999 10
z000 10
2001 10

Figure: Chart type examples

The advanced layout editor can be used to customize every aspect of the layout. The basic layout settings, however, are the following:

Data | Lawout

Show Syrmitiols:

Showy Point Labels:
Show Inverted:
E{nk

Chart Type: |,&rea E|

Fill Pattern: |Salic -]
Legend Type: |Regu|ar E|

O0®X &

Aflvanced Settings: l Start Editar...]

Figure: Layout customizer

Show symbols specifies whether each value in a line chart should be represented by a symbol. Show Inverted defines whether the X
and Y axis will be switched. 3D specifies if a bar chart will be displayed in 3D. The Chart Type lists all the available chart types. Fill
Pattern defines how a bar, area and pie chart shall be filled. Legend Type specifies whether a legend will be displayed or not.

You can use the Advanced Settings editor to customize all the bits and pieces of the chart. This document does not explain all the

configurations that can be done using this editor since that would result in a 100 page book. Play around with the different settings and
see how the graph changes.

Settings that are made in the Advanced Editor are not saved between invocations of DbVisualizer.

Chart View

Zooming

Charts support zooming by selecting a rectangle in the chart area. Selecting another rectangle in that zoomed area will zoom the chart
even further, and so on. To reset the zoom, click the Reset Zoom button or press the "r" keyboard button while the mouse pointer is in the
chart area.

118(245)

Rotating

All 3D chart types support rotating and changing the depth of the chart. Use the following to change the appearance:

+ Shift+Left Mouse button
Changes the depth of the chart

¢ Ctrl+Left Mouse button
Changes the rotation of the chart

Examples:

Car Suppliers - %ales Per Market 2002

S00

400

300

200

100

o
o [=] = = =
P ¢ % & 3
= = " 5 ;
E = = iJ

Car

Car Suppliers - Sales Per Market 2002

Lexussaa

=} = = =
= = = =1
= E] o v
= b b =
= =3 (8]

Car

Car Suppliers - 5ales Per Market 2002

Lexussaa Yolvo Missanni
Renault Citreon YW

Car Suppliers - 5ales Per Market 2002

1000

a0o
600
400
00

1]

Lexussaa

Yolva
Miszanni
Renault
Citrean

[l
o
=

M rorhameric
Oasia
.Eurupe
Osouthamerica

Figure: Example of 3D charts

The above screen shots are just a few examples of the 3D chart types and how depth and rotation settings are used to change the

appearance.

Export

The export operation is context sensitive and works on the currently selected chart, graph or grid. The controls in the export dialog also

adapt to the currently selected object. If a chart is the current object the following export dialog will appear:

119(245)

5, DbYisualizer Personal - Export Chart _ &, DbYisualizen Personal - Export Chart

ieats Export Chart Settings afd Export Chart Qutput Destination
Output Format Qutput Destination

@Pa OPNG @ File |C:‘LScreenDump1.jpg |E]
Layout

Qrientation; @ Partrait () Landscape

Size: |As I5 E|
idth:

Height: 289

= Back || Mext =] l Cancel = Back l” Export || I Cancel

Figure: Export dialog for charts

The default size of the image that is about to be exported is the same as it appears on the screen. To change the size then either select a
pre-defined paper size in the Size list or enter a size in pixels.

120(245)

Create and Alter Table

Introduction

The Create Table, Create Index and Alter Table Assistants are used to create new tables and indexes and to alter existing tables. The
assistants are quite simple to use since they examine various metadata in the database (depending on which assistant is used) and then
let you point and click to define the table or index.

The assistants are launched from the Database->Selected Object main menu, from in the Database Objects tree right-click menu, or
from the Actions menu button in the object view. The menu choices are enabled only if a table or index can be created for the selected

node in the Database Objects tree.

Create Table

To create a table, select an appropriate node in the objects tree, typically a Tables node, and launch the Create Table assistant from one of
the menus as described earlier.

-55 MysSQL 5.0.22: localhost

E|j Databases

i =@ puredh (Default)

-0 =
T Viemd|aP Create Table. .

i 2 Refresh Objects Tree F5
: - @ Trigg| & Reconnect Ctr+SkiFft+R
-) DBA Views [showin Window...
- MySQL 4.1.20: ng
i MysQL3.23.41: 4 7 ShowjHide Tree Filter
i@ MysQL5.0.18: lo @ show|Hide Table Row Count
- MySQL5.0.18: lo
- MysQLaNC [l Capy Name Chrl+C
Oradle Clear Visited State

LB Ararle 100 Natalrsr

Figure: The right-click menu in the Database Objects tree
The Create Table assistant is organized in three areas from the top:

* General Table Info
Specifies the owning database connection, database and/or schema. These are picked up from the selection in the tree when the
assistant is started. Table name is is set to a default name that you can change to the real table name.

* Table Details
A number of tabs where you specify information about the columns and, optionally, various constraints. The Columns, Primary
Key and Foreign Key tabs are available for all databases. The remaining tabs are database-specific and depends on the features
supported by the database engine.

*« SQL Preview
The SQL previewer instantly shows the SQL statement for creating the table.

121(245)

E Create Table

Object Detai's STttt
Database Connection: |MySQL 5.0.22; localhost |
Database: | hasse v |
Schema:

Table: SALARY |
Engine: | InnoDB W |
Default Charset: |Iatin1 w |
Columns Primary Key ” Fareign Keys i! Indexes|
m.g: Mame Data Type Size Scale Mullakle Default q}
CustiD INTEGER O
DeptiD INTEGER E
Name VARCHAR 30
Email VARCHAR 30
Room VARCHAR 10 ™
Salary DECIMAL 7 2
Photo__|ptos_____. || | ®& |
Callation: Auto Increment:
Show 5L Execute l [Cancel
SOL Preview
g
1 CRERTE ~
A TABLE hasse.SALARY
3 i E
4 CustID INTEGEER HOT WULL,
5 DeptID INTEGER,
& Name VARCHAR(Z0] ., S

Figure: The Create Table assistant

Just enter as much information as is needed to describe the table and click Execute to create the table.

Columns tab

The Columns tab lists all table columns along with their attributes.

122(245)

Columns Frimary Key || Fareign Keys || Indexes|

Mame Data Type
CustiD INTEGER
DeptlD INTEGER
Mame VARCHAR
Email VARCHAR
Room VARCHAR
Salary DECIMAL
Photo stos |

Scale

7 2

Mullable

REFEEO

hY A8

Default

Collation:

Auto Increment:

<[lle

Figure: The Columns tab (for MySQL)

Add columns by clicking on the Add button, and remove the currently selected column by clicking on the Remove button. You can
reorganize the columns using the Up and Down buttons.

Enter the name of the column in the first field and select a data type from a drop down list in the second field. The list contains the names

of all data types the database supports.

Data Type
| NTEGER

DATETIME
DECIMAL
DOUBLE
DOUBLE PRECISION
FLOAT

INT

INTEGER

HLOMNG WARBINARY
LOMNG YARCHAR
|LOMGBLOB
LOMGTEXT
MEDIUMELOB
MEDIUMINT
MEDIUMTEXT
NUMERIC

REAL

sET

SMALLINT

b

/4

Figure: Data Type list (for MySQL)

For some data types, such as character types, you may also specify a size, i.e., the maximal length of the value. For others, like the

decimal types, you can may specify both a size and a scale (the maximal number of decimals).

TR VA A = =1
Salary DECIMAL 7 2
m 4 —/

Figure: Size and scale for a DECIMAL data type

The above example will allow a total length (including the decimal places) of 7. Examples:

123(245)

12.112 Error!
1921211.11 Error!

The last two fields let you specify if the table is nullable and a default value to use for rows inserted into the table without specifying a
value for the column.

Below the column list, you may see one or two additional fields, depending on the features supported by the database you create the table
for. The fields are enabled when you select a column that they apply to. The Collation field is enabled for character columns if the database
supports the declaration of a collation for textual data. The Auto Increment field is enabled for numeric fields if the database supports
automatically inserting the next available sequence number in @ numeric column.

The Create Table assistant uses database metadata to try to enable only the fields that apply to the selected data type, but please note
that it is not always possible. For instance, there is no metadata available to tell if a data type requires, or allows, a size. If you don't enter

a required attribute or enter an attribute that is unsupported for a data type, you will get an error message when you click Execute to
create the table.

Primary Key tab

The Primary Key tab contains information about an optional primary key for the table. A primary key is a column, or a combination of
columns, that uniquely identifies a row in a table.

Columns | Primary K2y | Fareign Keys | Indexes |

Consktraink Name:| |

Column Include

DeptiD

Mame
Email

O
O
O
Room il
O
O

x Iil >

Salary
Fhoto

Figure: Primary Key tab

You can, optionally, enter a constraint name for the primary key constraint in the Constraint Name field. Select columns to be part of the
primary key by clicking the checkboxes in the Include field in the columns list.

You can change the order of the columns in the key by selecting a column and move it using the Up and Down buttons.

Foreign Keys tab

In the Foreign Keys tab, you can declare one or more foreign keys for the table. A foreign key is a column, or a combination of columns,
that refer to the primary key of another table. Foreign keys are used by the database to enforce integrity, i.e., that there is a row in the
referenced table with a primary key that matches the foreign key value when a new row is inserted or updated, and can optionally declare
rules for what to do when a referenced primary key is removed or updated in the referenced table.

124(245)

| Calumns || Primary Key | Foreign Keys | Indexesl

Caonstrainks

Constraint Mame Columns On Delete Action On Update Action @
Fk_DEPT DeptlD g

Referenced Table
Database Schema Table

test v EMPLOYEES w |

Canstraint Columns

Column Include Referanced Column FY
CustiD E

DeptlD
Mame
Email

Do

[

|

4

Figure: Foreign Keys tab
The tab has the following sections:

* Alist of foreign keys.

» Controls for selecting the table the currently selected foreign key refers to, including the database (catalog) and/or schema for
the table.

* Alist of all columns for the table being created.

To declare a new foreign key constraint, click the Add button next to the list of foreign keys. You can then enter a name for the foreign
key in the first field in the list, and select On Delete and On Update actions from the pull-down menus. The pull-down lists include all
actions that the database support, typically CASCADE, RESTRICT, NO ACTION and SET NULL. The Columns field is read-only and gets its
value automatically when you select which columns to include in the key later.

Next, use the Referenced Table controls to select the table that the foreign key refers to.
Finally, check the Include checkbox for all columns in the column list that should be part of the foreign key and then select the
corresponding column in the referenced table from the pull-down menu in the Referenced Column field. You can change the column order

for the key with the Up and Down buttons.

To remove an existing foreign key, select it in the list in the top section and click the Remove button.

Unique Constraints tab (database-specific)

The Unique Constraints tab is only available for databases that support this constraint type. A unique constraint declares that the columns
in the constraint must have unique values in the table.

| Colurmns || Primary Key || Foreign Keys | Uniqus Caonstraints | Check Constraintsl

Canstrainks

Constraint Mame Columns

Constraint Columns

6] e

Column Include
CustD F
Mame [
Email i
Room F
Salary [l
Photo F

125(245)

Figure: Unique Constrains tab

The top portion of the tab holds a list of all unique constraints, and the lower portion holds a list of all table columns.

To create a constraint, click the Add button and optionally enter a constraint name in the Constraint Name field. The Columns field in the
constraints list is read-only, filled automatically as you include columns in the constrain. Select the columns to be part of the constraint by
clicking the checkboxes in the Include field in the columns list.

You can change the order of the columns in the constraint by selecting a column and move it using the Up and Down buttons.

To remove an existing constraint, select it in the list in the top section and click the Remove button.

Check Constraints tab (database-specific)

The Check Constraints tab is only available for databases that support this constraint type. Check constraints declare that a column value
fulfills a certain condition when a row is inserted or updated. Some databases uses check constraints to enforce nullability rules, so when
you alter a table (as described later), you may see auto-generated check constraints for columns that you marked as not allowing null
values in the Columns tab.

| Calumns || Primary Key | Forsign Keys | Unigue Constraints | Check Canstraints l

Constraint Mame Condition d}

SQL_TABLE_CHECHK_2083 "CustiD® is not null
: EaLary =0 |

Figure: Check Constrains tab

To create a check constraint, click the Add button and optionally enter a constraint name in the Constraint Name field. Enter the condition
for the column in the Condition field. You can use the same type of conditions as you use in a SELECT WHERE clause.

To remove an existing constraint, select it in the list and click the Remove button.

Indexes tab (MySQL only)

The Indexes tab is only used for the MySQL database, as a replacement for the Unique Constraints tab. The reason is that for MySQL, the
CREATE TABLE statement can be used to declare both unique and non-unique indexes. MySQL also does not make a clear distinction
between a unique constraint (a rule, most often enforced and implemented as an index by the database) and a unique index (primarily a
database structure for speeding up queries, with the side-effect of ensuring unique column values), as most other databases do.

126(245)

| Columns || Primary Key || Fareign Keysl Indexesl

Caonsktrainks

Constraint Mame Columns Unigue
[¥_DEPT DeptlD

Constraint Columns

b e

Column Include
CustD |
Mame |
Email |
Room |
Salary |
Phatao |

Figure: Indexes tab

The top portion of the tab holds a list of all indexes, and the lower portion holds a list of all table columns.

To create an index, click the Addbutton and optionally enter a name in the Constraint Name field. The Columns field in the constraints list
is read-only, filled automatically as you include columns in the constrain. If you want the index columns to have unique values for all rows
in the table, click the checkbox in the Unique field.

Select the columns to be part of the index by clicking the checkboxes in the Include field in the columns list. You can change the order of
the columns in the constraint by selecting a column and move it using the Up and Down buttons.

To remove an existing constraint, select it in the list in the top section and click the Remove button.

SQL Preview

The SQL Preview area is updated automatically to match the edits made in the assistant. The preview is read only, but you can copy the
SQL to the SQL Commander and flip between formatted and unformatted views using the two buttons in the toolbar above the preview
area.

Execute

When you are satisfied with the table declaration, click the Execute button to create it.

Alter Table

To alter a table, select the table node in the objects tree and launch the Alter Table assistant from the Database->Selected Object main
menu, the Database Objects tree right-click menu, or from the Actions menu button in the object view.

127(245)

E Alter Table

Object Dekails
Database Connection: |I'~"I~;SQL 5.0.22; localhost

|
Dakabase: |:e:: |
Schema: | |
Table: [EMPLOYEES |
Engine: | MyISAM v
Default Charset: |Iatin1 v |

Calumns | Primary Key || Fareign Keys || Indexes|

Mame DataType Size Scale Mullahle Default q}
EMAIL YARCHAR is] L ~
PHONE_NUMBER | VARCHAR 20 B E
HIRE_DATE DATE O
JOB_ID VARCHAR 10 O
SALARY DECIMAL 8 2
COMMISBION_PCT |DEGIMAL 2 2
MANAGER_ID INT 11
DEPARTMEMT_ID | INT 11
PHOTO LOMGBLOE [v]

DECIMAL v
Collation: Auta Increment: [
[w] Show SQL [Execute J [Cancel

SCL Preview

ed[E]

ALTER. TRABLE test.EMPLOYEES ADD (3ALARY DECIMAL(T,Z))

Figure: The Alter Table assistant

The Alter Table assistant has exactly the same layout as the Create Table assistant, with all information about the table you wish to alter
shown when you launch it. As you make changes, such as adding a column, the SQL Preview area shows the corresponding ALTER TABLE
statements. See the Create Table section for descriptions of all parts of the assistant.

The controls, such as the fields, pull-down menus and buttons, in the assistant are only enabled if the ALTER TABLE statement for the
database holding the table provides a way to alter the corresponding table attribute. For instance, for a database only allows the size of a
VARCHAR column to be altered, the Size field in the Columns tab is disabled for all columns with other data types. If you find that you can
not make the change you want, it is because the ALTER TABLE statement does not allow that change to be made.

128(245)

Edit Table Data

Introduction

The table data editing feature mimics how editing is performed in standard spreadsheet applications; just click a cell value and edit. Edits
are saved in a single database transaction which ensures that all or no changes are committed. The editing feature supports saving binary
and large text data and it even presents common data formats in their respective viewers, such as image viewer, XML, HEX, etc.

A block of data can easily be interchanged via standard copy and paste operations between the grid editor and other applications, such as
Microsoft Excel, StartOffice and OpenOffice.

Editing is primarily performed in the grid editor. For some data, such as binary or large formatted text data, editing in the grid editor is not
optimal, so for these situations, we recommend that you to use the form or cell data editors. The form editor presents a single row of data
in a separate window, organized as a form with the column name in the first column and the data in the second column. All editing
capabilities in the grid editor are also available in the form editor. The cell editor is used to edit a single cell value in a separate window.
This is useful when editing formatted text data or to browse binary data.

Most of the editing functions have a key binding assigned. Check the right click menu in the data grid to find out what they are.

Features that support editing

Editing of table data can be performed in the Database Objects->Data tab and in a result set generated by a SELECT statement in the
SQL Commander.

There are a few conditions that must be fulfilled for editing to be enabled in the SQL Commander:

It is a result set

The SQL is a SELECT command

Only one table is referenced in the FROM clause

All current columns exist by name (case sensitive) in the identified table

el ol

The editing tool bar is hidden if these rules are not met.

Update and Delete must match one table row

The editing features in DbVisualizer ensure that only one row in the table will be affected by update and delete edits. This prevents the
user from doing changes in one row that might also silently affect data in other rows. DbVisualizer uses the following strategies to
determine the uniqueness of the edited row:

1. Primary Key
2. Unique Index
3. Manually Selected Columns

The Primary Key concept is widely used in databases to uniquely identify the key columns in tables. If the table has a primary key,
DbVisualizer will use it. There are situations when primary keys are not supported by a database or when primary keys are supported but
not used. If no primary key is defined, DbVisualizer will check if there is a unique index. If there are several unique indexes, DbVisualizer
will pick one of them. If there is no primary key or any unique indexes defined for the table, you need to manually choose what columns to
use. The key column chooser is automatically displayed if the key columns can't be determined automatically.

Edit Multiple Rows

The grid editor supports editing multiple rows and saving all changes in one database transaction. Edited rows are indicated with an icon in
the row header:

7 Cell(s) in the row has been edited
* Row is new
% Row is duplicated from another row

129(245)

Row is marked for deletion (edit is not allowed)

Edits are saved when explicitly saving changes via the Edit Table Data->Save Edit(s) right click menu choice or via the Save button in
the tool bar.

Data Type checking

When leaving an edited cell the new value is validated with the data type for the column. If there is an error, the following dialog is
displayed.

L] = EMPLOYEE_ID FIRST_MAME LAST_MAME EMAIL PHONE_NUME
1/Paula Clarksaon paula@pong.com |+1 490 4112 2¢

RE] Stan Stanley stan@pong.com |+1 490 4112 87

DbVisualizer Personal - Error Alert

@ The entered value dossn't makch the Format for the column.

Value: "2a"
Valid Range: -9223372036854775808 -- 9223372036854775807

Correct the value or press ESC key to revert the edit,

Figure: Data type error

New Line and Carriage Return

If a cell in the grid editor or form editor contains new line, carriage return or tab characters, these are not visually represented in the grid.
Instead a warning will be displayed whenever you try to edit such value:

RO E| Y- R EEEE = w0 Q-
MW DEPTMHOQ RESLUME
1 jully 20 d -
2 Boo 30 {null)
3 poo0 30 (null)
4 jull)
5 ko UI DbVisualizer Personal - Confirmation Alert
5 pull “» | The datain this cell contains formatting charackers (newline, carriage return or tab),
7 jully \V It is not recommended to edit this data in the inline editor as it aukomatically removes any
8 fum formatting characters, Instead you should use the designated multilined Cell Editor.
9 |23 o — ,
T 0 |_;Ed|t in Cell Editor _| [Edit Arvyway] [Cancel]
11 ull) T
12 jully 30{null)y

Figure: Warning when editing a value containing a carriage return, line feed and tab characters

You may chose to edit the value in the Cell Editor which is recommended as the control characters will then be preserved. The other
choice is to edit the value anyway and risk loosing the control characters. This is not recommended.

The Cell Editor is a designated multi line text editor suitable for editing large chunks of text:

130(245)

B Cell Form (Editable) - "Name”

| S&v DR

Text |

Use Wrapped Editar {automatic ward wrap)

Paul
Burt
Anderson iz a good human being

Mame CHAR (50)
Allow MULL
Text, 40 Bytes, kext/plain

Close

Figure: Editing multi lined text data in the cell editor

Grid Editor

The grid editor tool bar is decorated with buttons for editing and the right-click menu contains all related operations.

Ecit Row in Form Edit Cell in Form

Delete Insert Value
Duplicate Mark as Changed
Insert Undo Edits
Save Edit(s)

v
O Y |

FEFIEIEEEICE

“+EMPLOYEE_ID' FIRST_MAME LAST_MAME EMAIL
1, 1|Paula Clarkson paula@pong.co
2 T ?m_mﬂnlnu stan@nnnn romr

Double click row
numberto open
row in Form editor

Figure: Toolbar buttons to control the grid editor

Cells that have been edited are indicated by a yellow background color. Only these columns will be updated when the changes are saved in
the database. All cells in the edited row are highlighted with a yellow border to indicate that some cell(s) in the row has been edited.

Insert row

To insert a new row, choose the Edit Table Data->Insert New Row right-click menu choice or press the Insert toolbar button. The new
row will be inserted after the selected row or at the top if no row is selected. You can now start editing the cells in the grid or open the

form editor to insert values.

Update row

To update a row, just double click in the target cell and modify the value.

131(245)

Delete row(s)

One or multiple rows are marked for deletion via the Edit Table Data->Delete Row(s) right-click menu choice or by pressing the
Delete toolbar button. Each deleted row will be highlighted with a red background color and no further editing of the content is allowed.

Deleting a row that has been updated will automatically undo all edits and show the original values. This is done so that it is obvious which
data will be deleted. Deleting a row that has been inserted (or via duplication) will be removed from the grid.
Duplicate row(s)

Duplicate a row or several rows by selecting the cells in the rows that should be duplicated, then choose Edit Table Data->Duplicate
Row(s) or press the Duplicate tool bar button. All cells in the new row will be marked as being edited (yellow background color). The
exception is any Auto Increment field, which should be assigned a value by the database.

Copy/Paste

Copying selected cell values is accomplished via the Copy Selection right-click menu choice. The data on the clipboard may then be
pasted either into DbVisualizer or any external application. The copy and paste operations in the grid editor are defined by the Grid-
>Copy category in Tool Properties. The default setting for column and newline delimiters are sufficient for most uses.

Paste data from Excel and OpenOffice

The grid editor supports pasting data from the major spreadsheet applications. The grid editor support pasting single data as well as block
of data.

Copy from Excel Paste into DbVisualizer Grid
A single cell is copied in Excel The selected cell is pasted into one selected target cell
Al B | c | D -+ EMPLOYEE_ID FIRST_MNAME LAST_MAME
1 | 98 Roger |Wruck Jsewell@hotmail.co 1 93| Roger Wruck
2 104 Stesve Heer gertveters@hotmail. 2 104 Steeve Heer
3 105 Marc eller mintegen@hotmail. 3 105 Mare Meller
4 (102 Elernhardglﬂessler _!hrian@yahuu.cum 4 102 Bernhard Kessler
5 193 Luci Young stephen@osp.edu .
— 5 193 Luci Young
6 | 185 Robert |Austad kathleen@hto com 5 185 Roberl Austad
7 183 Pawan |Yucel michael@ware.de obe LSt
8 |181Hong | Graff mail1235@yahoo.df ==> 183 Pawan uce
9 174 Rick Stewart jay@tury com 8 7 181 Hpng M:
10 | 171 Michael |Palm mike@gmail.com 9 174 Rf“‘ Stewart
11154 Peter |Pullabhotla /dsimmons@at123 i 10 171 Michael Palm
A single cell is copied in Excel The selected cell is pasted into multi selected target cells
Al B | C | D -+ EMPFLOYEE_ID |FIRST_MNAME LAST_NAME
1| 98 Roger [Wruck jsewell@hotmail.co 1 93 Roger Wruck
2 104 Stesve Heer gertvetersi@hotmail. 2 104 Steeve
3 105 Marc eller mintegen@hotmail. 37 105 Marc
4 | 102 Elernhardgl-(essler _!hrian@yahuu.cum 47 102/Bernhard
5 193 Luci Young stephen@osp.edu 5 7 193 Luci
6 | 185 Robert | Austad kqthleen@htn.cnm 5 7 185 Robart
T | 183 Pawan |[Yucel michael@ware.de
—— : 4 183 Pawan
g | 181 Hong Graff mail1235@yahoo.d¢ ==> - ppy o
9 174 Rick Stewart jay@tury com png
10 | 171 Michael [Palm mike@gmail .com 174 R!Ck Stewart
1111584 Peter [Pullabhotla (dsimmonsi@at123.0 L 171|Michael |Palm

132(245)

A block of cells is copied from Excel The block is pasted into the selected region

A B | c] D +EMPLOYEE_ID FIRST_MAME LAST_MAME
1| 98 Roger |[Wruck jsewell@hotmail.co 1 a8 Roger Wruck
2 104 Stesve Heer gertveters@hotmail. 2 2 Mare Meller
3 | 10&5)Marc Meller mintegen@hotmail. 3 7 EBemhard [Kessier
4 (102 Berrjhard Kessler briani@yahoo.com 17 Mo |voung
5 [193)Luci Young stephen@osp edu 5 PERober JAustad
6 | 155|Robet Austad kathleen@hto.com =

= . - 6 185 Robert Austad
7 | 183 Pawan |Yucel michael@ware.de
8 | 181 Hong Graff mail1235@yahoo.d¢ ==> ! 183 Pawan Tueel
9 174 Rick Stewart jayiEtury.com : 181 Hong Gratr
10 | 171 Michael [Palm mike@gmail.com 9 174|Rick Stewart
111154 Peter Pullabhotla | dsimmonsi@at123 i 1 171 Michael Palm

A block of cells copied from Excel The block is pasted into a non equal number of target cells

= = | E | - . 4+ EMPLOYEE_ID FIRST_MAME LAST_MAME EMAIL FHO
1| 98 Roger |Wruck jsewell@hotmail co — _— :
2 104 Steeve | Heer gertveters@hatmail. 1 EEY Foger Wruck Jsewell@hutmall.cpm +49
3 | 1054Marc Meller mintegen@hotmail. - L] Steeve Heer gertveters@hotmail.com | +46
4 [102|Bernhard Kessler brian@yahoo.com DbVisualizer Personal - Notification Alert
5 | 193 Luci Young stephen@osp.edu
6 | 165|Robert Austad kathleen@bto.com A You have requested to paste 4 rows into the selection of 2 target rows.
T [183 Pawan Yucel michael@ware de . Do you want ko Add Rows in the grid so that all rows in the clipboard are pasted? §*
8 | 181 Hong Graff mail1235@yahoo.di ==>
9 | 174 Rick Stewart jay@tury.com |__AddRons | |Don't AddRows | [Cancel
10 | 171 Michael [Palm mike@gmail com
11 1154 Peter Pullabhotla |dsimmonsi@at123.i :

Insert pre-defined values (Set Selected Cells)

The Edit Table Data->Set Selected Cells right-click menu choice or the Set Selected Cells tool bar button lists a few pre-defined
functions that will fill the selected cells with data.

EELI

Inserk Current Dake ({ Unformatted) H

Insert Current Time { Unformatted)
Insert Current Timestamp { Unformatted)
Sek ko Empty String

Set ko MULL " (null) ”

Figure: Set Selected cells functions

Use these to insert data into the selected cells. Note that the target column type must accept the selected function. Nothing will happen if
choosing for example "Insert Current Time" into a DATE data type.

Undo Edit(s)

The Edit Table Data->Undo Edit(s) operation is used to revert all edits in the selected cell(s). Reverting all cells in a row that are
marked as Insert or Duplicate will remove the complete row from the grid while a Delete marked row is cleared from its delete state.
Undoing updated cells simply reverts the changes to the original values.

133(245)

Key Column(s) Chooser

Normally database tables have a primary key or at least one unique index. If this is the case, editing is no problem. If there is no
uniquely identify rows in the table, you need to manually define what columns DbVisualizer should use. While saving the changes

way to

DbVisualizer will check that there is a way to identify unique rows in the table. If it cannot be accomplished, the following window is

displayed.

Id FirstMame LastMame
1 7| 1|Lorene Hart

2 Mari

2
3 3|Ernst Gunther
4 4| 5ebastian |Frank

. DbVisualizer Personal - Key Column(s) Chooser

Select the column(s) that will be used to Form the where clause for update
and delete edits. This is used by Dbvisualizer to ensure that only one row
in the database table will be affected by each edited row.

(If there is a primary key or unique index For the kable then the Key Column
is automatically set),

Key Column Column Mame Data Type
g NTEGER |
F Firsttlame WARCHAR
F LastMame YARCHAR

Clase

Figure: Key Column(s) Chooser

The key column chooser can be manually opened via the Edit Table Data->Key Column Chooser right-click menu choice.

If the database request to save the edits cannot uniquely identify the single row that should be changed, the error dialog is displayed and

the editing state is kept for that row in the grid editor.

Preview Changes

You may preview the SQL statements that will be executed when choosing to Save the edits. It is displayed via the Edit Table Data-

>SQL Preview right-click menu choice.

s < Id Firsthame Lasthame
1 1|Lorene Hart i
2 2|Maria Laorenzo .
3%
4 4|5ebastian Frank
5 f Sehastian |[Frank |
6 & 5/5ehastian Mullholland

. DbYisualizer Personal - SQL Preview

This is a preview of the SQL statements that will be executed when the table data edits are saved.

Mote: Dbvisualizer use bind variables when executing these statements. The effect of this is that this textual preview
representation may not be 100% compliant with data formats for the target database i.e. they may Fail to execute in For
example the SQL Commander,

1 delete from Friends where Id = 3:
2 imsert into Friends (Id, FirstName, LastWName) wvalues (o, 'Sebastian', 'Frank'):
S update Friends set LastName = 'Mullholland' where Id = 5

134(245)

Figure: SQL Preview

(The listed SQL statements may not be 100% compliant as the save process use variable binding to pass values to the database).

Saving Changes

To save table data edits, select the Edit Table Data->Save Edit(s) right-click menu choice or the Save toolbar button. If there are rows
that has been edited or deleted, these are first checked so that there is only one database table row affected by each edited row. If this
pass is successful DbVisualizer will save the changes in the table. The progress is displayed in the status bar and Save may be interrupted
by pressing the Stop button in the toolbar. While save is in progress, no other operation may be performed in DbVisualizer, i.e., the rest of
the application is locked.

Transaction Control

DbVisualizer use the physical root connection for the actual database connection when saving table data. Once save is requested,
DbVisualizer will implicitly set the auto commit state to off and reset it to what it was prior to requesting save when saving is finished. If
the Use Single Shared Physical Database Connection is enabled in connection properties, DbVisualizer will check whether there are
any uncommitted updates in the database when save is requested. If there are uncommitted changes you must first commit or rollback
these changes before save is started.

Saving table data edits are batched in a single transaction. There is no restriction of number of edits that may be saved in a single save
operation, but the database server may put either explicit or implicit restrictions. The connection property Physical Connection-
>Transaction->Commit Batch Size specifies how many edits should be performed in the database table until commit is automatically
initiated. If for example saving 150 edited rows and an error occur while saving the 121:st row, then the first 100 rows will have been
committed and the rest are left unchanged. The visual indication in the grid after a non complete save operation is that rows that weren't
saved keep their original editing state indicator. Rows that were saved properly are indicated with a green checked cylinder icon.

PADATE TDATE DESCRIPTION 5
95 % |2005-05-10 |2005-05-1000:52:34.0 |Program Registration |-
96 & |2005-05-10 |2005-05-1010:59:15.0 |Program Registration |-
97 [& |2005-05-10 |2005-05-1017:04:42.0 |Program Registration |-
93 @ |2005-05-10 |2005-05-1017:20:16.0 |Program Registration |-
99 & |2005-05-10 |2005-05-101%:51:18.0 |Program Registration |-
100/(& |2005-05-10 |2005-05-10 20:48:33.0 |Program Registration |-

101 = 4:4 P arm R
102 = P arm R
103 = P arm R
104 %= 4 P arm R

Figure: Saved rows state

The cylinder icon with the green check mark indicate that the row was saved in the database table. Normally the grid is reloaded after a
successful save operation and there is no cylinder icon displayed. It only appear if the save operation was partly successful. Rows that
weren't saved are still represented with the original editing state icon and you may request save one more time.

Rows that has been properly saved (indicated with the cylinder icon) cannot be edited until all rows are saved properly or the grid is
reloaded.

Permissions

All of the insert, update and delete requests performed by the grid editor may be confirmed before being executed by the database server.
Specify in Tool Properties->Permissions the confirmation state. The default behavior is that delete operations must be confirmed while
insert and update need no confirmation.

Errors

If a database error occur while saving changes, details about the errors are displayed in a window along with the actual SQL that was
executed.

135(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498

Form Editor/Viewer

The Form Viewer is available in the right click menu for all grids in DbVisualizer. It is used to browse information and to present binary
data in viewers.

The Form Editor add editing capability in the form viewer. This editor is useful when inserting new rows and when it is important to get a
more balanced overview of all the data.

The form editor "rotate" the data in one row and presents it in a form with the column name as label. All edits made in the form editor
are reflected in the grid with the edited state icon being updated along with new values. Saving edits in the database is always done in the
grid editor.

Open the form editor via the Edit Row in Form right-click menu choice, via the button in the toolbar or by double clicking the row
number header.

= EMPLOYEE_ID FIRST_MAME LAST_MAME

1 \Roger |Bjarevall |roger@ming.se 7 BINARY, 408 679 Bytes

2 104 UIF Andersson |uffe@ming.se ik BINARY, 514 969 Bytes |5
3 105 Hans Bergsten hans@ming.se t BIMNARY, 4 353 Bytes I
4 102 1an Anderssnn lianne@Eming se {

Figure: A row in the grid

Here is the same row as selected in the previous screen shot displayed in the row form window.

B Row Form (Editable)

R EBE O v -p Q- |
Key Mame WValue
~ EMPLOYEEID 101

FIRST_NAME Roger

LﬂST_NﬂME | Bjarevall

[EMAIL |roger@ming.se

PHONE_NUMBER +46 § 55659250

HIRE_DATE [1993-07-01

JOB_ID

SALARY 112418.00

COMMISSION_PCT 0.91

MANAGER_ID o

DEPARTMENT_ID 4

PHOTO

EIINAR‘!‘: 409 6?9_ Bytes, imageipng

cv |nui
J0B_ID VARCHAR (10)
Mot NULL

Close

Figure: Form viewer

The Key optionally show with an icon what columns are primary key columns and the Name is the column name in the grid. None of Key
or the Name can be edited. Edit the values in the form in the same way as these are edited in the grid editor.

The form viewer presents images as thumbnails. The size of these are controlled in Tool Properties->Form Viewer->Image

136(245)

Thumbnail Size. To see the original size of an image, open the cell in the cell viewer either by selecting Edit in Cell Window in the
right-click menu, the toolbar button or by double clicking on the image.

Cell Editor/Viewer

The Cell Viewer is available in the right-click menu for all grids in DbVisualizer. It present the data for a single cell (column in a row) in a
window. If the data is recognized it will be presented in a corresponding viewer:

« Image viewer

« XML viewer

+ Serialized Java object viewer
* Hex viewer

« Text viewer

The cell viewer allows saving data to file and print.

The Cell Editor adds editing capability in the cell viewer. You may import data from a file or manually change the text in a text editor.

Opening an image in the cell editor will display the following window.

ell Form (Editable) - "PHOTO"

dR|S & e D=2

i Image \ﬁewer§| Hex 'u'iewer|

<

PHOTO ELCE
Allow MULL
BIMARY, 556 082 Bytes, image[png, size: 617x546

Close

Figure: Cell editor

The tabs at the top shows the available viewers for the current data. When you load a file into the cell editor, the tabs may change to
reflect the newly loaded data. To nullify the cell value, press the Set Value to NULL toolbar button.

137(245)

Read more about binary and formatted text data in the following chapters.

Binary/BLOB

Due to the nature of binary/BLOB and CLOB data, cells of these types can only be fully modified and viewed in the cell editor. (There is
partial support in the form editor to view image data and to load from file). Editing binary data can be done by importing from a file or via
the text editor.

Binary data in DbVisualizer is the generic term for several common binary database types:

*« LONGVARBINARY

* BINARY
* VARBINARY
- BLOB

Image Viewers

The image viewer supports displaying the full size images for the following formats:

- GIF
- PG

- PNG
- TIFF
- BMP

138(245)

Cell Form (Editable) - "P|

OB | oo w| D=

Image Viewer | Hesx Viewer |

PHOTOD LOMNGELOB
Allow NULL
BINARY, 1 281 112 Bytes, image/png, size: 1126x629

Close

Figure: Image viewer

XML Viewer

The XML Viewer shows the content of an XML document in a tree with color highlighting. You can switch to an editable text view by

pressing the Edit value in text editor tool bar button.

139(245)

Cell Form (Editable] - "t_blob™

O & &0 2

BINARY, 165 181 Bytes, textjxml

| - <ActionGroup label ="Script Object to New SQL Editor”= s
) <Action id ="oracle-view-drap” label ="Drop View" reload ="trug” icon ="remave”>
-3 <Input label ="Schema” style ="text” editable ="False">
=25 <Defaul=
${schema}
=-IC) <Input label ="View" style ="text” editable ="False">
225 <Default=
L. g{objectname}
—-Ic < Command =
=G Fte
Lot drop view "${schema}"."4{objectname}" -
=13 <Confirm:>
i...# Really drop view ${schema}.${objectname}?
B <Result=
L View ${schema}.${objectname} has been dropped!
=03 <Action id ="oracle-view-rename” label ="Rename View" reload ="trug” icon ="raname">
E---E}{Input label ="Schema” style ="text” editable ="false">
| E-)<Defaul:
é---&}<1nput label ="view" style ="text" editable ="False">
! [3-<Default=
: i...# ${objectname}
. <Input label ="Maw View Mame" name ="newTable” style ="text"=
é---b<C0mmand>
N =B o L o
i...# rename "${objectname}" to "${newTable}"
=-IC3«Confirm>
‘...# Confirm rename of view ¢{objectname} to ${newTable}? W
P >
t_blob ELOB
Allow MULL

Close

Figure: XML viewer

Serialized Java Objects Viewer

The serialized Java object viewer render a java object in a tree style. All aspects about the object may be browsed.

140(245)

E Cell Form (Editable] - "t_blob™

O & DR

Java Object Viewer | Hex Viewar |

>

Taday
java.io.File
[=}--E3 java.io.File
LD String path [tmp/a.ser
null
java.util. Date
; =3 java.util.Date
EID javax.swing. JPanel
=3 javax.swing.JPanel
= javax.swing. JComponent
=323 java.awk.Container
- [int containerSerializedDataversion 1
- O boolean FocusCycleRook False
- 3 boolean FocusTraversalPolicyProvider False
- @ int ncomponents 0
= @ java.awt,Component[] componant
E java.awt, Component[0]
- @ java.awt LightweightDispatcher dispatcher null
= @ java.awt.LayoutManager layautMgr
EID java.awt,BorderLayout
=B java.awt.BorderLayout
- @ int hgap 0
-~ @ intvgap 0
- @ java.awk.Component center null
-~ @ java.awk.Component east null
-~ @ java.awt.Companent FirstTkem null
-~ @ java.awt.Compaonent FirstLine null
- O java.awk.Component lastItem null

t_blob BLOE
Allow MULL
BINARY, 2 964 Bytes, application]x-java-serialized-object

Close

Figure: Binary data viewer for serialized Java objects

Hex Viewer

The generic Hex/Ascii viewer shows the hex representation of every byte in the data and its text representation. This is the default viewer
for unknown data.

141(245)

& Cell Form (Editable) - "t_blob”

TR &[] &

00000000: AC ED 00 05 74 00 05 54 - &F &4 §1 79 73 72 00 0Ct..Todaysr.. ”
00000001: gA €1 76 €1 ZE €% €F 2ZE - 4& €9 &C €5 04 ZD A4 45 Jjava.io.File.-.E
00000002: OE OD E4 FF 03 00 01 4C - 00 04 70 €1 74 €8 74 00s L..patht. _

000000D3: 12 4C 6A &1 7& &l ZF &C - &1 &E &7 2ZF 53 74 72 89 .Ljavaslang/3tri
00000004: gE €7 3B 78 70 74 00 OA - 2F 74 6D 70 2F el ZE 73 ngi;xpt../tmpsa.s
00000005: &5 72 77 02 00 ZF 78 70 - 73 7Z 00 OE &A &1 78 81 erw../xpsr..Jjava
0000000E: ZE 75 74 g% &C ZE 44 €1 - 74 £5 €8 EA FD 01 4B 5% .util.Datehj..ET
00000007: 74 12 03 00 00 78 70 77 - 08 00 00 01 13 22 FA4 D7 C....XPW...uw.u..
00000008: 1E 78 73 72 00 1Z gA €1 - 7 €1 78 ZE 73 77 €2 EE .x3r..Jjavax.swin
0000000%: &7 ZE 44 50 &1 &E &5 &C - 5D 44 0OA 1E 10 2ZZ 42 Z4 g.JPanel]D....E§
0000000A: 03 00 00 78 72 00 le 6A - €1 7e €1 78 ZE 73 77 €9 ...xr..Jjavax.swi
0000000B: £E &7 ZE 4A 43 eF eD 70 - gF eE &5 €E 74 &l EZ 48 ng.JComponentm. F
0000000C: 42 ZA 37 35 Z1 03 00 12 - 54 00 0 g1 €l 54 €5 78 EB*75!...Z..aaTex
0000000D: 74 46 00 OA &1 &C 69 &7 - gE €D &5 €E 74 58 46 00 tF..alignmentxF.
00000D00OE: 0OA &1 &C &% &7 €E &D &5 - £E 74 52 54 00 OB &1 75 .alignmentYZ..au
0000000OF: 74 €F 73 €3 72 €F &C &C - 73 42 00 05 g8 &C €l €7 +toscrollsI..flag
00000010: 73 SA 00 OF &% 73 41 &C - &9 &7 &E &D &5 €E 74 58 sZ..isAlignmentX
00000011: 53 €5 74 S5A 00 OF g2 73 - 41 &C g% €7 €E €D &5 EE 3Seti..isAlignmen
0000001Z: 74 52 53 &5 74 5A 00 1A - 7& &5 72 89 &8 79 42 E tV3etZ..verifyIn
00000013: 70 75 74 57 &8 €5 €E 48 - &F £3 75 73 54 £l 72 £7 putlhenFocusTarg b

t_blob BLOE
Allow MULL
BINARY, 2 964 Bytes, application/x-java-serialized-object

Close

Figure: Hex/Ascii viewer

Large text data/CLOB

Large text data and CLOB data types are typically edited in the multi line text editor. For formatted data (that includes new lines), the
default editor is useful. If editing a large chunk of non-formatted data, enable the Use Wrapped Editor setting and DbVisualizer will then
automatically wrap the text for easy editing.

142(245)

& Cell Form (Editable) - "t_blob”

| [[] Use wrapped Editor {automatic word wrap)

;Text:

1

o

L IS B N B O

10
11
la
13
14
15
16
17
1a
19

Table Data Editing

|

The table data editing feature mnimics how editing is performed in
standard spreadsheet applications, just click a cell walue and edit.
Edits are saved in a single database transaction which ensures that
all or no changes are committed., The editing feature supports saving
binary and large text data and it even presents commoh data formats
in their respectiwve wiewers such as image wviewer, XML, HEX, etc.

A block of data can be eazily interchanged wia standard copy and paste
operations between the grid editor and other applications such as
Microsoft Excel, Start0ffice and OpenlDffice.

Editing is primarily performed in the grid editor. 3ome data such as

binary or large formatted text data is not optimally edited in the grid =
editor so for these sirtuations it is recommended £o use the form or cell
data editors. The form editor presents a single row of data in a separate
window organized az a form with the column nawme in the first columt and the
data in the second column. All editing capabilities in the grid editor iz o

< | »

t_blob BLOE
Allow MULL
BINARY, 2 964 Bytes, application/x-java-serialized-object

Close

Figure: The text viewer and editor

Import from File

Importing data from a file can be done in the form and cell editors. Imported binary data with a recognized binary viewer will be displayed
accordingly. Import is supported for binary and text data.

Export to File

Export can be made in the grid, form and cell editors for binary and text data.

143(245)

Table Data Navigation

Introduction

A powerful way to study database data is to navigate between the tables in a schema by following table relationships declared by primary
and foreign keys. DbVisualizer includes a Navigator feature for this purpose, visualizing the relationships graphically while making the data
for each navigation case easily accessible in a data grid.

To launch the Navigator, select the table you want to start the navigation from in the Database Objects Tree, and then open the
Navigator tab in the Object View.

Table: DEPARTMENTS | sctions = |
v an Mac | Schemasz | HR | Tables | DEPARTMENTS

@ Info | Columns | [f] Data | B Row Count
L Prirmany Key] g Inclexes] S Row Id] =2 References] A Mavigator | % DOL

E|esaanHE D

DEPARTMENT_ID
DEPARTMENT_NAME Hi Re
2 umanResources | HR.EMPLOYEES |

3

- DEPARTMENT_ID 40 |

HR.DEPARTMENTS DEPARTMENT_ID
DEPARTMENT_NAME T

"% |Related Table: | o)

20| &Y
o EMPLOYEE_ID | FIRST_MAME | LAST_MAME| EMAIL | PHOME_MUMBER | HIRE_DATE | JOBID | SaLaRY | COM

102 Alexander Hunold AHUMNOLD 590.423.4567 1990-01-03 [T_PROG 9000.00 (null)
104 Bruce Ernst BERNST 590.423.4568 1991-05-21 [T_PROG 6000.00 (null
105 David Austin DAUSTIN ~ 590.423.4569 1997-06-25 [T_PROG 4800.00 (null
106 vall Pataballa VPATABAL 590.423.4560 1998-02-05 [T_PROG 4800.00 (null
107 Diana Lorentz DLORENTZ 590.423.5567 1999-02-07 [T_PROG 4200.00 (null
4 3
Max Rows: [L000 | Max Chars: [| 0.002/0.002 sec | | 5/11 ||1-7,

Figure: The Navigator tab showing the initial table

The Navigator has two parts: a graphical view and a data grid. Initially, the graphical view shows just the selected start table, and the data
grid shows the data for the start table.

The data grid is a read-only grid of the same type as you encounter in other parts of DbVisualizer, but extended with a Related Table list

and a Tag button. You can learn more about the general data grid in the Data Grid section of the Getting Started chapter. The Navigator
specific extensions are described in detail in the following section.

144(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Data Navigation

Data navigation in DbVisualizer means following table relationships declared by primary and foreign keys, using a unique key value. In the
example schema shown in the screenshots in this section, there is a table named DEPARTMENTS with a primary key named
DEPARTMENT_ID. Another table named EMPLOYEES has a foreign key constraint, declaring that values in its DEPARTMENT_ID column
refer to primary key values in the column with the same name in the DEPARTMENTS table.

2@ | & .'_%.| T - | @ |Re|ated Table: || ||Z]]J

~o DEPARTMENT _ID | CEPARTMENT _NAME
10 Administration
20 Marketing
30 Purchasing
40 Human Feszources

-» EMPLOYEES (EMPLOYEE_ID)

- LOCATIONS (LOCATIOMN_ID)

< - EMPLOYEES (DEPARTMEMNT 1D
< - |OB_HIZTORY (DEPARTMEMNT _ID1

i
50 Shipping 121 1500
60 IT 103 1400
70 Public Relations 204 2700
50 Sales 145 2500 =
Max Rows: [1000 |Max Chars: [| 0.009/0.001 sec | | 27/4 || 1-f

Figure: The Related Table list

If you use DEPARTMENTS as you start table, you can easily navigate to the EMPLOYEES table for different DEPARTMENT_ID values. In the
data grid, select one or more columns in the row that holds the DEPARTMENT_ID you want to use for navigation. In the figure above, the
DEPARTMENT_NAME column in the row for DEPARTMENT_ID = 60 is selected.

Next, bring up the Related Table list. It lists all tables the DEPARTMENTS table is related to through primary and foreign keys, with the key
columns within parenthesis. A forward arrow (->) in front of the table name means that the DEPARTMENTS table has a foreign key relation
to the named table. A backward arrow (<-) means that the named table has a foreign key relation to the DEPARTMENTS table.

Related Table: || ||E]

ETMEMNT _MAME

-= EMPLOYEES (EMPLOYEE_ID)

istration
ting - LOCATIOMS (LOCATIOMN_ID)
asing <- EMPLOYEES (DEPARTMERT _IC1)

0 Resources |- JOB_HISTORY (DEPARTMENT_ID)
ng 121 1500

7| DEPARTMEMTS (DEPARTMERT _ID) <~ EMPLOYEES (DEPARTMENT _IDj |
-

Figure: Tooltip for a Related Table list entry

The Related Table list shows only the table name and columns of the related table, because there is not room for more when a key
contains many columns with long names. Sometimes this information is not enough to understand what the relation really means. To
make it easier to figure out, you can let the mouse hover over a list entry. A tooltip then shows you the other end of the relation as well,
e.g., in the figure above, the tooltip shows that "<- EMPLOYEES (DEPARTMENT_ID)" represents a foreign key from the EMPLOYEES
DEPARTMENT_ID column to the DEPARTMENTS DEPARTMENT_ID column.

145(245)

Table: DEPARTMENTS

1 Mac | ichemas | HR | Tablez | DEPARTMERTS
@ Info | [T] Columns | [Data | B Row Count
o Primary Key] i Incexes] “® Row Id] =2 References] o Navigator | S DDL

DB S aan HE D

I D

DEPARTMENT_ID)
] DEPARTMENT_NAME IT - HR.EMPLOYEES]

HR.DEPARTMENTS

L

s EMPLOYEE_ID | FIRST_NAME | LAST_MAME| EMALL | PHOME_NUMBER| HIRE.DATE | JOBID | SALARY | COMK

103 Alexander Hunold AHUNOLD 590.423.4567 1890-01-03 [T_PROG 9000.00 (ull
104 Bruce Ernst BERNST 590.423.4568 1991-05-21 IT_PROG 6000.00 (nul)
105 David Austin DAUSTIN 590.423.4563 1897-06-25 [T_PROG 4800.00 (nul)
106 vall Pataballa VPATABAL 590.423.4560 1998-02-05 [T_PROG 4800.00 (null
107 Diana Lorentz DLORENTZ 590.423.5567 1$99-02-07 [T_PROG 4200.00 (null
L
Max Rows: [1000 | Max Chars: [| |0.002/0.002 sec | 5/11 | 1-F

Figure: Navigation from DEPARTMENTS to EMPLOYEES for DEPARTMENT_ID = 60

When you select "<- EMPLOYEES (DEPARTMENT_ID)" in the Related Table list, a node is added to the graph for the EMPLOYEES table, with
an arrow from the DEPARTMENTS table node to show the navigation direction. We call this a navigation case.

The EMPLOYEES node contains the key columns (just one in this example) and their values.

The arrow betwwen the nodes is labeled with the key column name. In addition, the arrow label also shows the name and value of the
column that you selected in the DEPARTMENTS table when you created this navigation case, i.e., the DEPARTMENT_NAME column. If you
select multiple columns when you create a navigation case, all non-key column names and values are included in the arrow label. This can
make it easer to see at a glance what a navigation case represents.

The grid is also updated when you create a navigation case, to show all rows in the table you navigated to that has a key value
corresponding to the selected key value in the table you navigated from. In this case, it shows all rows in the EMPLOYEES table with
DEPARTMENT_ID equal to 60.

You can continue to create more navigation cases from any node in the graph. For instance, if the schema contains a table with job history
for employees, you can navigate to the history for an employee from the EMPLOYEES node. Or, you can select the DEPARTMENTS node in
the graph to navigate to the EMPLOYEES table for a different department. Just click on the DEPARTMENTS node, select another row in the
data grid and then the same Related Table list entry.

146(245)

i Table: DEPARTMENTS actions = |

Mac | 5chemasz | HR | Tables | DEPARTMENTS
g Info | Caolurins |] Data | B Row Cournt
. PrimaryKey | G@indexes | e Rowld | =3 References | < Mavigator I <% DoL

B LeHmaaaHE D

DEPARTMENT_ID
DEPARTMENT_NAME Human Resources HR.EMPLOYEES |

Y

"+ DEPARTMENT_ID 40 |

HR.DEPARTMENTS DEPARTMENT_ID

DEPARTMENT_NAME IT
>
Ln

< @ | & i | T - | =8 |Related Table: | =]
. EMPLOYEE_ID | FIRST _NAME | LAST_NAME| EMAIL | PHONE_NUMEBER | HIRE_DATE | JOBID | SALARY |COM
103 Alexander Hunold AHUNOLD 590.423.4567 1990-01-03 [T_PROG 9000.00 (null
104 Bruce Ernst BERNST 5904234568 1991-05-21 [T_PROG &000.00 (null]
105 David Austin DAUSTIN 590423 4569 1997-06-25 ([T_PROG 4800.00 (null]
106 vall Pataballa WPATABAL 5904234560 1998-02-05 [T_PROG 4800.00 (null)
107 Diana Larentz DLORENTZ 590.423.5567 1999-02-07 [T_PROG 4200.00 {null]
4 3
Max Rows: [1000 | Max Chars: [| 0.002/0.002 sec | |5/11 | 1-7

Figure: Two navigation cases

Every time you select a node in the graph, the data grid is updated to show the corresponding data. The grid settings for one node are
independent of the settings for another node. For instance, if you define a filter for one node, the filter is only associated with the grid for
that node.

Adding Context Information to the Graph

The navigation node always show the key columns and their values, but sometimes you may want to add other columns to the node to
better describe what it represents. This is called tagging the node. There are two ways to do so: drag and drop cells from the grid to any
node, or use the Tag button in the grid toolbar to tag the currently selected node with the currently selected cells in the grid.

To drag and drop cells to a node, select one or more cells in the grid. With the left mouse button pressed and the mouse positioned over
one of the selected cells, drag the cells over a node in the graph and release the mouse button. The cells are added to the node.

147(245)

Table: DEPARTMENTS

1 Mac | ichemas | HR | Tablez | DEPARTMERTS
@ Info | [T] Columns | [Data | B Row Count
o Primary Key] i Incexes] “® Row Id] =2 References] o Navigator | S DDL

DB S aan HE D

DEPARTMENT_ID HR.EMPLOYEES]
DEPARTMENT_NAME Human Resources
»| '+ DEPARTMENTID 40

FIRST_MAME Susan
LAST_MAME Mavris

HR.DEPARTMENTS]:
DEPARTMENT_ID

DEPARTMENT_NAME T HR.EMPLOYEES]

h 4

"+ DEPARTMENT ID 60 |

29 | & 5 | T - | =Y |Re|ated Table: | E]|
s EMPLOYEE_ID | FIRST_NAME | LAST_MAME| EMAIL | PHONE_MUMEER| HIRE_.DATE | JOB.ID | SALARY | COMMISS
203 Susan Mavris SMAVRIS 515.123.7777 1994-06-07 HR_REF 6500.00 (null)

e ;

Max Rows: [1000 | Max Chars: [| |0.032/0.002 sec || 111 | 1-7

Figure: A node tagged with additional column values

Alternatively, you can select the cells in the grid and click on the Tag button ("':'41-) to add the cell values to the currently selected node.

Arranging the Graph

As you add navigation cases, you may find that you need to move nodes around, remove selected nodes, zoom and move around in the
graph, etc.

You can rearrange the layout of the graph by selecting a node and, with the left mouse button pressed, drag it around. The arrow and its
label moves with the node.

The toolbar for the graph offers a number of tools to help you with other tasks.

FE|l¢anaqamED

Figure: The graph toolbar

All these tasks can also be accessed through the graph popup menu.
@ Clicking the Reload button removes all navigation cases, leaving just the node for the table you started with.

[Z] You use the Show/Hide Controls button to control the display of an Overview control, see below.

148(245)

»

The Zoom In button lets you zoom into the graph, one step per click.

y

The Zoom Out button zooms the graph out one step with each click.

»

Clicking the Zoom 100% button zooms the graph so that all items are shown with their standard size.

Use the Fit button to make all graph items fit in the graph display area.

The Relayout button lays out all graph item with standard positions, distances between items, etc. This can be useful after making manual ckt

¥ = H

The Remove Node button removes the selected node. It is only enabled when a navigation case node is selected.

The Overview control is useful for large graphs that do not fit into the display area.

2Essn et @E D

~Owerview - Docked: &

EMFLOVEE Bl . —
FRUST_NAME Mosea Rl MO
JOB_THLE Acuuring Mamigar —
HREMPLOYEES LAST NAME Kectmas HRJOB_HISTORY 1

T DERANTMENT O 90 o EMPLOYEE B 101 ——
ou HR,CAS -1
Lo JOBD AC_ACGOUNT
HREMPLOYEES JOB_BTLE Puble Ay tart

Figure: Graph with the Overview Window displayed

The gray area in the Overview control indicates the portion of the graph that is currently shown in the display area. You can drag the gray
area around to study other portions of the graph.

To get a larger graph display area, you can put the Overview control in a separate window. Just uncheck the Docked checkbox.

Exporting and Printing the Graph

You can also export the graph to an image file or print it. Use the corresponding toolbar buttons to do this.
& Export the graph to a JPG or GIF file.

% Print the graph

% Show a preview of how the graph will be printed

When you print the graph, you are prompted for information about what to print (the Graph or the View, i.e., just the portion visible in the
display area) and how many rows and columns to split the printing over (one page is used for each row/column). See the Export and Print
sections in the Export, Import and Print section for details.

149(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/exportPrint/exportPrint.html

Procedure Editor

Introduction

Many databases offers the capability to store custom code in the database, primarily as functions and procedures, where a function

returns a value but a procedure does not. In addition, some databases offer the package concept, which means that a collection of

functions and/or procedures are grouped together in one unit. A package is the interface describing the functions and procedures, while
the package body contains the implementation. Many databases also support triggers: code that is executed when triggered by an event
such as deleting a row in a table. You can use DbVisualizer actions to create and drop procedural object of these types, and use the
procedure editor to browse, edit and compile these object types.

The examples throughout this document refer to the procedure object type, but all described features can also be applied to the other

types of custom code objects. The screenshots show the interface for the Oracle profile, but it is very similar for other profiles.

Create Procedure

To create a new procedure, simply select the Procedures node in the objects tree and choose Create Procedure from its action menu.

Table: EMPLOYEES
Oracle 10g: HR | Schemas | HR | Tables | EMPLOYEES

Actions ¥

LA Alter Table..

=3 Constraints

| @ miggers | 5B

| e Rowld | =8References | <f Mavig;

&

Rename Table...

: Empty Table...
<8 Info | @ columns | [Data | @ Row Count | 3 DropTable..
Pl | & 2 Copy Table...
Mame Comment Table...
OWNER HR & ImportTable Data...
TABLE_NAME EMPLOYEES
Create Index...
TABLESPACE_NAME EXAMPLE
CLUSTER_NAME {nully Script Objectto SQL Editor 4
10T_NAME (nully Script Objectto Mew SQL Editor »
STATUS VALID
PCT_FREE 10
PCT_USED (null)
INI_TRANS 1
IMAX_TRANS 255
‘INITML_E)(TENT 65536
INEXT_EXTENT (null)
!MIN_E)(TENTS 1 3

Figure: The actions menu for the Procedures node

Next, a dialog is displayed in which you enter the procedure name and the parameters for the new procedure. This data forms the

interface for the procedure.

150(245)

E Create Procedure

Object Details
Database Cannection: |Oracle 10q (system) |
Procedure Qwner: |HR w |
Pracadure Name: |UPDATE _STATUS| |
iz Parameters
(=
Mame Direction Type Default q}
order id_start | UMBER _ E
order_id_end iyl MNUMEER -1
N
status M VARCHARZ2 'CLOSED
W
Show SQL [Execute J [Cancel l
SQL Preview
Ee @ -
1 CRERTE
Z FROCEDURE "HE™.UFDATE_ STATUS
3 {
4 order_id start IN NUMBER DEFAULT -1,
5 order_id end IN NUMEEER DEFAULT -1,
& status IN VARCHARZ DEFAULT 'CLOSZED')
7 RS
& BEGIH
9 DEMS_OUTPUT. PUT_LINE {'3ample output'):
10 EHD ;

Figure: The create procedure dialog

Use the buttons to the right of the parameter list to insert, remove and move the parameters. For every parameter, you must supply its
Name, the Data Type and the Direction (typically one of IN, OUT or INOUT).

The action uses this information together with a simple sample body to create a CREATE statement. You can not enter the real code in the
action dialog. The real code is often complex and large, so DbVisualizer provides a more powerful editing environment than what would fit
in an action dialog via the Procedure Editor, described below.

Click Execute in the dialog to create the new procedure.

151(245)

B DbVisualizer Personal - Untitled*
File Edit View Datsbase SQL Bookmarks Tools Window Help

vHR ¢ BEFG

< @ | T | | W] | | 3, Object 'u"lewl P saL Commander|
EI@ llracle 10g (system) -uﬂ' Procedure: UPDATE_STATUS
Ef' S:hemas Oracle 10g (system) | Schemas | HR | Procedures | UPDATE_STATUS
& ANOMYMOUS
Zm [# Procedurs Editor
-
2 cmesvs , ; = .
& DBSNMP (L |-| JHR (S |+D R[> Rl
-
a IR 1 CREATE OR FEFLACE PROCEDURE HE.UPDATE STATUS i
@ DMSYS z order_id_start TH NUMEER DEFAULT -1,
@ BFsYs || = order_id_end IN NUMEER DEFAULT -1,
~@ HR || a status IN VARCHARZ DEFAULT 'CLOSED')

[T Tables c as

& BEGIH
7 DEMS_OUTPUT. PUT_LINE('Zample output']):
5 EHD ;

&

& Materialized Views

£~ 403 Functions

-¢¥ Procedures

- ADD_I0B_HISTORY
g EMP_REPORT g:5 ||mms| | | |untitiea
iﬁ“ NOTHING Errors: o

i OUT Line Column Text
¥ REMOVE_EMP

- SECURE_DML
= dUPDATE_STATUS
-4 UPDATE_STATUSA

(- 438 Packages
[}-m Package Bodies

Figure: The newly created procedure

Selecting the newly created procedure in the tree will show the source for it in the procedure editor.

Edit and Compile

The editor has a toolbar with various actions to save/compile the procedure, save and load the source to/from file and perform common
editing operations. The Status indicator shows whether the procedure is valid or invalid based on last compilation (not available for all
databases).

Edit the source code and save/compile the procedure when you are happy with the code, using the Execute toolbar button.

152(245)

E DbVisualizer Personal - Untitled®

File Edit View Datsbase SQL Bookmarks Tools Window Help

vHR ¢ BEFG

[3, Object View l B sqL Commander|

2O|vad B

EI@ Oracle 10g (system)
=8 3 Schemas

-uﬂ' Procedure: UPDATE_STATUSA

Oracle 10g (system) | Schemas | HR | Procedurss | UPDATE_STATUSA

¥ Sequences =
& Materialized Views 5 EHD;
(53 Functions

EI;&}Z‘ Procedures

- & ANONYMOUS
-3 BI [Procedure Editor
& CIYS | |
B3 DB > o | CHR S|+ E[ed E3 status: INVALID
: -
@ DI 1 CREATE OR REFLACE PROCEDURE HE.UPDATE STATUSA (order id start IN NUMBER
G-@ DMSYS 2 order_id_end TN NUMEER DEFAULT -1,
"'2 BAFSYS _|| 3 status IN VARCHARZ DEFAULT 'CLOSED')
=@ HR =
G Tables N
5 BEGTH
@ Views
6
SYnonyms
i Indexes 7 =set current status = sStatus

g where id »>= order_id start amnd id <= order_id end:

- ADD_IDB_HISTORY % = | L3
g EMP_REPORT g:17 |[mms| | | |untitiea
7 NOTHING o

Errors:

Line Column

L 10P

REMOVE_EMP

- SECURE_DML

- UPDATE_STATUS
& JUPDATE STATUSA]
(- 438 Packages
}-m Package Bodies

Figure: Compiling procedure with errors

i} 3 PLSAL: SAL Statement ignored

If error occur during compilation, the error list appears below the editor. It shows the row/column number for the error in the source
editor and an error message. When you click the error in the list, the corresponding row is highlighted in the editor. Note, however, that
some databases do not provide row/column information, only an error message. You then have to locate the incorrect statement yourself

based on the description of the error.

In addition to the Status indicator in the editor, the object icon in the tree shows a little red cross for invalid procedures, for databases
that provide this information. You can see this for the UPDATE_STATUSA procedure node in the figure in the previous section.

The figure below shows the result of correcting the errors and recompiling the procedure:

153(245)

B DbVisualizer Personal - Untitled*
File Edit View Datsbase SQL Bookmarks Tools Window Help

vHR ¢ BEFG

= 9 | - | - | B 3, Object WEW] B sqL Commander|
= i Oracle 10g (system) # Procedure: UPDATE_STATUSA
Ef' S:hemas Oracle 10g (system) | Schemas | HR | Procedurss | UPDATE_STATUSA
@ ANONYMOUS
2 m| [# Procedurs Editor
-
2 cmesvs . _ ~ .
3 DBSMMP D . |-| ‘[j . lE_'I| | |_“,1i' | 4o @ = | L @ 0 Status: VALID
-
2 CIF 1 CREATE OR. FEFLACE PROCEDURE IHE.TUPDATE_STATUIA (order_id start IN NUMEER
@ DMSYS 2 order_id_end TN NUMBER DEFAULT -1,
2 EXFSYS i 3 statuzs IN VARCHARZ DEFAULT 'CLOSED')
gl HR = s
G Tables
5 BEGIH
G Views 6 date ord
@ Synonyms update orders
i@ Indexes 7 =set current status = sStatus

g where id »>= order_id start amnd id <= order_id end:

& Materialized Views 5 EHD;
: sfﬂ’» Functions
= Procedures

- ADD_IDB_HISTORY % = | L3
g EMP_REPORT 1:1 s | | |untitiea
- NOTHING Errors: o

- ouT Line Column Text

- REMOVE_EMP

- SECURE_DML

- UPDATE_STATUS

. @ UPDATE_STATUSA
(- 438 Packages

- 138 Package Bodies .

Figure: Compiling procedure with successful result

The status indicator now shows that the procedure is VALID.

Running in SQL Commander

You can now test the procedure in the SQL Commander as shown in the next screenshot.

154(245)

i (&, Object View [sqL commander ‘

PRARIOECER L +BE/sR(<¢ > @[Ee

Database Connection ———————— D Sticky Database — Schema ——— Max Rows Max Chars
| i@ orade 10g: HR v & Hr v|lo || |

1 call update_status {l1z00,2000, 'OFEN'):
z select * from nrders:l

2:22 | ms] |aute Commit: 0n| [untitileas|

P 1 select * from orders]

O35 |7 WEEHEEy=-8n Q- Bl &
41D CURRENT_STATUS
1201 OPEM
1210 OPEN
1250 OPEN
1260 OPEN
1270 OPEN
1280 OPEN
1281 OPEN

e =R I o TR S

W

[J‘gpl!ng ABnD) B] [mq!pa 105 [F]] |

T |
| 0.010/0.000 sec_‘;ls_IZ_“_l_—_S

" Log| [Result Set[1] | 4@ DBMS Output|

Figure: Running the procedure in SQL Commander

The figure shows the invocation of the update_status procedure with parameter values meaning that all IDs in the ORDERS table
between 1200 and 2000 should be set to "OPEN". The second statement selects from the updated table.

155(245)

SQL Bookmarks

Introduction

The purpose with the bookmark management is to offer a way to save SQL statements between invocations of DbVisualizer and make it
easy to execute them. Another important requirement is to organize SQL statements in folders for structural and grouping purposes. The
core of the bookmark management is the Bookmark Editor. It is here the bookmarks are organized.

The bookmark editor depends heavily on the SQL Commander, since, when requesting to execute an SQL Bookmark, the Bookmark Editor
passes the SQL statement along with the connection data to the SQL Commander. You then use the SQL commander to edit and test the
SQL until it is complete.

What's a bookmark in DbVisualizer?

An SQL Bookmark is generally an SQL statement that is saved between invocations of DbVisualizer. In addition, it also keeps related
information needed to execute the SQL and present the result accordingly once it is requested.

¢ SQL statement

* Bookmark name

« Database Connection

» Catalog (aka Database)
*« Schema

* Chart settings (optional)

There are different types of bookmarks. DbVisualizer automatically creates bookmarks in the following function areas:

* Each SQL that is executed in the SQL Commander is saved as an SQL bookmark in the History folder
» Each monitored SQL statement in the Monitor feature is an SQL bookmark. DbVisualizer creates SQL Bookmarks in the New
folder when you use the operations in the Data tab to create row count related monitors

You can also create SQL Bookmarks manually in the Bookmark Editor, as well as from SQL in the SQL Commander with the operations
available in the Bookmarks menu. The following sections describes this in more detail.

The Bookmarks Main Menu

The bookmarks main menu in the DbVisualizer window contains the following choices:

¥ Bookmark Editor... Ctr+B

fiz Add BEookmark to Folder »

i Replace Eookmark »
i Get Bookmark 3
iz Execute Bookmark 3

Figure: The Bookmark main menu

All menu choices except the Bookmark Editor choice are disabled if you are not in the SQL Commander tab.

Menu Choice Description

Bookmark Editor... Start the Bookmark Editor

Add Bookmark to Folder This choice has a sub menu in which all folders are displayed. This list displays the paths for all folders (i.e

156(245)

the folder hierarchy from the root). The root folders are Personal, New or History (read more about these in
the sections below). Once a folder has been selected the following dialog is displayed. Here you can change
the default name and add an optional note.

Bookmark. Properties

Folder: & Personal/Inventoryf Computer perif.
e Mame: |R,&M inwentany |

Nme:| |

l Add H Cancel l

Replace Bookmark This option is usedto replace the chosen SQL bookmark with the SQL and connection data that is in the
current SQL Commander editor. The Replace Bookmark sub menu consists of the root folders and, as the last
menu entry, the name of the last SQL bookmark that was passed from the Bookmarks Editor, if any. If you
want to replace the data for that SQL Bookmark just select its name in the menu.

& Personal v
b Mew v
“ History v
Emails addresses waiting for follow up...

Get Bookmark Get Bookmark shows the same menu hierarchy as Replace Bookmark, but works in the reverse direction; it
fetches the chosen SQL Bookmark and inserts it into the current SQL Commander editor.

Execute Bookmark Same as Get Bookmark but this one also executes the SQL statement(s)

Bookmark Editor

The Bookmark Editor is at the core of the bookmark management, used for organization of SQL Bookmarks in folders and to do various
adjustments.

Bookmark list

The editor presents the bookmarks in a tree list with the same structure as the tree that appears in the Bookmarks main menu options.
The tree has three root folders that cannot be changed, moved or removed. There is basically no difference between these root folders
except that they are used in different contexts in DbVisualizer.

+ Personal
This root folder is supposed to hold the structure of favorite SQL bookmarks. By putting SQL bookmarks in folders, you get a
better organization and overview of your bookmarks. All nodes in this root folder are manually maintained.

* New
When you create Row Count Monitors in the Database Objects->Data tab, DbVisualizer adds these monitors (as SQL
Bookmarks) in the New root folder.

* History
All SQL statements or scripts that you execute in the SQL Commander are automatically added in the History root folder. The
latest executed statement appear first in the list.

(The number after the root folder names indicates the number of SQL bookmarks the root folder contains).

157(245)

% DbVisualizer Personal - Bookmark Editor |Z||E|E|
File Edit View Bookmarks

Rl *0E OQ Av P

it Datahase L i Contain | bulti
Connection Wariahles| S0L
@ & Persanal (119)
I test
] Irwentory
] Cormputer Parts
I Thig ig ry chartill Sl Server 2000: DataDirect |
ke TimeChart - a
f Computers Sold par Month WySGL 4022 localhost | puredb [
I New Tasks per Month MySGL 5.0.22: localhost puredh ad
I+ Car Suppliers - Sales Per Ma ad
I+ Closed Bug Reports per Hou g
gmﬂ PureDB
(] Database Tests
o i Mews (6)
|— i+ DEPARTMENT: Row Count Char DBE2: localhost O @ Ell
1 select YEAR(CreatedDate) as Year, ‘ Apply Edit
Z MOHTH |CreatedDate] as Monthium,
3 concat (YERR (CreatedDate]), ' ', MONTHNAME |CreatedDate) as Monmth, Export

4 count (MOHTH (CreatedDate))] RS Count ‘ Irmport
5 from RegCustoner

& GROUP BY Year, Monthihum

7 ORDER BY Year ASC, Monthifun RASC
1:1 |ms Untitled
Mote

|
2oL l ionitar

Figure: The Bookmark Editor

You cannot create folders or SQL bookmarks in the New or History root folders. The way to work with these folders is to copy the SQL
Bookmarks you want from them into the appropriate location in the Personal root folder.

For each SQL Bookmark, the tree holds the following information:

Column in list

Name

Database Connection

Catalog

Schema

Description

The name of the node (folder or SQL bookmark). Modify the name by selecting the column and click once to get
into editor mode. The Edit->Change Name menu choice can be used for the same purpose. When an SQL
Bookmark is created by DbVisualizer, the default name is the first 40 characters of the SQL statement.

Double-clicking on the Database Connection column displays a list of all defined database connections. The list
indicates whether a connection is established or closed. You can choose a connection in the list if you want to use
another database connection for an SQL Bookmark.

This column lists the catalog (aka database) that was selected when the bookmark was created. You can change
the catalog by double-clicking on the name and pick another from a list of accessible catalogs.
Note:

The schema that was selected when the bookmark was created. You can change it in the same was as you
change the catalog.

158(245)

Monitor Check this box to enable the SQL Bookmark to be used as a monitor and thereby appear in the Monitor main
tab. SQL statements that returns results are the most obvious candidates for being monitored.

Contain Variables This column is read only and indicates whether the SQL statement includes any DbVisualizer variables. (I.e $
{variable name}$)

Multi SQL This column is also read only and indicates whether the SQL statement is composed of several SQL statements
(aka script). This is determined by looking for statement delimiters in the SQL.

New and History root folders

The number of SQL bookmarks that may be added by DbVisualizer to the New and History root folders are specified in the Tool
Properties->Bookmarks category. Bookmarks in these folders can be removed one by one or each folder can be cleared using the File-
>Clear all New entries or File->Clear all History entries.

SQL Editor

Monitor information

The monitor sub tab controls the total number of rows that will be kept in the result grid until rows are automatically removed. This
feature is specific to the monitor feature. Please see Charts and Monitors for more information.

The Note field

You can use the note field to write a short description of the SQL Bookmark. This note appears as a tooltip in the Bookmarks main menu.

Executing an SQL bookmark or folder of SQL bookmarks

The SQL editor in the bookmark editor can be used to modify the SQL but it is not the place to execute SQL statements. Instead, you use
pass the bookmark to the SQL Commander execute it there. Select the Edit->Copy to SQL Commander or Edit->Execute Bookmark
menu operation to copy the selected SQL bookmark into the SQL Commander. The SQL Commander is then used to execute and edit the
SQL. Once you are satisfied with it, you can select the last entry in the Bookmarks menu save the edits:

& Personal ’
i Mew ’
 History ’
Emails addresses waiting for follow up...

Figure: The Bookmark->Replace sub menu

If the last entry displays "No current bookmark," it indicates that the currently edited SQL was not passed from the Bookmark Editor. You
can use the other menu choices to locate the bookmark to replace or save it as a new bookmark.

The Copy to SQL Commander and Execute Bookmark operations also operate on a folder. In this case, a script is created from all
direct child SQL Bookmarks that are located in that folder. Each SQL statement is delimited by the delimiter as specified in Tool Properties.

159(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/useCharts/useCharts.html#mozTocId488412

Narme Databa_se Caelon | Menfiar CD_ntain Multi
Cannection wariakles | S0L
@ & Personal (44)
] CustDE
 Inventory
) Add users
f+ Drop table 0B2: db2jcc G
f+ Create table DBz db2jcc Ol
i+ Insert master DB2: dbZjcc O
f# Insert master DBZ: db2jcc |
i+ Insert master DEZ: dh2jcc O
] Computer perif.
] arganisation
] Consistency Check
@ [Database tests

2= W New (4)
) History (923

Figure: Selecting a folder for execution

As an example, choosing the Copy to SQL Commander for a folder of bookmarks may result in the following statements being added in
the SQL Commander:

Phhbh H JER +200 =8 <> @9
Datahasze Connection gl Sticky Database Schema Max Fows Max Chars

|I [-] | -] | s o |

drop tahle Euployee:

create table Euployee (id int, name warchar(=0), primar key (id)):
imsert into Employee (1, "Pekka™):

insert into Ewployee (1, "Tho™);

insert into Emplovee (1, "Riita™);

insert imnto Employee (1, "Marita™):

insert into Ewployee (1, "TnE™"):

D -1 T on s L B

gl INS Untitled*

Figure: The SQL Commander editor

Note that the Database Connection and Catalog lists are empty. You need to select these from the lists when a script of SQL bookmarks
is passed from the Bookmark Editor.

160(245)

Tool Properties

Customizing DbVisualizer

DbVisualizer is highly customizable. You can control formatting, layout and the way DbVisualizer interacts with databases. The default
settings are good enough for normal use, but sometimes it is necessary to modify these properties. This chapter guides you through all
the properties.

The Tool Properties window divides properties into two groups:

* General Settings
These settings controls DbVisualizer in general, such as fonts, colors, data formats, etc.

+ Database Settings
These settings are per supported database type and defines properties that are used in database specific operations. When you
set a database property in Tool Properties, it applies to all database connections defined for that database type. To set a property
for one specific connection, use the Connection Properties, available in the Object Details area when you select a connection.

The user preferences (XML) files

All properties are saved in XML files. The exact location of these files is platform dependent. The location on your system is listed in the
first, General category, in the Tool Properties window. These files contains, in addition to all properties, also the information about drivers,
database connections, bookmarks, etc. We recommend that you do not edit these files manually; even though it is quite easy to do so,
even a simple typo of an element name may cause problems. It's safer to edit all properties from the DbVisualizer GUI.

DbVisualizer automatically creates a backup copy of the XML files when the application is started. The location of these files is the same as
for the standard XML file, but a .bak suffix is appended to the filename. The standard XML file might get broken for various reasons. If you
see a a warning message that the XML file can not be read when you launch of DbVisualizer, simply copy the backup file to the standard
location and restart the application. If you move the XML file from its standard location, or if you remove it, DbVisualizer will automatically
create a new one.

Tip: the -up command line argument is used to identify the file name (and path) to an alternate XML file.

Export Settings

Sometimes it may be necessary to migrate all your settings for DbVisualizer and import them in second setup of DbVisualizer. This is very
handy if you are migrating from one machine to another, or if you want to setup an exact copy on your home computer, etc. Another key
reason is for backup purposes. Loosing all database connection due to various reasons can be really frustrating. The Export Settings
feature is available from the File->Export Settings main window menu choice.

161(245)

E DbVisualizer Personal - Check all settings to export

Check all settings ko expart
Tool Properties
General
“# Key Bindings
[% Database

Defaulk Settings

Faor Schema Expart

Bookmarks

& Personal
% Mew
2* History

Monitars

Database Connections

& Connections

& DB2

& Informix

& JavaDB/Derby
& Mimar

& MysqL

: & Oracle 11g {scott) -

| >

Exclude: [| Folders [] Object Filkers [] Passwords
Table Daka (WHERE) Filtars
Column Visibility Definitians

Export setkings to
|E:1,backl.|psi,settings.]’ar |E]

Figure: Export User Settings window

The default layout of the Export Settings window is that all settings will be exported. Once you're done press Ok and all settings will be
saved in the specified file. The structure of this JAR file is the same as the content in the DbVisualizer settings directory.

All settings can be exported except JDBC driver files.

Import Settings

The Import Settings feature is used to import settings as previously exported via the Export Settings feature. Import will examine the
content of the specified file and present the choices available. Consider the previous screenshot and that we export the settings for the
Database Connections only. Here is how the Import Settings window will look:

162(245)

. DbVisualizer Personal - Check all settings to import

Check all settings ko impark

i

[¥] @ Connections

..... i DBz

3 i InFormix

. i JavaDB/Derby

. i Mimer

_____ & MysqL

..... i Oracle 11g (scott)
..... i Oracle 11g (system)
..... i Oracle 10g (system)
. i PostgraSQL

. i SQL Server

i§ Sybase

Column Visibility Definitions

Target Location: |0 Connactions A |

Ok][Cancel]

Figure: Import User Settings window

Use the Target Location button to set where the imported database connections will appear in the objects tree.

General Settings

The General settings tab collects all categories that are used to control the general aspects of DbVisualizer.

Use the buttons at the bottom of the window when you have made some changes: Click Ok to save the changes and close the window, the
Apply button to save the changes but keep the window open, and the Cancel button to revert all changes. To reset the properties to the
factory defaults, use the Defaults button.

Changes are tracked on a per category basis. If you have made changes and click on another category, you are asked whether the
changes should be applied or not. When you click Defaults (for both the General and the Database properties), you can reset either all
properties or just the properties for currently selected category.

This is a screenshot of the General category tree.

163(245)

DbVisualizer Personal - Tool Properties

General |M|

: Qf Appearance
[Fants
el 0 Ky Bindings
- Database Connection
9 Driver Manager
i PEIMISSIONS
48 Timne Zone
-k File Encoding
3% Data Formats
-] Table Data
i, Transaction

3 Monitor
El Farm Yiewer

=[] Grid

=~ S0L Editor
,-5 Statement Delimiters
S0L Farmatking
Align and Indent
Line Breaks

i whitespace
{n] Auto Completion
Camments

& Provy Setting

Tool Properties

The Tool Propetties dialog is used to browse and maodify the various properties that are
used in the application, Almost all properties are saved in the user preferences (XML file

bebween sessions,

Preferences File Location
Standard File: C:\Documents and Settings\Roger!,. dbvisiconfighdbyis. xml

Backup File: Ci\Documents and SettingsiRoger!. dbvis\confighdbevis xml. bak.

Browser
Select the browser that is used bo browse the Users Guide and FAG web site,

Browser: Syskem Default

Caonfirm Exit of DbYisualizer
Check thie property bo confirm exit of DhYisualizer,

Canfirm Exit of DbVisualizer: [

Defaults

Ok] [Apply l [Cancel

Figure: The Tool Properties window showing the tree with General categories

Appearance

Property

Description

Look and Feel Controls which look and feel to use.

Note 1: You must restart DbVisualizer after you have selected a new look and feel.
Note 2: Some look and feels are platform specific and do not appear on all OS'es

Metal (Ocean)

File Edit View Database S0OL Bookmarks T
-41?

SRR Bl

e @Y

B

¢ &% Oracle 10g: HR
% & Schemas
? & HR (Default)
¢ [0 Tables

o [0 COUNTRIES
& [T] DEPARTMERN
—

Windows

164(245)

File Edit View Database SQL Bookmarks Toals

el LI L
$°|?|‘ﬂ|% |2, Object

=% Oracle 10g: HR
: EI; Schemas
© =-& HR (Default) e
=[] Tables | * Colu

i[5 COUNTRIES | §@ind
DEPARTMENTS 4@ Info

.. Enao nvEES

Oracle 10g: H

Alloy
File Edit “iew Database S0l Bookmarks

vHR CRBENFG

20| Y adB

% Oracle 10g: HR
A Schemas
® & HR (Default)
[Tables
COUNTRIES

GTK+
File Edit Wiew Database SOL Boolkmarks

vEHRCH BENG

O Y RAB Object Vie

=7 ki3 Oracle 10g: HR - @
~ & Schemas
= & HR (Default)
< [C] Tables _
=] COUNTRIES Mavigat
7 DEPARTMENTS e |
==

[N TR o

Mac OS X
vEHR ER B IFO
TO|YMdB B

¥ i Oracle 10g: HR
¥ 5 Schemas
¥ 5 HR (Default)
¥ || Tables
»] COUNTRIES
b [DEPARTMENT:
» [T EMPLOYEES ﬂ &
—

» [7] JOB_HISTORY

Icon Sizes The Menus, Main Tool Bars, Sub Tool Bars settings are used to control the size of the
icons.

Show Tab Icons Specifies whether an icon will appear in the header of all object view tabs.

Fonts

Individual fonts can be defined for SQL Editors, Grids and Text output data. The Application Font settings is used to control the font
for all other components in the user interface, such as labels. Increasing the application font size is useful at demos or presentations. Anti-

165(245)

Aliased Fonts is supported by some look and feels and when enabled it gives a much smoother appearance of text in the application. Anti-
Aliased font is not supported by the SQL editor.

Key Bindings

You can define key bindings for almost all operations and editor commands in DbVisualizer. Key bindings are grouped in Key Maps.
DbVisualizer includes a set of predefined key maps targeted for the supported operating systems. These key maps cannot be deleted or
modified. To customize key bindings, copy an existing key map and make your changes.

Key Bindings
Uze these settings to defing the key bindings throughout the application. Y ou must make
& copy of an existing key map to atter key bindings. The active indicator highlights the
current key map.
Keyimaps

Default (read-onky)
Linux-UNIX {active, read-onhy)
Mac 05 ¥ (read-onky)

SCL Query Analvzer (read-onh
TOAD (read-nnki 3

Set Active

take Copy

| Remove |

Keyrmap Settings

Keyman. |Linux—UNI}< |Elased on: Default (read-onhy)

Action | Key Bindinas
() Al Bindings
Lj Editor Commands
. U Main Mernu
J File
) Edit
Y Undo Cirl+Skift Minus, Cirl £
4 Redo [Ctri+5kift Z |
= Cut Crl X klipp ut
Iﬁil Copy Cirl ©; Cirl Insert; Kaopiera
[T Paste Cirl Yy, Skift Insert; Ctrl Y, Klistra in -

AL

key Bindings:
Cirl+Skit Z | Add Key Binding... |

| Edit ey Binding... |

| Remove |

Figure: The key binding editor

All user defined key maps are stored in your $HOME/.dbvis/config/keymaps directory. A key map file contain only the differences
between the copied key map and the current.

To create a new key map, select the map you want to copy and click the Make Copy button. Set a name on the new key map and activate
it with the Set Active button. The newly created key map now has the exact same key bindings as the parent key map.

Key maps must be uniquely named.

166(245)

Ken Bindings

Uze these settings to define the key bindings throughout the application.
You must make a copy of an existing key map to alter key bindings. The
active indicator highlights the current key map.

Kewmaps
| =T o W A =F= s B 1] (%] - Tat Acti
SOL Queny Anaklzer (read-onkd 2 =
Linux-UMIX (read-onka Make Copy
TOAD (read-onkd

[Femaove

MyKeys Cactive)
Kewtmap: |M~¢Keys Bazed on: Linux-INIX

Kewmnap Settings

Action [ke Bindings |
) Al Bindings []
o U,j Editor Comimands
UJ M ain Menu
U,j Feferences Graph
J Grid
) Inline Editar
U_J Form Editor
U_j Create Table/Index
U,J Execute Bookmark
J Resul set

Fl et B bt

F.ey Bindings:

GG

| Add KeyBinding... |

| Edit KeyEinding... |

| Remove |

Figure: User defined key map

The action list is organized in folders. The Editor Commands folder lists all actions available in the SQL Commander editor and their
current key bindings. The Main Menu folder contain sub folders, each representing a main window menu. The other folders group feature
specific actions, such as actions to control the references graph, form editor, etc.

To modify the key bindings for an action, select the action from the action list. The current key bindings are listed in the Key Bindings
list.

Keymap Settings

Keytmap: |M~,;Ke~,.-s |Based an: Linux- NEX

Action [Key Bindings
) Al Bindings
Ilj Editor Commands
'{J Main Menu
& File
—] Load |ctri o
— b save cirl s
— B Save As Ctrl+5hift 5
— [Create SQLECHIT
— k& Close CurrenCtrl F4
— & Close Al SQLCH+ Al W

Pl A1l s

K.y Bindings:
Ctrl 0 | Add KeyBinding... |

| Edit KeyBinding... |

[Remaoye]

Figure: User defined key map

167(245)

To add an additional key binding, press Add Key Binding or press Edit Key Binding to edit the selection.

» Key Stroke(s) *
First Kewstroke

Ctrl D |

Second Kewystroke

Canflicts
Assigned to [Delete Mext Character]
[Deleta]

[Ok ” Cancel l[Clear]

Figure: Key stroke dialog

The key stroke dialog controls whether a key binding is already assigned somewhere else. If there is a conflict with another binding, the
Conflicts are shows the names of the actions that are conflicting. The modifier keys Shift, Alt, Ctrl and Command can be used to form the
final key binding.

Menu items and tooltips shows the first defined key binding in the list.

Database Connection

Peroperty Description

If enabled, you will be asked if you want to use the Connection Wizard to create new

Ask When Creating Database Connection)
connections.

If enabled, the Connect All operation is automatically run when you launch DbVisualizer,
Run "Connect All" at Startup connecting all Database Connections marked as being included in the Connect All
operation (see the Database properties further down for more on this).

If enabled, a dialog to be displayed before disconnecting all current database connections

Confirm "Disconnect All when using the Disconnect All operation.

Driver Manager

The Driver Manager searches specified folders for JDBC drivers and helps you make them available for use by DbVisualizer, see the Load
JDBC Driver and Get Connected section for details. In the Driver Manager properties category, you can specify if you want the Driver
Manager to run automatically at start-up, when new files are discovered in the specified driver folders, or when driver related errors are
encountered. You can also specify the folders to search and files to exclude, if any.

Permissions

The Permission functionality is a security mechanism, where you can specify that certain database operations must be confirmed. You
configure permissions per connection mode (Development, Test and Production) for feature areas described in the following sections.

Note: The permission feature is part of DbVisualizer and does not replace the authorization system in the actual database.

168(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

SQL Commander Permissions

For the SQL Commander, you can pick the permission type from a drop-down list for each SQL command:

Permission Type Description
Allow This permission type means that you can run the SQL statement without any confirmation
Deny This permission type means that the SQL statement is not executed at all.

This permission type means that when executing an SQL statement, or a script of statements, the SQL Commander
asks you whether the actual SQL command(s) should be executed.

Ask

Figure: SQL Commander Permissions

Inline Editor Permissions

The permission types for the inline editor are:

Permission Type Description
Confirm A confirmation window is displayed, and you can accept the operation or cancel it
No Confirm The SQL operation is performed without any confirmation

Figure: Inline Editor Permissions

Time Zone

In the Time Zone properties category, you can change the time zone for the DbVisualizer process, and thereby how date and time data is
interpreted. DbVisualizer uses the OS time zone by default, which is usually what you want to use.

Changing the time zone is only of interest if you work with a database running with a different time zone than the time zone set on the

client where you run DbVisualizer. One example is when working with a database that uses the UTC/GMT time zone to normalize all
date/time data.

File Encoding

In the File Encoding category, you can set which file encoding DbVisualizer uses by default when reading and writing files, e.g., SQL scripts
loaded into the SQL Commander or files with exported data. By default, DbVisualizer uses the default encoding for your operating system,
and this is typically what you want. You only need to change this setting if you often work with files in another encoding, or if DbVisualizer
can not find the default encoding for your operating system.

Data Formats

169(245)

Property

Date Format

Time Format

Timestamp Format

Numbers Format

Decimal Number Format

Null String

Description

Specifies the date format to use throughout the application (i.e., in grids, forms and during editing). More
information below.

Specifies the time format to use throughout the application (i.e., in grids, forms and during editing). More
information below.

Specifies the timestamp format to use throughout the application (i.e., in grids, forms and during editing).

More information below.

Specifies how numbers will be formatted.

Specifies how decimal numbers will be formatted.

Specifies the string representation of the null value. This string is the readable form of null and appears in
grids, forms, exports and during editing.

Date, Time and Timestamp formats

The lists for date, time and timestamp format contain collections of standard formats. If these formats are not suitable, you can enter your
own format in the appropriate field. The tokens used to define the format are listed in the right-click menu when the field has focus.

G - Era Designator
¥ - Year

M - Month in year
w - Week in year
W - Week in month
D - Day in year

d - Day in month

E - Day in week

H - AM/PM marker

H - Hour in day @-23
k - Hour in day (1-2$

m - Minute in hour
s - Second in minute
5 - Millisecond

Z - Time zone

Z - Time Zone

F - Day of week in month

K - Hour in AM/PM @0-11)
h - Hour in AM/PM (1-12)

Figure: The date and time right click menu

The complete documentation for these tokens is available at the following web page: SimpleDateFormat.

Number formats

The lists for number and decimal number contain collections of standard formats. If these formats are not suitable, you can enter your
own format in the appropriate field. The tokens used to define the format are listed in the right-click menu when the field has focus, and
complete documentation for these tokens is available at the following web page: DecimalFormat.

Table Data

170(245)

http://java.sun.com/j2se/1.5.0/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/toolProps.html#mozTocId854888

Property Description

Specifies if the number of rows in a table will be displayed in the header of the table in the Database
Show Table Row Count Objects->Data tab. Enabling this property will cause an extra round trip to the database (i.e., a
minor performance penalty)

Specifies if Primary Key columns will be indicated in the Database Objects->Data tab, Variable

Highlight Primary Key Columns Substitution window, SQL Commander result grids and in the References graph.

Specifies if the right-click menu operations in the Data tab will create SQL statements that include
DbVisualizer variables or if the generated statements are plain SQL. Letting DbVisualizer generate
statements with variables results in the Variable Substitution window being displayed when these
statements are executed in the SQL Commander.

Include Variables in SQL

Max Rows at First Display Set the number of rows that will be fetched for a table in the Data tab when a table is first displayed.
Transaction
Property Description

Specifies what DbVisualizer does on exit from the application, when the auto commit setting is

Pending Transactions at Disconnect disabled.

Bookmarks

Property Description

Specify the maximum number of New and History bookmark entries that will be kept by DbVisualizer. If

Number of Bookmarks Limit the number of bookmarks exceeds this limit, the newest entry will overwrite the oldest.

Monitor

Property Description

Start Monitors Automatically Check to enable start of monitors automatically when database connections are established.

Form Viewer

Property Description
Right Aligned Numbers If enabled, numbers are displayed as right-aligned in the Form Editor/Viewer.

The number of pixels for the widest side of an image (represented by binary data) when shown in the Data

Image Thumbnail Size Form Viewer. The value is used to scale the image proportionally. The default is 150.

Grid

Property Description

171(245)

If Auto Resize is enabled, DbVisualizer automatically sizes each grid column based on the widest cell
Auto Resize Column Widths value. If Consider Column Header is also enabled, the header widths are also considered when
calculating the column widths.

If enabled, a row header is shown also for read-only result set grids, such as monitoring result set

Show Grid Row Header -
grids.

This setting is used only when Auto Resize Column Widths is enabled and specifies a maximum

Max Column Separator Width visual column width for grids.

The Max Chars property in the Database Objects Data tab and in the SQL Commander is used to
control the max number of characters for text values. If the number of characters for a text column is
more than this setting, the column is colored in a light red color and the value is truncated as specified
by this property:

. . ¢« Truncate Values
Meaning of setting Max Chars Truncate the original value to be less then the setting of Max Chars.
Note: This affects any subsequent edits and SQL operations that use the value since it's
truncated. This setting is only useful to save memory when viewing very large text columns.
¢ Truncate Values Visually
Truncate the visible value only and leave the original value intact. This is the preferred setting
since it will not harm the original value. The disadvantage is that more memory is needed
when dealing with large text columns.

Copy

The Copy category groups properties that control the result of using Copy Selection and Copy Selection (With Column Header) via
the grid right-click menu, the corresponding key bindings, and drag and drop.

Property Description
Column Delimiter Specifies the delimiter between columns in a multi column copy

End of Line Delimiter Specifies the new line control characters for multi row copy requests

Colors

The Colors category is used to define alternatnve background, foreground and grid colors for grid components.

Binary/BLOB and CLOB Data

Property Description

Specifies how BLOB and binary data values are represented in grids. Setting this property to By Value results in performance

BLOB penalties and the memory consumption increases dramatically.

CLOB Specifies how CLOB data values are represented in grids. Setting this property to By Value results in performance penalties
and the memory consumptionincreases dramatically.

SQL Editor

The editor category controls various settings specific for the SQL Commander editor.

Property Description

172(245)

Specifies settings for the tab keyboard key: Tab Size (the number of characters a tab character
corresponds to), Whitespace(s) per Tab (by how many characters to indent when the tab key is
pressed), and Expand Tab to Whitespace (if enabled, always insert space characters when the tab
key is pressed).

Tabs
If Expand Tab to Whitespace is disabled, a tab character is inserted when the tab key has been
clicked as many times as it takes to indent to the value specified by Tab Size, i.e., if Whitespace(s)
per Tab is set to 4 and Tab Size is set to 8, clicking the tab key twice results in a tab character.
Recent Files Limit Specifies the max number of files listed in the File->Load Recent sub menu.

If enabled, DbVisualizer asks you whether to save the text in an SQL editor with modified content

Confirm Close of Unsaved Editors (any editor; not only editors loaded from file) when you close the editor.

If enabled, the Sticky flag is automatically set for all new SQL Editors, which means that the

Set "Sticky" for SQL Editor(s) database connection details only can be changed manually.

Statement Delimiters

Statement delimiters define how a script should be divided into specific SQL statements in the pre-processing phase.
Property Description

SQL Statement Delimiter 1 Defines the character(s) used to delimit one SQL statement from another in a SQL script

Defines the additional character(s) used to delimit one SQL statement from another in a
SQL Statement Delimiter 2 SQL script. If there is no need for more then one SQL statement delimiter, set this one to
the same as delimiter 1.

Specifies whether go as the first word on a single line should be interpreted as a

Allow "go™ as Delimiter statement delimiter.

Begin Identifier Defines the character(s) that identifies the start of an anonymous SQL block.

End Identifier Defines the character(s) that identifies the end of an anonymous SQL block

SQL Formatting

The SQL formatting category groups properties to control the SQL formatting feature in the SQL Commander. To see the effect of each
property, modify it, press Apply and format the SQL in the SQL Commander.

Auto Completion

These category is used to define the visual appearance of the auto completion popup in SQL Editors.

Property Description
Sort Tables List Enable this to always present tables sorted in the auto completion popup
Sort Columns List Enable this to always present column names sorted in the auto completion popup

Display Automatically Enable this and the auto completion popup is automatically displayed whenever possible

Instant Substitution Enable this and the auto completion feature substitutes directly if there is only one matching entry

173(245)

Display Delay Specifies the time in milliseconds until the auto completion popup is displayed automatically

Comments
Property Description
Single Line Identifier 1 Specifies the character(s) that identifies the beginning of a one line comment
Single Line Identifier 2 Specifies the additional character(s) that identifies the beginning of a one line comment

Block Comment Begin Identifier Specifies the character(s) that identifies the start of a multi line comment block

Block Comment End Identifier Specifies the character(s) that identifies the end of a multi line comment block

Variables

Variables can be used in the SQL executed in the SQL Commander. Before executing an SQL statement or connecting a database
connection, a dialog is displayed, asking for replacement values.

These settings define a character sequence that identifies a variable and another sequence that delimits different parts of a variable.
Example: ${variable}$.

Property Description
Variable Identifier Prefix The start identifier for a variable. Default is ${.

Variable Identifier Suffix The end identifier for a variable. Default is }$.

Variable Delimiter The delimiter used to identify the parts of a variable. Default is | |.

Proxy Settings

The Check for Updates feature requires HTTP access to the internet. If you access the internet through a proxy, you must specify the
proxy settings in order to use this feature.

Property Description
Proxy Type Specifies the type of proxy you use: HTTP or SOCKS
Proxy Host Specifies the name or the IP address for the proxy host
Proxy Port Specifies the proxy port number

If the proxy requires authentication, specifies the proxy user account name. Leave blank for a non-authenticating

Proxy User
proxy

If the proxy requires authentication, specifies the password for the proxy user account name. Leave blank for a

Proxy Password non-authenticating proxy

174(245)

Database Settings

Database settings extends the General settings with properties that may have different values per supported database type. You specify
the database type for a connection by choosing the appropriate type from the Database Type list in the Connection tab. If there is no
matching entry, use the Generic database type.

The database type specific properties in the Tool Properties apply to all connections of the specific database type. You can also override
these properties in the Connection Properties tab for a specific connection, in case you need to use different values for connections of the
same database type.

DbVisualizer Personal - Tool Properties

e |
General | [Database |
_ e Connection Mode
i’ D_atabase e Use this settimg to define what type of database the database connection represent,
=-@ w DbWsualizer will for type Test and Production render a border around the SGQL
""" \? Authentication editor, editable result sets and Form editor to catch your attention.
...... (@ Delimited Identifiers Use the Permission tool properties category to define rules For specific Featuras and
...... | Z‘p Qualifiers database operations.
_j!" Physical Cnnljectlnn Development ” Test “ Produckian |
\E. Transaction : :
------ [£] sqL statements T e e e
------ #/ Connection Hooks L === = = = _Tﬂsm_asimpf === = = == _'
------ =] Objacts Tree
""" [sQL Editor Show only default Database or Schema

Check to enable that only default database and/for schema will appear in the Database
Oibjects tree and throughout the application.

Show only default Database or Schema: [

Connect when "Connect Al

Defines whether this database will b2 conmected when the Connect All operation is
selectad,

Connect when "Connect Al []

#-[d Oracle w

T, W

Figure: The Tool Properties window showing the tree with Database categories

The following properties are displayed when selecting a database type in the tree.

Property Description

Specifies the connection mode for the database connection: Development, Test or
Production. Permissions are based on connection mode. For the Test and Production modes,

Connection Mode DbVisualizer displays a border around areas where database content can be edited, to bring
your attention to the fact that you are connected to a database where others may be
affected by your changes.

Enable this if you only want the default database or schema listed in the database objects

Show only default Database or Schema tree

The Connect All feature allows you to connect to multiple database connections with a
Connect when "Connect All" single click. Enable this property to include database connections of this type when using the
Connect All feature.

175(245)

176(245)

177(245)

178(245)

179(245)

Authentication

Property Description

If enabled, DbVisualizer saves the password for the database connection between
invocations. (The password is saved encrypted)

Save Password
Clear Password at Disconnect If enabled, the password is cleared at disconnect

Require Userid If enabled, you are asked to enter a userid whenever the database connection is established

If enabled, you are asked to enter a password whenever the database connection is

Require Password established

Delimited Identifiers

Delimited identifiers are identifiers which do not need to follow the rules of regular database object identifiers. Usually, delimited
identifiers are used when you need to use SQL reserved words, spaces and mixed case sequences in an identifier.

Property Description
Begin Identifier Defines the start character for a delimited identifier. Normally, this is a double quote as in "...".
End Identifier Defines the end character for a delimited identifier. Normally, this is a double quote as in "...".
Scripting Enable this to use delimited identifiers in the Scripting features

Auto Completion/Query Builder Enable this to use delimited identifiers in the auto completion and query builder features

Qualifiers

These properties control whether table and column names should be qualified when DbVisualizer generates SQL statement.
Property Description

Enable this to qualify object names with the schema/database in

Qualify with Schema/Database: Scripting the Scripting features

Enable this to qualify object names with the schema/database in

Qualify with Schema/Database: Auto Completion/Query Builder the auto completion and query builder features.

Enable this to qualify object names with the schema/database in

Qualify with Schema/Database: References/Navigator Graphs the graphs shown in the References and Navigator tabs.

Enable this to qualify column names with the table name in the
auto completion and query builder features.

Note: When you specify a table name alias, it is always used as
a column name qualifier, regardless of this property setting.

Qualify Columns: Auto Completion/Query Builder

Physical Connection

The Physical Connection category controls whether DbVisualizer should use only one physical connection with the database server or if
physical connections will be acquired when needed. The Use Single Shared Physical Database Connection is disabled by default.

180(245)

If enabled then briefly it means that whenever establishing a connection DbVisualizer will assign one physical database connection for the
objects tree and one per every SQL editor in the SQL Commander. The physical connection for a SQL editor is not acquired directly when
the editor is created but rather when doing the first execute in it.

If enabling Use Single Shared Physical Database Connection then only one physical connection will be used for that database.
DbVisualizer will then share the physical connection among all features communicating with the database. If using a single physical
connection and auto commit is off then a confirmation dialog may appear when launching features that require transaction control and if
there are uncommitted changes in the database.

Transaction

Property

Auto Commit

Ask when Auto Commit is Off

Transaction Isolation

Commit Batch Size

SQL Statements

Description

Defines if each executed SQL statement will be auto committed or not. This setting applies for all SQL
statements that are executed in the SQL Commander.

If auto commit is off then this setting when enabled will show a confirmation dialog if there are
uncommitted changes produced by the last execution in the SQL Commander.

Attempts to change the transaction isolation level for all database connections.
Note: If this property is changed during a transaction, the result is JDBC driver specific.

Specifies after how many rows DbVisualizer commits the transaction when saving a batch of changes in
the table data editor.

This category controls the SQL templates that DbVisualizer uses internally throughout the application. Each SQL template is composed of
the standard SQL and variables. Variables are identified with ${...}$. DbVisualizer relies on a number of predefined variables, listed in the
SQL Templates area right-click menu:

catalog
catalogseparator
schema
schemaseparator
table
table-name
where-columns

columns

values
column-values
create-columns
index-type
index

unique
index-columns
create- primary- key
DbVis-Date
DbYis-Time

quoted-where- columns

Figure: All predefined variables

A specific predefined variable can be used in one or more of the SQL templates. Using a variable that is not valid for a specific SQL
statement will result in the variable appearing as-is when the statement is executed.

There is normally no reason to modify the SQL templates, nor the variable identifier or delimiter settings. There might however be
circumstances when edits are needed, for instance to modify the appearance of the where clause or the list of columns.

181(245)

Property Description

SELECT ALL Command used when selecting all rows for a table

SELECT ALL WHERE Command used when selecting some rows for a table

SELECT COUNT Command used to get the number of rows in a table

INSERT INTO Command used to insert a new row into a table

UPDATE WHERE Command used to update an existing row in a table

DELETE WHERE Command used to delete a specific row in a table

DROP TABLE Command used to drop a specific table

CREATE TABLE Command used to create a new table with an optional primary key

CREATE INDEX Command used to create an index for a specific table

Monitor Row Count Command used to get the number of rows in a table and the current time stamp

Command used to get the row count difference in a table compared to the previous execution. The

Monitor Row Count Change calculated row count and the current time stamp is returned

Connection Hooks

Connection hooks defines optional SQL commands that are sent to the database at connect and just before disconnect. They are typically
used to initialize the database session with custom settings and to clean up various resources at disconnect.

Property Description
Run SQL at Connect Defines the SQL to be executed just after the connection has been established

Run SQL at Disconnect Defines the SQL to be executed just before the connection will be disconnected

Objects Tree Labels

Property Description

Here you can define custom tree labels for the data nodes in the database objects tree. The Object Type

Custom Object Tree Labels must match the corresponding type in the actual database profile, see more below.

The label for a data node (e.g., a table or view node, as opposed to a node that just groups nodes, such as the Tables node) is typically
the name of the database object the node represents, e.g., the table or view name. In some cases, you may want to extend the label to
include other information, such as the name of the schema that the object belongs to. To do this, you can use a custom tree label, defined
in the Objects Tree properties category.

You need two pieces of information to define a custom label: the Object Type name for the data node, and the names of the variables that
hold the information you want to use in the label. You find this information in the <ObjectsTreeDef> element in the database profile XML
file (described in detail in the Plug-in Framework section) for the database type you want to modify. Using the database profile for the
JavaDB/Derby database type as an example, a stripped down version of the <ObjectsTreeDef> element looks like this:

<ObjectsTreeDef id="derby">

182(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

<GroupNode type="Schemas" label="Schemas">
<DataNode type="Schema" label="${derby.getSchemas.Schema}">
<SetVar name="schema" value="${derby.getSchemas.Schema}"/>
<SetVar name="schemaId" value="${derby.getSchemas.Schema Id}"/>
[...]
<GroupNode type="Tables" label="Tables">
<DataNode type="Table" label="${derby.getTables.Table Name}" islLeaf="true">
<SetVar name="objectname" value="${derby.getTables.Table Name}"/>
<SetVar name="rowcount" value="true"/>
<SetVar name="acceptInQB" value="true"/>

[...]
</DataNode>
</GroupNode>
[...]
</DataNode>
[...]
</GroupNode>
[...]
</0ObjectsTreeDef>

In this example, there is one <DataNode> element with a type attribute set to Schema, with a nested <DataNode> element with a type
attribute set to Table. These two elements represent data nodes, for the schema and table node, respectively, and the type attribute

value is the Object Type name you need to bind the custom label to an object type.

Each <DataNode> element also has a number of nested <SetVar> elements, declaring the variables you can use in the custom label value.
All variables declared for the object type node and those declared for a parent <DataNode> element can be used in the label. So, if you
want the label for table nodes in the tree to show both the schema name and the table name, you add a custom label declaration like this:

Custom Object Tree Labels

Here you can define custom labels forthe nodes presented inthe objects tree, Theze labels will
appear anly for this database cannection.
Note: The Object Type must match the type attribute in the database profile.

Object Type | Label o
(%]

Table $ischemal ${objecthame}

Figure: Custom label declaration

SQL Editor

Property Description

Specifies whether any new line characters should be removed from any SQL statement executed in the

Remove New Line Characters SQL Commander, and in the implicit SQL execution functionality in DbVisualizer. Some

drivers/databases such as DB2 require that no new line characters are part of any executed SQL.

183(245)

If enabled, changing the schema in the SQL Commander also changes the default schema for the
database connection, so that unqualified table names in any SQL statement are associated with the
selected schema. If this property is not enabled, changing the schema only affects the schemas used
for auto-completion.

Note: Only a few databases supports setting the default schema for an opened connection. This
property is only shown for database types that support it.

Set Current Schema

Query Builder

Property Description

With auto-join enabled, the Query Builder automatically joins tables as they are included in
Query Builder Auto-Join Properties the query, based on the specified column matching rule: FK/PK declarations or columns with
matching names in different tables.

Specifies whether the Query Builder generates joins as JOIN clauses or WHERE conditions.
JOIN clause:

SELECT “

FROM HR.EMPLOYEES emp

INNER JOIN HR.DEPARTMENTS dept

ON (emp .DEPARTMENT_ID = dept.DEPARTMENT_ID)

Generate JOIN clauses in Query Builder

WHERE condition:

SELECT *
FROM HR.EMPLOYEES emp,
HR.DEPARTMENTS dept
WHERE (emp.DEPARTMENT_ID = dept.DEPARTMENT_ID)

Database Specific settings

DbVisualizer provides more support for some databases than for others, and so requires extended configuration capabilities for these
databases.

Data Types (Oracle)

With Oracle, the DATE data type should sometimes be handled as TIMESTAMP. Enable Handle DATE as TIMESTAMP and DbVisualizer
will convert DATE into TIMESTAMP objects.

Data Types (DB2 and JavaDB/Derby)

DB2 and JavaDB/Derby supports a data type named CHAR FOR BIT DATA. If you want to see values of this type as text, enable this
property.

Explain Plan (Oracle, SQL Server and DB2)
The explain plan feature supported for Oracle, SQL Server and DB2 can be configured to highlight certain threshold levels.

Property Description

184(245)

Color Critical Nodes If enabled, critical nodes in the explain plan are highlighted.
Critical Threshold Specifies the threshold for when a node should be handled as critical

Warning Threshold Specifies the threshold for when a node should be handled as a warning

Explain Plan (Oracle)

The explain plan feature for Oracle can be configured to define the management of the underlying plan table in which the explain plan
result is stored.

Explain Plan (DB2)

The explain plan feature for DB2 can be configured to define the management of the underlying plan tables in which the explain plan
result is stored.

Objects Tree (Oracle)

Property Description

If disabled, only schemas that contain database objects are shown in the tree.

Show Empty Schemas Note: Only disable this if you have DBA permissions, otherwise no schemas as listed,

Select here whether the database profile for Oracle should retrieve database information from the DBA or ALL

System View Prefix system tables.
Note: If choosing DBA, make sure the appropriate privileges are granted for the user you are connecting as.

185(245)

Export, Import and Print

Introduction

You can export both schema objects and data from DbVisualizer to a file. With the Export Schema feature, you can export the DDL and/or
data for all or selected objects in a database schema, while the Export Data feature writes different types of data presented in
DbVisualizer to a file. The Export Data Wizard dialog looks different depending on whether grid, graph or chart data is being exported. The
following sections describe the options available for each of these cases. There are major differences between DbVisualizer Free and
DbVisualizer Personal when exporting grid data. This document explains the complete functionality in the Personal edition, some of which
is not available in DbVisualizer Free.

Exporting very large result sets using the standard export feature may fail due to running out of memory, since all data must first be
presented in DbVisualizer. The @export client side command in the SQL Commander solves this problem, since it exports the data on the
fly while it is fetched from the database.

The Import feature reads data stored in CSV (Character Separated Values) format from files.

The Printing feature prints grid and graph data to a printer or a file.

Export Schema

Sometimes you may need to copy a schema from one database to another, or compare two similar schema to see how they differ. The
Export Schema feature can help you with tasks like these. This feature writes the DDL and/or the table data for all or selected database
objects in a schema to a file or another destination.

186(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515

E Export Schema HR

E] settings | ngl

Outpuk Farmat
@sqL O Encading: | & Cp1252 v

Qukpuk Destinakion

(%) File |E:Itmpldbdumplexpnrt.sql |E]

() 5QL Commander | Main: Untitled™ | (Target editor)

() Clipboard

Object Types

=

DEPARTMENTS
[T EMPLOYEES
[T 10B_HISTORY
: JOBS

o [] [LocATIONS
“ [[0 rEGIONS

0[] 3 Views

- [w] 453 Functions
- [¥] ¢ Procedures
- [] ¥ Packages
j -
H

>

‘@ Package Bodies
- [¢] @ Triggers

[WO Iy Y O o IO o |

< |

Qptions
Generate DROP Statements

[Jinclude Tablz Data Data Format Settings. ..

Include Table Indexes

SIE':'I.:.I':'i.Hgs - Expoart] [Cancel

Figure: The Export Schema dialog

You launch the Export Schema dialog by selecting the schema you want to export in the object tree and choosing Export Schema either
from the right-click menu or from the Actions menu.

The following sections describe the different options you can use. When you are happy with all the settings, click Export to start the
process. Log messages are displayed during the export process. The Export Schema dialog is closed if the export is successful, otherwise it
stays open so you can find out what went wrong by reading the log messages.

Output Format

You can export the schema objects as SQL or XML.

If you choose SQL, the objects will be exported as DDL statements (CREATE TABLE, CREATE VIEW, etc.) and, if you choose to include table
data, as INSERT statements. This is the format to use if you want to recreate the schema somewhere else.

If you want to compare one schema to another, you may want to pick the XML format instead. The object declarations are then exported
as XML documents, like this example:

<?xml version="1.0" encoding="MacRoman"?>
<TABLE>
<SCHEMA>
HR
</SCHEMA>
<NAME>

187(245)

JOBS
</NAME>
<COLUMNS>
<COLUMN>
<NAME>
JOB_ID
</NAME>
<DATA_TYPE>
VARCHAR(10)
</DATA_TYPE>
</COLUMN>
<COLUMN>
<NAME>
JOB_TITLE
</NAME>
<DATA_TYPE>
VARCHAR(35)
</DATA_TYPE>
</COLUMN>
<COLUMN>
<NAME>
MIN_SALARY
</NAME>
<DATA_TYPE>
INTEGER
</DATA_TYPE>
<NULLABLE/>
</COLUMN>
<COLUMN>
<NAME>
MAX_SALARY
</NAME>
<DATA_TYPE>
INTEGER
</DATA_TYPE>
<NULLABLE/>
</COLUMN>
</COLUMNS>
<CONSTRAINTS>
<CONSTRAINT>
<NAME>
JOB_ID_PK
</NAME>
<TYPE>
PRIMARY KEY
</TYPE>
<COLUMNS>
<COLUMN>
<NAME>
JOB_ID
</NAME>
</COLUMN>
</COLUMNS>
</CONSTRAINT>
<CONSTRAINT>
<NAME>
JOB_TITLE_NN
</NAME>
<TYPE>
CHECK
</TYPE>
<EXPRESSION>
"JOB_TITLE" IS NOT NULL
</EXPRESSION>
</CONSTRAINT>
</CONSTRAINTS>

188(245)

</TABLE>

The encoding choice specifies which character encoding to use for the data when you export to a file, and it is also used as the encoding in
XML header when you use the XML format. The default choice is based on your systems default encoding.

Output Destination

Destination Description
File This option outputs the data to the named file.

This destination will transfers the export data to the SQL Commander editor. It is primarily useful when exporting the

SQL Commander SQL output format.

Exporting to the (system) clipboard is convenient if you want to use the exported data in another application without

Clipboard the extra step of exporting to file first.

Object Types

In the Object Types area, you select the object types or individual objects you want to export. Checking the check box for a type, e.g.,
Tables, selects all objects of that type. Expand the type node to select individual objects instead, e.g., just a few tables.

Options

In the Options area, you can choose to Generate DROP Statements (this option only applies to the SQL format), to Include Table Data and
Table Indexes for the exported tables. If you choose to include table data, you can also change how the values for different data types are
formatted in the output by clicking the Data Format Settings button.

B Data Format Settings

Dakta Farmat

Date: |WW-MM-dd | “ | Example: 2008-10-09

Time: |HH:mm:ss | v|ExampIe: 09:37:55
Timastamp: |Ww-MM-dd HH:mm:ss | “ | Example: 2008-10-09 09:37:55
Mumber: |Llnformatted | | Example: 9126183

Decimal Mumber: |UnF0rmatted | | Example: 9126183531815
Boolean/BIT: |trueIFaIse A |

Mull Value: |(nu||) |

Binary BLOE: |5ize v |

Quate Text Data

Ezample: ©'Learys -= O'Laarys

[OK] [Cancel

Figure: The Data Format Settings dialog

189(245)

Settings
Clicking the Settings button reveals a a menu with options for saving and loading settings to and from a file.

+ Save as Default Settings
Saves all format settings as default. These are then loaded automatically when DbVisualizer is started
» Use Default Settings
Use this choice to initialize the settings with default values
*+ Load
Use this choice to open the file choose dialog, in which you can select a settings file
« Save As
Use this choice to save the settings to a file
+ Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL Commander to define the

settings for @export editor commands.

Logging

By default, log messages about the export process are shown in the Log tab. If you instead want to write the messages to a file, open the
Log tab and specify the file before clicking Export.

Export Grid data

The Export wizard is launched using the Export button in the grid toolbar (-9) or from the grid's right-click menu. If you want to export
just some of the grid rows and columns instead of all data in the grid, select the data to export and launch the wizard with the Export
Selection right-click menu choice.

Settings page

The first wizard page is the Settings page, containing general properties for how the exported data should be formatted. All settings in
the settings page can be saved to a file for later use in the export wizard or in the SQL Commander when exporting result sets using the

@export editor command.

190(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386
file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

[DbVisualizer Personal - Export Grid

Export Grid Settings
Oukput Format

O} CHTML OysqgL OxMe (xS Encading: |Big5 L |
Data Format

Date: |Llnformatted | “ | Example: 2007-07-02

Time: |Unformatted | | Example: 11:05:09

Timeskamp: |Llnformatted | | Examnple: 2007-07-02 11:05:09.624

Mumber: |Unformatted | | Example: 9126183

Decimal Mumber: |Llnformatted | “ | Example: 9126183,531815

Ml Value: |(nu||) |

Binary BLOE: |5ize v |

Quate Text Data
@ Mone O Single O Double O AMSI Ezample: ©'Learys -» O'Learys

Options
Column Delimiter: |TnB v |
Row Delimiter: |UND¢Linux/Mac 05 X - LF |
Include Column Mames:

Row Comment Identifier: I:I

Remaove Newline Characters: [

Include Original SQL: [

m

]
ful

I_ Mext =] I_ Cancel

Settings = <

Figure: The grid export wizard

Read the sections below for detailed information on each field and what settings that can be made.

Output Format

Grid data can be exported in the following formats.
Format Description

The CSV format (Character Separated Values) is used to export the grid of data to a file in which each column is separated with
a character or several. It is even possible to specify the row delimiter (aka newline sequence of characters).

5,Hepp,59248
15,Hopp, 41993
16,Hupp, 44115

csv

The above example use a "," as the column delimiter and a "\n" sequence as the row delimiter (invisible above).

191(245)

HTML The data is exported in HTML format using the <TABLE> and associated tags.

The SQL format simply creates an SQL INSERT statement for each row in the grid. It also uses the column names from the grid
to define the column list in the SQL statement.

sQL insert into tablel (Columnl, Column2, Column3) values (5, 'Hepp', 59248);

insert into tablel (Columnl, Column2, Column3) values (15, 'Hopp', 41993);
insert into tablel (Columnl, Column2, Column3) values (16, "Hupp', 44115);

The XML format is handy when importing or using the exported data in an XML enabled application. The default structure of the
XML format is:

<ROWSET>
<ROW>
<Columnl>5</Columnl>
<Column2>Hepp</Column2>
<Column3>59248</Column3>
</ROW>
<ROW>
<Column1>15</Columnl>
<Column2>Hopp</Column2>
<Column3>41993</Column3>
</ROW>
<ROW>
<Column1>15</Columnl>
<Column2>Hupp</Column2>
<Column3>44115</Column3>
</ROW>
</ROWSET>

XML

Alternatively, you can choose between the commonly used XmIDataSet and FlatXmIDataSet formats.

Encoding

The encoding choice specifies which character encoding to use for the data. It is also used to set the encoding in the HTML and XML
headers. The default choice is based on your systems default encoding.

Data Format

The data format settings defines how the data for each of the data types will be formatted.

Quote Text Data

Defines if text data should appear between quotes or not. Selecting the ANSI choice will automatically prefix any single quotes with an
additional one.

Options

The options section is used to define settings that are specific for the selected output format.

192(245)

Csv

Qptians
Caolumn Delimiter: |; E“
Row Delimiter: NI fLinuxMac 05 % - LF [~
Include Column Mames: [+

Row Caomment [dentifier: |:|

Remove Newline Characters: [

Include Original SOL: O
Figure: CSV specific export options

HTML

Options

Title: Dbvisualizer expart output

Drescription:

Include Original sQL [

Figure: HTML specific export options

sQL

Qptions

Table Mame: |HR.COUNTRIE

Statement Separator;
Fow Comment [dentifier: El

Include Create DDL: I

Include Original S0L: W

Figure: SQL specific export options

193(245)

XML

Options
ML Ste: @ Dhvisualizer O XmlDataset O Flat¥mliDataset

Description:

Include Original 5QL [

Figure: XML specific export options

Settings
Clicking the Settings button reveals a a menu with options for saving and loading settings to and from a file.

+ Use Default Settings
Use this choice to initialize the settings with default values. Some of the settings will be fetched from the general tool properties
dialog.
* Load
Use this choice to open the file choose dialog, in which you can select a settings file
+ Save As
Use this choice to save the settings to a file
+ Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL Commander to define the

settings for @export editor commands.

Data page

Clicking the Next button in the wizards moves you to the Data page. Use the columns list to control which columns to export and how to
format the data for each columns. The list is exactly the same as the column headers in the original grid, i.e., if a column was manually
removed from the grid before launching the Export wizard, then it will not appear in this list.

194(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

] Export Grid Data
Columns
Export | Marme [Twpe |is Text] value | | A |
¥ |EMPLOYEE_ID BigDecimal O [$%waluebs
[FIRST_MAME String P $$waluets | v |
¥ |LAST_MAME String M $%valuess
¥ |EMAIL Strin walug -
. g % 3 3] T
¥ |PHOME_MUMEBER (tring M $%valuets
M |HIRE_DATE Timestamp | B $$valued§
¥ |JoB_ID String ¥ $%walue$ s
W SALARY BigDecimal O [$swaluess
W COMMISSION_PCT |BigDecimal O [$%valuebs
M MANASER_ID BigDecimal 1 %%walue$s
¥ |DEPAETMENT_ID |BigDecimal O $%wvaluets
Table Fows
Total Number of Rows in Grid:
Mumber of Rows 1o Export;
[< Barck] || Mext = || [Cancel

Figure:

The grid export wizard

The Table Rows fields show you how many rows are available and let you specify the number of rows to export. This setting along with

the Add Row button is especially useful when you use the test data generation feature described in the next section.

Here follows information about the columns in the list.

Field Description

Export ||Defines whether the column will be exported or not. Uncheck it to ignore the column in the exported output.

Name The name of the column. This is only used if exporting in HTML, XML or SQL format. Column headers are optional in the CSV
output format.
The internal DbVisualizer type for the column. This type is used to determine if the column is a text column (i.e., if the data

Type
should be enclosed by quotes or not).

Text Specifies if the column is considered to be a text column (this is determined based on the type) and so if the value should be
enclosed in quotes.

value The default $$value$$ variable is simply be substituted with the column value in the exported output. You can enter additional
static text in the value field. This is also the place where any test data generators are defined.

Generate Test Data

The test data generator is useful when you need to add random column data to the exported output.

195(245)

The Value field specifies the data to be in the exported output. By default, it contains the s{value}$ variable, which is simply replaced
with the real column value during the export process. You can also add static values before and after the ${value}s field, to be exported
as entered.

Alternatively, you can use test data generator variables in the Value field. The choices are available in the right-click menu when you edit
the Value field.

I DbVisualizer Personal - Export Grid

@ Export Grid Data
Columns
Export Mame Type |s Text Value N

EMPLOYEE_ID BigDecimal [0 ${valueld

FIRST_MAME String Fvalue}s v

LAST_MAME String Fivaluelf

EMAIL String $valuelf

PHOME_MUMBER String $valuelf

HIRE_DATE Timestamp $ivaluelf

JOB_ID String $ivaluelf

SALARY BigDecimal [$ivaluels

COMMISSION_PCT BigDecimal Fi Fvalueld

MAMAGER_ID BigDecimal [0 $waluels

DEPARTMENT_ID BigDecimal [0 $valuels

MEWCOLUMMN String =2 N | |

Generate random number

Generate random string of random length

Generate random value Fram a list of values

Table Rows Generate sequential number

Tokal Number of Rows in Grid:

Mumber of Rows to Export: | 107

< Back H Mext =] ’ Cancel

Figure: Right-click menu with the test data generator functions
Function Name Function Call Example

Generates a random number between 1

Generate random number ${varl Irandomnumber(l, 2147483647)}$ and 2147483647

Generates random text with a length

Generate random string of random size ${varl| |randomtext(l, 10)}$ between 1 an 10 characters

Picks one of the listed values in random

Generate random value from a list of values ${varl|randomenum(vl, v2, v3, v4, v5)}$ order

Generates a sequential number starting
from 1. The generator re-starts at 1

Generate sequential number ${var| Inumber(l, 2147483647, 1)1}$ when 2147483647 is reached. The
number is increased with 1 every time a
new value is generated.

Test data generator example

Here is an example of how to use the test data generators to try out planned changes to the data. Consider this initial data:

196(245)

JEMPNO EMAME ~ JOB MGR HIREDATE SAL COMM DEPTNO
mswm CLERK 78021980-12-17 00:00:00.0 800 (null) 20
7499 ALLEN SALESMAN 7698 1981-02-20 00:00:00.0 1600 300 30
7521 WARD SALESMAN 7698 1981-02-22 00:00:00.0 1250 500 30
7566 JONES MAMAGER 7839 1931-04-0200:00:00.0 2975 (nul) 2
7654 MARTIN SALESMAN 7698 1981-08-28 00-00:000 1250 1400 30
7608 BLAKE MANAGER 7830 1981-05-01 00:00:000 2850 (null) 30
7782 CLARK MANAGER 783 1981-06-00 00:00:000 2450 (nul) 10
7788 BCOTT AMALYST 7566 1987-04-10 00:00:00.0 3000 (null) 2
7836 KING ~ PRESIDENT 231981-11-17 00-00:000 5000 23 10
7844 TURN.. SALESMAN 7698 1981-09-02 00:00:00.0 1500 0 30
7876 ADAMS CLERK 7788 1987-05-23 00:00:00.0 1100 (null) 20
7900 JAMES CLERK 7698 1981-12-03 00:00:00.0 950 (null) 30
7902FORD ANALYST 75661981-12-03 00:00:00.0 3000 (nul) 20
7934 MILLER CLERK 77821982-01-23 00:00:00.0 1300 (null) 10

Figure: Sample of grid data

After the changes, the JOB column should not appear in the output and the new JOB_FUNCTION should contain abbreviated job function
codes. To test this, we simply uncheck the Export field for JOB entry and set the Value for the JOB_FUNCTION to use the Generate
random value from a list of values function.

E DbVisualizer Personal - Export Grid

[Export Grid Data
Columns
Export Mame Type Is Text Value Fs
EMPMO BigDecimal FI $ivaluels
EMAME String H{valueld
] JoB String $ivaluel$
| [[JOB_FUNCTION |5 _ fvar|lrandomenumieng, adm, fin)}$
MGR EI|gDEt:|maI $valuel$
HIREDATE Timestamp $ivaluel$
SAL BigDecimal [0 $ivaluels
COMM BigDecimal i $ivaluel$
DEPTHO BigDecimal ¥ $ivaluel$
[0 RESUME String $ivaluel$
Table Rows

Total Mumber of Rows in Grid:
Murnber of Rows ko Export:

< Back][Next = l [Cancel

Figure: Customized columns list with a generator function

Previewing the data (or exporting it) in CSV format results in this:

197(245)

. DbVisualizer Personal - Export Grid

Export Grid Preview

Preview of the first 100 raws (or less)

1 EMFHO ENAME JOE_FUNCTION HGR HIREDATE AL comt DEFTHO
Z 7369 SMITH fin 790z 1980-12-17 00:00:00 g00 (nall) 20
3 7499 ALLEN eng 7695 1951-0&-20 00:00:00 1a00 300 30
4 7521 WARD fin 7698 1931-02-22 00:00:00 las0 00 30
5 7566 JONES eng 7839 1951-04-02 00:00:00 2975 (nall) 20
6 7654 MARTIN fin 7695 1951-09-25 00:00:00 las0 1400 30
7 Te9g BLAFE fin 7839 1931-05-01 00:00:00 2830 (rall) 30
& 7752 CLARE adn 7839 1951-06-05 00:00:00 2450 (rall) 10
9 7788 3COTT eng 7566 1957-04-19 00:00:00 3000 (nall) 20
10 7839 EING adn 23 1951-11-17 00:00:00 000 Z3 10
11 7544 TURNEE. eng 7693 1951-09-05 00:00:00 1500 0 30
1z 7876 ADAME eng TTEE 1957-05-23 00:00:00 1100 (nall) 20
13 7300 TANES fin 7694 1951-12-03 00:00:00 Q50 (rall) 30
14 7902 FORD eng 7566 1951-12-03 00:00:00 3000 (nall) 20
15 7934 MILLEE fin 7762 1952-01-23 00:00:00 1300 (nall) 10

< Back]| Mext > [Cancel

Figure: Result of generated test data

Preview

The third wizard page is the Preview page, showing the first 100 rows of the data as it will appear when it is finally exported. This is useful
to verify the data before performing the export process. If the previewed data is not what you expected, just use the back button to
modify the settings.

Output Destination

The final wizard page is the Output Destination page. The destination field specifies the target destination for the exported data.

E Export Grid Output Destination
Qutput Destination
@ File |/home/hobya html] o=]
(O 50L Commander |Main Editar E| (Target editor)
O Cliphoard

Settings = < Back] l Export l l Cancel

Figure: The output destination and final page for grid export

Destination Description

198(245)

File This option outputs the data to a named file.

This destination will transfers the export data to the SQL Commander editor. It is primarily useful when exporting the

SQL Commander SQL output format.

Exporting to the (system) clipboard is convenient if you want to use the exported data in another application without

Clipboard the extra step of exporting to file first. CSV formatted data can even be pasted into a spreadsheet application such as
Excel or StarOffice, and the cells in the grid will appear as cells in the spreadsheet. Read more about the CSV format
in the Format section.

Export Text data

The wizard for exporting result sets in Text format is very simple, as it is only possible to specify where the exported output should go.

Export Text Output Destination
Qutput Destination
@ File |shame fbabfout.tx] -
(2 SQL Commander |Main Editor E] (Taraet editar)
O Cliphoard
< Back | [Export l [Cancel

Figure: Export window for text format result sets

Export Graph data

Exporting references graphs exports the graph with the same zoom level as it appears on the screen. The Export wizard pages when
exporting a graph looks like this:

=3 Export Graph Settings =3 Export Graph Qutput Destination
Cutput Farmat Qutput Destination
@ s OGIF @ File [homesbobjout jpg [- |
< Back | || Mext > || [Cancel < Bark l || Export || [Cancel

199(245)

file:///Users/rogge/work/svn/trunk/pureit/apps/dbvis/doc/out/master/exportPrint.html#mozTocId495435

Figure: Export window for graphs

The graph can be exported to a File in the JPEG or GIF formats.

Export Chart data

The options when exporting charts are the same as for graphs, but also let you set the size and orientation to use for the chart in the file.

\ad Export Chart Settings waf Export Chart Output Destination
Cutput Farmat Cutput Destination

@ PG O PNG @ File [fhome/hobjout jpg I]
Layout

Orientation: @ Paortrait () Landscape

Size: |As Is EH
ificith:
Height:

< Back | || Mext > || [Cancel < Back] || Export || [Cancel

Figure: Export window for charts

A chart can be exported to a File in the JPEG and PNG formats. The optional Layout settings are used to control the size of the image.
The default width and height are the same as the size of the chart as it appear on the screen. The Size list when clicked shows a list of
well known paper formats. The Width and Height are changed to match the selected size. Whether setting the width and height manually
or selecting a predefined size, the exported image is scaled accordingly.

Import Table Data

The Import Table Data feature is used to import files containing data organized as rows of columns with separator characters between
them. The destination for the imported data can be a database table or a grid in DbVisualizer. The grid option is convenient for smaller
files, as the features available for a DbVisualizer grid can then be used to do various things with the data. An example is that a CSV file
can easily be converted into an XML file or a HTML document by using the data import feature to grid and then use the Export Wizard in
the grid to output the grid data in the desired format.

The Import Wizard is launched via the right-click menu for table objects or via the Actions menu.

200(245)

& [T Tables

— [T aguisitioninterface
— [T] aquisitiontype
— [|calibratio
— [thangelng| #€ Drop Table..
— [cmdnumb{ k2, Rename Table...
_ cmdtwedl % Import Table Data...
— [comman
— [caonfig Create Index..
— [dbitemtyn .] .
Script Object to 5QL Editor 3
— [dbstatus il Q
— [language Script Object to MNew SQL Editor ¢
:g Lig%i?gee i Refresh Objects Tree F5
— 1 msrnt [Show in Window...
_ngWWSD?SMWmmunemmr
— [msmnteq
— [msmnteve| [EH Copy Name CHri+C
_ rsmntlog Clear Visited State
— s at N

Figure: Import Table Data action in the right-click menu for table objects

Note 1: The first row in the source file can be used to name the columns.
Note 2: The Import Wizard can not be used to import binary data.

Source File

In the first wizard page, select the source file to import and then click the Next button.

% Import CSV File Source File

Enter location and encoding of the file that should be imported.

Input File
File: |,fhomejbnb,femps.csv H]
Encoding: |[UTF-8 -]

< Back | [Mext > l [Cancel

Figure: The Source File import wizard page

Settings

In the Settings page, you specify how the data in the file is organized. The Data section at the bottom of the page shows a preview of the
parsed data in the Grid tab and the original source file in the File tab. If a row in the Grid tab is red, it indicates that the row will be
ignored during the import process. This happens if setting any of the Options settings results in rows not being qualified.

In the Delimiters section, define the character that separates the columns in the file. If you enable Auto Detect, DbVisualizer tries the
following characters:

« comma",
« tab "TAB"

* semicolon";

201(245)

* percent "%"

Use the Options section to further define how the data should be read.

< Import CSV File

Settings

Specify aoptions howthe columns in the file should be identified. Use the Data Grid to verify that the file is

properly read.

Delimiters

Column Delimiter: @ Auto Detect () String |TAE -]
Qptions

Header in First Row: [+

Skip Empty Rowis): [+

Skip First Row(s): o
Skip Rows Starting With:

Text Quoted Betwean; |

Data

Grid File

-]

End AlL PHOME_MUMEER.
SKING 515,122 4567 1987-06-17 00:00:00

MEOCHHAR 515,122 4568 1989-02-21 00:00: 00
LDEHAAN (515122 4569 2005-06-29 2311005
AHUMOLD (520,422 4567 1990-01-032 Q0:00:00
BERMST 5904224568 1991-05-21 00u00:00

EMPLOYEE_ID PElEsgr ifils] LAST _MNAME
100 StewEn King

101 Meena kochhar
102 lex [e Haan
103 Alexander |Hunold

104 Bruce Ernst

1‘0|'§ DA ”I”.&u 1in

INFANA I SO0 423 4569 1997-06-25 nn-nnﬂﬂ

HIRE_DATE

Preview Rows:

Colurnn Widths: | Fit

| [

Default

|

< Back] [Mext =

Cancel

Figure: The Settings wizard page

The following shows the preview grid with some rows in red. The reason is that the Skip First Row(s) and Skip Rows Starting With

are set, i.e., the first two rows and the rows starting with 103 will not be imported.

202(245)

< Import CSV File Settings

Specify options howthe columns in the file should be identified. Use the Data Grid to verify that the file is
properly read.

Cielimiters

Column Delimiter: @ Auto Detect () String |TAB -]
Optians

Header in First Eow: [#

Skip Empty Rowis): [+

Skip First Row(s):
Skip Rows Starting With:

Text Quoted Between; | EH
Data

Grid File
EmPLOYVEE_ID SRR dFan = LasT _MAME Er AL FHOME _MUMBER. HIRE_DATE
100 Steven King SKING 515.122.4567 1987-06-17 000001
101 MNeena Fochhar MEQCHHAR 515,122 4568 1989-02-21 000000
102 lex De Haan LDEHAAM |515.1232.4569 |2005-06-29 22105
103 Alexander Hunold AHUMOLD 520,423 4567 1990-01-03 00000
104 Bruce Ernst BERMST 590,422 4568 1991-05-21 000000
ml'; DA Alstin D ALST IR I a0 423 4589 [1997-05-25 nn-nnlﬂﬂ
4 T

Preview Rows: Column Widths: | Fit | | Defaun |

< Back] [Mext > l [Cancel]

Figure: The Settings wizard page

Data Formats

The Data Formats page is used to define formats for some data types. The first row in the preview grid contains a data type drop-down
lists. DbVisualizer tries to determine the data type for each column by looking at the value for the number of rows specified as Preview

Rows. If this data type is incorrect, use the drop-down lists to select the appropriate type.

203(245)

< Import CSV File Data Formats

Define formats for the data types that appear in the file. Then use the drop down lists in the Data Grid to
map data types with the columns in the file.

Cata Formats

Date: Unformatted [~]| Example: z005-06-28
Tirme: |Llnfc|rmatted |E|| Example: 23:47:02
Timestarng: |W,av—MM—dd HH: rrirm: ss |E|| Example: Z005-06-29 23:47:02

Thousand >eparator; |:|
Decimal Separator; |:|

Mull Walues: |(nu|l) | Example: hull), MULL, nada
Boolean True: |true, wis 1 | Example: true, 1, yes
Boaolean False: |fa|se, na, O | Example: falze, 0, no

Data

Grid | File

EMPLOYEE_ID FIEST _MAME LAST _MAME PHONI_
Nurnber [~]|string [~]|string [~]|string [=]||string ﬁ
101 Meena Kochhar MNEQCHHAR 515,123
102 lex De Haan LDEHAAMN 515,123
1oz Alexander Hunald AHUNOLD 590,423
b eVl D1 Crnrt DCChICT o™ oA
1] T]

Preview Rows: Column Widths: l Fit] l Default l
< Back] I| Mext > || l Cancel]

Figure: The Settings wizard page

The following is displayed when selecting the drop-down box in the preview grid.

RGOSR
[JBring_ [=][sing

String AD_WP
Date

) A0 WP
Time
Timestamp IT_PRC
Mumhber [=1=14

e Decimal Mumber
Boolean ——
T WO TS,

Figure: The data type drop down

Import Destination

The Import Destination page provides two options: Grid and Database Table. The Grid choice is used to import the data into a grid that
will be presented in its own window in DbVisualizer.

204(245)

When the Database Table choice is selected, the page shows information about the table in which the data will be imported. The Map Table
Columns with File Columns grid shows the columns in the selected database table and the columns in the source file.

DbVisualizer automatically assigns the columns in the source file with the first columns in the target table. If the columns appear in a
different order in the file than in the table, but they are named the same, you can use the auto-mapping menu in the upper right corner of
the Map Table Columns with File Columns grid to automatically map the columns by name.

= Import CSV File Import Destination

Select the destination the file should be imported to. Use Database Table to import the data into atable.
Choozing Grid will import the file to a grid dizplayed in a separate window:. You can then use the right click
menu in the windowto perform standard operations on the data, {The Crid choice is recommend for smaller
e 50,000 rowes).

Impoart Inta
) Grid
(@ Database Tahle

Datahase Table

Database Connection: |Orac|e on Fedora &

|
Datahase: | |
Schema: |HR |
Tahle: [EMPLOYEES |

Map Table Columns with File Columns

Map b Column Mame -

Key | Table Colurn Marme | Table Data Type | Map by Column Name
EMPLOYEE_ID MIIMEER. Emi Map by Column Index
FIRST _MAME WARCHARZ FIR! Clear Mappings
LAST_MAME WARCHARZ LAST_MNAME
EM AL WARCHAR EMAIL
PHOME_MUMEBER WARCHARZ PHOME_MUMEER
HIRE_DATE DATE HIRE_DATE
JOB_ID WARCHAR JOB_ID
SALARY UM EBEFR. SALARY
COMMISSION_PCT UM EBER. COMMISSION_PCT
M AMNACER_ID HIUMBER. MAMNAGER_ID | 8
DEPARTMEMNT_ID UM EBEFR. DEPARTMENT_ID E‘

Figure: The auto-mapping menu

If the column names are different between the file and the table and also appear in different order, you can manually map them using the
drop-down lists in the File Column Name field. Choose the empty choice in the columns drop-down to ignore the column during import.

205(245)

= Import CSV File Import Destination

Select the destination the file should be imported to. Use Database Table to import the data into a table.
Chooszing Grid will import the file to a grid dizplayed in a separate window. You can then uze the right click
menu in the windowto perform standard operations on the data. {The Grid choice is recommend for smaller
e 50,000 rows).

Impaort Inta
) Grid
(@ Database Tahle

Datahase Table

Darabase Connection: |Orau:|e on Fedora &

|
Database: | |
Schema: |HR |
Tahle: [EMPLOYEES |

Map Tahkle Columns with File Columns

Map by Column Mame -

ey | Tahble Column Mame | Tahble Data Tvpe | File Column Mame |
1 EMPLOYEE_ID MNUMBER. EMPLOYEE_ID E
FIRST_MAME WARCHARZ FIRST_NAME
LAST_MAME WARCHARZ LAST_MAME
EMAIL WARCHARZ EMAIL
PHOMNE_MUMBER. WARCHARZ PHONE_NUMEBER [~
HIRE_DATE DATE =
JOB_ID WARCHARZ EMPLOYEE_ID
SALARY MUMEER. FIRST_NAME
COMMISSION_PCT MUMBER. LAST_NAME
MANACER_ID MNUMBER. EMAIL | 8
DEPARTMENT_ID MUMEER. PHOMNE_NUMEER =]
. s HIRE_DATE =]
JOB_ID

Figure: The column mapping drop down

Import process

The last wizard page is used to start and monitor the import process. Here you can select whether all rows in the source file should be
imported or only a portion. You can also specify that you want to log to the GUI or to a file, and that you want keep the window open
when the import is completed, so that you can see the log messages when logging to the GUI. If you want to stop the processing on the

first error, check the Stop on Error check box.

If any errors occur during the import process, error messages are presented in the log and the window stays open regardless of the Keep

Window after Import setting.

206(245)

DbVisualizer Personal - Import CSV File

% Import CSV File Import

This is the last page. Specify options forthe import process and then press Import to start,

Qptions
) Impart all Rows
(@ Impoart Onlky F(s)
[Keep Window after Import

[[]stop an Errar

@ Log to GUI

) Log o File |D
Import Log

ORA-04088: error during execution of trigger "HR.SECURE_EMPLOYEES' -

16:55:530 [Row: 9, File lines: 9/10] ORA-20205: You may only make changes during
normal office hours

ORA-06512: at "HR.SECURE_DML", line 6

ORA-06512: at "HRSECURE_EMPLOYEES", line 2

ORA-04088: error during execution of trigger "HR.SECURE_EMPLOYEES'

16:55:30 [Row: 10, File lines: 10/11] ORA-20205: You may only make changes
during normal office hours

ORA-D6512: at "HRSECURE_DML", line 6

ORA-D06512: at "HRSECURE_EMPLOYEES”, line 2

ORA-04088: error during execution of trigger "HRSECURE_EMPLOYEES'

16:53:30 [Rowe: 11, File lines; 11712 | ORA-20205: You may only make changes
during normal office hours

ORA-06512: at "HR.SECURE_DML", line 6

ORA-06512: at "HRSECURE_EMPLOYEES", line 2

ORA-04088: error during execution of trigger "HR.SECURE_EMPLOYEES'

.. Import finished. 0 row(s) inserted and 10 failed.

[

< Back H Import] [Cancel l

Figure: The import process page

Print

The printing support in DbVisualizer supports printing of grids, graphs, charts and plain text, such as the content of an SQL Editor. The
print dialog looks somewhat different depending on what is printed. In all cases, you launch the print dialog by clicking on the Print button
in the toolbar for the object you want to print, or by choosing Print from the right-click menu. The right-click menu also contains a Print
Preview choice, if you want to see what the printout will look like before you actually print.

Printer Setup

If you want to set the page orientation (e.g., portrait or landscape) and paper size, you must launch the Printer Setup dialog, using the
File->Printer Setup main menu option, before you print. Printing varies widely between platforms, so even though the Print dialog (as
opposed to the Printer Setup dialog) on some platforms also lets you choose a page orientation and other options, they may be ignored if
specified in that dialog. The only supported way to specify the page orientation and other options is via the Printer Setup dialog.

207(245)

Grid, Chart and Plain Text

For a grid, chart and plain text, DbVisualizer launches the platform's native Print dialog, so it looks different on different platforms. The
two options available on all platforms are a choice of printer and the page range. On some platforms, the dialog may offer additional
options, but they may be ignored by DbVisualizer. Use the Printer Setup dialog to set other options than which printer to use and the page

range, as described above.

| General | Page Setup | Appearance |

Print Service

Marme: |primer

|z“ | Froperties. ..

Status: Mot accepting jobs

Type:
Infa: I Print To File
Print Range Copies
® Al Mumbier of copies:
O Pages |1 | To 1 | L] Collate
I Print] [Cancel

Figure: Standard print dialog

The figure above shows how the Print dialog looks on the Linux platform.

When you print a grid in DbVisualizer, the grid is printed as it is shown on the screen, i.e., with the table headers, sort and primary key
indicator, etc. It is printed as a screenshot that may span several pages, depending on the number of rows and columns that are printed.
For a grid, the right-click menu contains a Print Selection choice that you can use if you just want to print selected rows and columns.

An alternative to printing a grid as a screenshot is to export the grid to HTML and then use a web browser to print it.

Printing a chart scales the chart to the size of the paper. Plain text is printed as-is and may span multiple pages, both in height and width.

Graph

Printing a graph adds a custom dialog before the native Print dialog is displayed.

Poster Rows

Poster Columns 1

II

Add Poster Coords [

Clip Area Gapn 7]

| Ok ” Reset H Cancel]

Figure: Print options when printing graphs

You can specify the number of rows (pages) and columns (pages) that the complete image will be split into. You can also select whether
the view as it appears on the screen or the complete graph should be printed. When you click Ok, the native Print dialog is displayed,

where you can select the printer.

208(245)

Print Preview

Use the File->Print Preview feature to preview what the printout will look like before you actually print it.

Grid

T

Graph

| Fage. . H Print. .. J| Zaam In H Foarm Jut]|20.0%1

-]

print || close | [25%[7]

Figure: Grid and graph print previews

209(245)

Plug-in Framework

Introduction

The plug-in framework is supported only by the DbVisualizer Personal edition.

This document explains the database profile framework which is the base for how DbVisualizer presents information in the Database
Objects tree and in the Object View. In addition, it is also used to define object actions, such as drop, rename, compile, create,
comment, alter, etc.

What features in DbVisualizer relies on the
database profile?

One of the most important and central features in DbVisualizer is the database objects tree, used to navigate databases, and the object
view, showing details about specific objects. The general problem exploring any database is that they are all different with respect to the
information describing what's in the database (also called system tables or database meta data). This basically means that it's rather
complex to implement a multi-database support product, such as DbVisualizer, since each database must be handled specifically.

All databases also support different object types, apart from the most common ones, such as table, view, index, etc.

The database profile framework is used to simplify the process of defining what information DbVisualizer will display and operate on for a
specific database. Technically, a database profile is an XML document with all of the logic, structure and actions easily mapped to the
visual components in DbVisualizer. Another great benefit of separating the database specific logic from the implementation of DbVisualizer
is that anyone with some degree of domain knowledge can create a database profile. All that is needed is a text editor (preferably with
XML support) and some ideas of what should be the final result.

A great source for inspiration (except for this document) is all the existing database profiles that comes with DbVisualizer. All database
profiles are (and must be) stored in the DBVIS-HOME/resources/ profiles directory (this path is OS dependent).

The following figure illustrates which features in DbVisualizer are controlled by the database profile.

210(245)

DbVisualizer Personal - Untitled
File Edit VYiew Database 5QL EBookmarks Tools Window Help

dEHR Co 8 S R0 @ @

@Y Bd : |2 object View | [SOL Commander

@ % 7 Sybase ASE 15.0

[] Show Table Row Count

Figure: What the database profile controls in DbVisualizer

The red box at the left shows the database objects tree. This tree is used to navigate the objects in the database. Selecting an object in
the tree shows the object view (blue box) for the selected object type. An object view may have several data views (green), showing
object information. DbVisualizer shows these as labeled tabs. The green box in the screenshot shows the content of the data view labeled
Columns. The type of viewer that is presenting the data in the screenshot is the grid viewer. Read more about all data viewers in the
Viewers section.

Common to both the database objects tree and the object view are the SQL commands that are used to fetch the information from the
database. The associated SQL is executed by DbVisualizer whenever a node in the tree is expanded (to expose any child objects) or when
a node is selected (to fill the object data views).

Right-clicking the mouse on an object in the tree or clicking the Actions button in the object view shows a menu with all valid actions for
the selected object. These are also defined per database profile and object type. Read more about the capabilities of actions in
the Definition of user actions section.

How does DbVisualizer know what database profile to use?

DbVisualizer automatically load the appropriate database profile (XML file) based on the following:

1. The Database Type for the database connection is matched with the information in the DBVIS-HOME/resources/database-
mappings.xml file to find out if there is a database profile available. If it finds one, it is used.

2. If there is no matching profile, the generic profile is used. This is very basic profile and shows only rudimentary information
about the objects in the database. This is also the profile used in the DbVisualizer Free edition for all databases.

A specific database profile can be selected manually for a database connection. This is done in the database connection properties.
Manually choosing a profile requires that the profile supports the actual database. If it doesn't, various errors will be reported once the
database objects tree is explored. (Whenever the profile is changed, you must reconnect the database connection).

211(245)

The name of the loaded profile is listed in the Connection tab status bar when the connection has been established.You can click the
profile link to display the Database Profile list.

Profile: meesgl | Connection Time: 02:52.27

Cannectian i Froperties

Figure: The status bar in the Connection tab when connected

XML structure

The mapping from the visual components in the user interface described earlier and the element definitions in the XML file is, briefly, as
follows:

* The database objects tree (green box) is described by the ObjectsTreeDef root element. (The Database Connections node is
mandatory and its appearance cannot be controlled by the profile).

e The object views (green and blue boxes) are described by the ObjectsViewDef root element.

* The commands used to execute the SQL to get the information for ObjectsTreeDef, ObjectsViewDef and optionally
ObjectsActionDef definitions are defined by the Commands root element.

« All Actions for an object are defined in the ObjectsActionDef root element. (Actions are optional).

The XML for a database profile is quite simple, but there are a few things that need to be highlighted. All database connections loads a
database profile from an XML file. If there is no matching database profile, the generic profile is used. This profile uses the standard JDBC
metadata calls in order to obtain information about the structure and objects in the database. The generic profile is not one XML file, as
the database specific profiles are, but instead four files:

* generic-commands.xml
* generic-actions.xml

* generic-tree.xml

* generic-view.xml

All these files a referred in the generic.xml file via include statements, i.e., each of the above files are included in the generic.xml file
when it is loaded. The reason for this file organization is that the four files above can also be included and extended in a specialized
profile. See later for more information.

The XML structure used to represent the database profile is as follows (click on the link to read more about each specific section):

+ Commands

Defines the SQLs for the ObjectsTreeDef, ObjectsViewDef and optionally ObjectsActionDef.
+ ObjectsActionDef (optional)

Defines actions for object types.
. j TreeDef

Defines the structure and what objects should be visible in the objects tree.

+ ObjectsViewDef
Defines the object views for a specific object type.

XML skeleton

The following is a minimal database profile XML file, showing its structure.

<?xml version="1.0" encoding="UTF-8" 7>

<!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd" [

<!ENTITY generic-commands SYSTEM "generic-commands.xml">

<!ENTITY generic-view SYSTEM "generic-view.xml">
1>
<DatabaseProfile desc="Profile for Sybase ASE"

version="$Revision: 10390 $"
date="$Date: 2008-10-16 23:55:31 +0200 (Tor, 16 Okt 2008) $"
minver="5.0">

<= oE>
<!-- Definition of the commands -->

212(245)

<!-- ==
<Commands>
&generic-commands;

</Commands>

Ll s
<!-- Definition of the object actions that are used by the tree -->
<!-- -->
<ObjectsActionDef>
</0ObjectsActionDef>
il == s
<!-- Definition of the database objects tree structure -->
Ll s

<ObjectsTreeDef id="sybase-ase">

</0ObjectsTreeDef>
gl == ==
<!-- Definition of the database objects views -->
il == s
<!-- Include the generic-view -->

&generic-view;
<ObjectsViewDef id="sybase-ase" extends="generic">

</0ObjectsViewDef>
</DatabaseProfile>

The name of the XML file (sybase-ase) and the values for the id attribute for the ObjectsTreeDef and ObjectsViewDef elements must
be the same.

The first rows in the XML defines external dependencies and their URIs. The DOCTYPE identifier defines the DTD that is used to validate
the XML. The ENTITY identifiers lists URIs for external references. In this case they identify the generic-commands.xml and generic-
view.xml files. They can then be referenced in the XML as &generic-commands; and &generic-view;, which simply means that the
related XML files are included in the final document when the profile is loaded.

The root of the database profile is the DatabaseProfile element. Continue to the next sections for information about the elements
forming the database profile.

Tip: If you are using an XML editor to edit the profile it is very convenient to load the DTD in the editor, as you will then get color and
error highlighting.

<DatabaseProfile>

The DatabaseProfile is the root element in the XML file. It is required and have the following attributes.

<DatabaseProfile desc="Profile for Sybase ASE"
version="$Revision: 10390 $"
date="$Date: 2008-10-16 23:55:31 +0200 (Tor, 16 Okt 2008) $"
minver="5.0">

</DatabaseProfile>

The attributes specified for the DatabaseProfile element appear in the Database Profile list when selecting the connection properties
for a database connection:

213(245)

@[&uta Detect] O Manually Choose

Profile | Wersion | Date | Description
dbd IS OO ars Frofile Tor DES
dhZ-zos 1.4 20040927 Profile for DBZ on 205
infarmix 118 200502410 Profile for Informix DS
s ol 121 2005,/0210 Profile far MySQL
s ols 1.2 2005,/02,10 Profile far MySQL S 0.1+
aracle 1.24 200501724 Profile for Oracle
postgresgl 1.14 2004/09i27 Profile for Postgras QL
sqjlserviar 1.4 2004709527 Profile for 50L Sarver
sybase-ase 1.6 20040927 Profile for wbase ASE

Figure: The list of available database profiles

<Commands> - The SQLs used to interact with the
database

This element contains all Command elements with SQL sub element. A Command element is identified by a unique id attribute, which is
then referred in ObjectsTreeDef, ObjectsViewDef and (optionally) ObjectsActionDef definitions.

<Commands>
&generic-commands;
<Command>

</Command>
</Commands>

The first statement in the <Commands> element is:
&generic-commands;

This means that the generic-commands entity defined at the top of the XML file is included in the XML i.e., all its definitions are
accessible from the ObjectsTreeDef, ObjectsViewDef and ObjectsActionDef. If you don't plan to use any of the generic command,
simply ignore this include statement.

<Command>

The Command element specifies the SQL associated with the command. In most cases, the SQL should return a result set with 0 or
several rows. (The exception is actions which not necessarily need to return a result set, e.g., a "drop" action). The following command
queries for login information in Sybase ASE.

<Command id="sybase-ase.getlLogins">
<SQL>
<! [CDATAL
select name, suid, dbname, fullname, language, totcpu,
totio, pwdate from master.dbo.syslogins
11>
</SQL>
</Command>

The id for this command is sybase-ase.getLogins. The reason for prefixing the id with the name of the profile is for maintainability.
Since the generic-commands.xml file is included in most profiles, it is good to use unique prefixes for all commands so that they do not
conflict with the commands in the generic-commands.xml file.

Result set

The result set for the previous query looks as follows:

214(245)

name suid dbname fullname language totcpu totio pwdate
sa 1 master (null) (null) 0 0 2005-02-24 23:59:14

probe 2 subsystemdb (null) (null) 0 0 2005-02-25 00:01:15

The way DbVisualizer handles the result set depends on whether the command is executed as a request in the database objects tree
(ObjectsTreeDef) or in the object view (ObjectsViewDef). If executed in the database objects tree, each row in the result set will be
represented by a new node in the tree. If executed in the object view, it is the viewer component that decides how the result will be
presented. For more information on how a result set is used in the ObjectsTreeDef or ObjectsViewDef, read the specific sections.

Another important difference between the database objects tree and the object view is that the tree is a hierarchical structure of objects
while the object view presents information about a specific object. An object that is inserted in the database objects tree is a 1..1 mapping
to a row from the actual result set. The end user will see these objects (nodes) by some descriptive label, as defined in the
ObjectsTreeDef. However, all data for the row from the original result set is stored with the object in the tree and may be used in the
label, variables, conditions, etc. This is not the case in the ObjectViewDef.

The following example put some light on this. Consider the previous result set and that it's used to create objects in the database objects
tree. The end user will see the following in DbVisualizer. The visible name for each row is the name column in the result set.

£7 Logins
£l sa
£ probe

Figure: Sample of the Logins node having two child nodes

Each of the sa and probe nodes have all their respective data from the result set associated with the nodes. The data is referenced as
commandId.columnName, i.e., sybase-ase.getLogins.name, sybase-ase.getLogins.dbname, etc. All associated data for the sa
node in the example is listed next:

sybase-ase.getlLogins.name = sa
sybase-ase.getlogins.suid = 1
sybase-ase.getlLogins.dbname = master
sybase-ase.getlLogins.fullname = (null)
sybase-ase.getlogins.language = (null)
sybase-ase.getlLogins.totcpu = @
sybase-ase.getlLogins.totio = @
sybase-ase.getlLogins.pwdate = 2005-02-24 23:59:14

The DataNode definition presenting sa and probe in the previous screenshot example use the associated data for the label as follows:

label="${sybase-ase.getLogins.name}"

<Input> - Setting command input

There are two types of Commands: with and without dynamic input. The difference is that dynamic input Commands accepts input data
that is typically used to form the WHERE clause in SELECT SQLs. The previous example illustrates a static SQL (without dynamic data).

To allow for dynamic input, just add variables at the positions in the statement that should get dynamic values. The following is an
extension of the previous example that allows for dynamic input.

<Command id="sybase-ase.getlLogins">
<SQL>
<! [CDATAL
select name, suid, dbname, fullname, language, totcpu,
totio, pwdate from master.dbo.syslogins
where name = '${name}' and suid = '${suid}’
11>
</SQL>
</Command>

The example above adds two input variables: ${name} and ${suid}. Values for these variables should then be supplied wherever the

215(245)

command is referred for execution via the Input element.

The following is an example from the ObjectsTreeDef and its use of the sybase-ase.getLogins command:

<GroupNode type="Logins" label="Logins">
<DataNode type="Login" label="${sybase-ase.getLogins.Name} isLeaf="true">
<SetVar name="objectname" value="${sybase-ase.getlLogins.Name}">
<Command idref="sybase-ase.getlLogins">
<Input name="name" value="sa">
<Input name="suid" value="${sybase-ase.getProcesses.suid}">
</Command>
</DataNode>
</GroupNode>

(Note that the Command element refers the command via the idref attribute which will be matched with the corresponding id for the
Command).

There is no magic with this definition, since the ${name} variable in the final SQL will be replaced with string "sa".

The value for the ${suid} definition will in this case get the value of the sybase-ase.getProcesses.suid when the SQL is executed. So
where is this variable defined? As explained in the Result Set section, all the data for a row in the result set is associated with the objects
in the database objects tree. In addition, it is possible to use all the data kept by the current object and all its parent objects (as
presented in the objects tree) in the input to commands. So to evaluate the ${sybase-ase.getProcesses.suid} variable, DbVisualizer
first looks for the variable in the current object. If it doesn't exist, it continues to look through the parent objects until it reaches the root,
which is the Connections object in the objects tree. If the variable is not found, it will be set to the string representation for null, which is
(null) by default. Whenever a matching variable is found, DbVisualizer uses its value and stops searching.

<Output> - Redefine command output

As mentioned earlier, a specific column value in a result set row is referenced by the name of the column prefixed by the command id.
Sometimes this is not desirable and the Output definition can be used to change this behavior. The following identifies a column in the
result set by its index number, starting from 1, and then force its name to be set to the value of the id attribute.

<Output>
<Column id="sybase-ase.getlLogins.Name" index="1">
<Column id="sybase-ase.getlLogins.suid" index="2">
</Qutput>

The Output element can also be used to alter the structure of columns in the result set by adding, renaming or removing columns.

<Output>
<Column modelaction="add" index="THIS_IS_A_NEW_COLUMN" value="Rattle and Hum">
<Column modelaction="rename" index="ADDR" name="ADDRESS">
<Column modelaction="rename" index="2" name="PHONE">
<Column modelaction="drop" index="MOBILE_PHONE">
<Column modelaction="drop" index="4">
</Qutput>

(The rename and drop actions accepts either the name of the column or index number starting from the left at index 1).

* The add operation adds a new column to all rows. The value attribute accepts variables using the ${...} syntax.
¢« The rename operation simply renames a column.
* The drop operation drops the specified column.

The rename operation is primarily used when building a custom command that is supposed to be used by a viewer that requires
predefined input by specific column names. Read more in the ObjectsViewDef section.

216(245)

<ObjectsTreeDef> - Definition of the Database
Objects Tree

The ObjectsTreeDef element section controls how the database objects tree should be presented and which commands should be
executed to form its content (nodes). The mapping between the graphical representation in DbVisualizer and its ObejctsTreeDef XML is
as straight forward as it can be:

$—é§’f§yhaseﬂ8£12:iz <ObjectsTreeDef id="sybase-ase">
& (3 Databases <GroupNode type="Databases">
& 3 interpubs <DataNode type="Catalog">
@~ [T Tables <GroupNode type="Tables">
© ystern Tables <DataNode type="Table"/>
o [Wiews </GroupNode>
& Users <GroupNode type="SystemTables">
& 83 Groups <DataNode type="SystemTable"/>
% User Defined Data Twpes </GroupNode>
o @ Triggers <GroupNode type="Views">
@~ ¢ Stored Procedures <DataNode type="View"/>
@ O DBA Views </GroupNode>
&3 Server Info <GroupNode type="Users"/>
£ Logins <GroupNode type="Groups">
£l sa <DataNode type="Group"/>
£ probe </GroupNode>
=~ '@ Database Devices <GroupNode type="Types"/>
— s Remote Servers <GroupNode type="Triggers">
— @ Processes <DataNode type="Trigger"/>
o~ @ Roles </GroupNode>
— % Transactions <GroupNode type="Procedures">
— < Locks <DataNode type="Procedure"/>
</GroupNode>
</DataNode>
</GroupNode>

<GroupNode type="DBA">
<GroupNode type="ServerInfo"/>
<GroupNode type="Logins">
<DataNode type="Login"/>
</GroupNode>
<GroupNode type="Devices">
<DataNode type="Device"/>
</GroupNode>
<GroupNode type="RemoteServers"/>
<GroupNode type="Processes"/>
<GroupNode type="ServerRoles">
<DataNode type="ServerRole"/>
</GroupNode>
<GroupNode type="Transactions"/>
<GroupNode type="Locks"/>
</GroupNode>
</0ObjectsTreeDef>

Figure: The visual database objects tree and its XML definition

The screenshot shows all nodes representing the GroupNode definitions in the ObjectsTreeDef. One exception is the Logins object,
which has been expanded (sa and probe child objects) to illustrate what DataNode objects look like. The ObjectsTreeDef in the
example has been simplified to show only the type attribute. (The label of the nodes as they appear in the visual tree is not listed in the
ObjectsTreeDef example). The type attribute is primarily used internally in the profile as an identifier between the ObjectsTreeDef and
the ObjectsViewDef. The type is also visible in the DbVisualizer GUI, in the tooltip for a tree node and in the object view header. The
type is also used to identify the icon used to represent the object type.

There are no limitation on the number of levels in the ObjectsTreeDef. A good rule of thumb is, however, to keep it simple, clean and
intuitive.

The DataNode definitions are the most important objects in the ObjectTreeDef. They also define which object tree filters are available
for each object type, if overlayed icons should appear (and the criteria), etc. Read the next sections for details.

217(245)

<GroupNode> - Static objects used for grouping

The GroupNode element is represents a static object in the tree. These don't have any associated SQL and appear only once where they
are defined. A GroupNode is primarily used for structural and grouping purposes. The GroupNode element have the following attributes.

<GroupNode type="SystemTables" label="System Tables" isLeaf="false">

</GroupNode>

The isLeaf attribute is optional and controls whether the GroupNode may have any child objects or not. It can always be set to true, but
the effect in the visual database objects tree is then that the expand icon to the left of the group node icon will always be displayed, even
if it can never have any child objects. The default setting for isLeaf is false.

If isLeaf is set to false and there are child Group and/or Data -nodes, these will not appear. The result may cause some frustration during
the design...

<DataNode> - Dynamic objects created via SQL

The DataNode element feeds the tree with nodes produced by a Command. The example in the Command section querying for all logins
in Sybase ASE look as follow in the ObjectsTreeDef:

<GroupNode type="Logins" label="Logins">
<DataNode type="Login" label="${sybase-ase.getLogins.Name}" islLeaf="true">
<Command idref="sybase-ase.getlLogins"/>
</DataNode>
</GroupNode>

First, there is a GroupNode element with the purpose to group all child objects in a Logins node. The DataNode has, in this example,
the same attributes as the GroupNode, the type is however "Login" instead of "Logins" (as it is for the GroupNode). This difference is
important when the user selects one of the objects, since the the Object View shows the appropriate views based on the object type.

The DataNode definition can be seen as a template, as the associated command fetches rows of data from the database and
DbVisualizer uses the DataNode definition to create one node per row in the result set.

The label attribute for the data node is somewhat different, as it introduces the use of a variable (or several). The real value for the label
will, in this example, be the value in the Name column produced by the sybase-ase.getLogins command, as you can see in

the Command definition (variable names are automatically prefixed with the command id).

The Command element uses the idref attribute to identify the command that should be executed. The command in this case and in the

Result set section produces a result set with 2 rows and 8 columns. The result will be two nodes each, with the label of the Name column
in the result set.

£7 Logins
£l sa
£ probe

Figure: Sample of the Logins node having two child nodes

The label can be changed by setting it to any other valid variable or a combination of several variables. (It's even possible to specify static
text in the label):

label="${sybase-ase.getLogins.Name} (${sybase-ase.getlLogins.dbname})"
The example above results in the following labels:

sa (system)
probe (subsystemdb)

The complete set of attributes for the DataNode element is:

type="value" - The type of node (required)

218(245)

actiontype="value" - Object type used for object actions (optional)

label="value" - The visual label (required)
isLeaf="true/false" - Specifies if the node can have child objects (default true)
sort="coll,col2" - A comma separated list of names/variables used for sorting
drop-label-not-equal="value" - Do not add the node if the label is not equal to this value
or variable
warnstate="condition" - If condition is true, show an overlay icon for the node
errorstate="condition" - If condition is true, show an overlay icon for the node
stop-label-hot-equal="value" - The node will be a leaf if the label doesn't match this value
or variable
is-empty-output="continue/stop" - If result set is empty, use this to control whether child

GroupNode/DataNodes should be added anyway or ignored

The Command definition in the example above is simple, since it doesn't use any variables in the SQL. Continue reading the next section
for details about passing input data to commands.

<Command>

Commands are referenced in the DataNode definition by the idref attribute. Sometimes it is required that a specific DataNode must
supply input to a command. This is done by adding Input elements as children to the Command.

<DataNode type="Login" label="${sybase-ase.getLogins.Name}" islLeaf="true">
<Command idref="sybase-ase.getLogins">
<Input name="name" value="sa">
<Input name="suid" value="${sybase-ase.getProcesses.suid}">
</Command>
</DataNode>

The value for a variable specified in an Input element is evaluated using the strategy outlined in the Result set section.

<Filter>

The Filter element is specific for Command elements that appear in the ObjectsTreeDef section. A filter define which data for

a DataNode that is allowed to use in filters. This filter functionality is commonly referred as the Database Objects Tree Filtering in
DbVisualizer. The filtering setup appears below the database objects tree, and the following example shows that filtering may be specified
for these object types:

« Catalog

+ Table

¢ System Table
e View

For each of the Filter definitions, one or several columns can be as part of the filtering criteria.

219(245)

©- &3 “r Sybase ASE 15.0
@[3 Databases
&- 3 MyDatabase
© Tables
System Tables
[§ wiews
& Users
@~ 83 Croups
5% User Defined Data Types
@ @ Triggers
@~ ¢ Stored Procedures
@ O DBA Views
i server Info
£ Logins
& za
£ probe
2= ' Database Devices
— e Remote Servers
— @ Praocesses
o~ i Foles
— i Transactions
— L Locks -
Object Filter

O
O

Artivate Filters: [#]
Ohbject Type: ||:3 “# Catalng ||E|

[arme (=] (= v) %¢]

Match: @ any O Al

Figure: Screen shot showing the filter pane

<DataNode type="Views" label="${sybase-ase.getViews.Name}" islLeaf="true">
<Command idref="sybase-ase.getViews">
<Filter type="View" name="View Table">
<Column index="TABLE_NAME" name="Name"/>
</Filter>
</Command>
</DataNode>

The previous filter definition specifies a filter for the View object type. The name specifies the name of the filter as it appears in the
object type drop-down list. The nested Column element defines the index, which should be either a column name in the result set or an
index number for the column. The name attribute specifies the name of the column as it appears in the filter pane.

Several Column elements may be specified for a Filter element.

<SetVar>

The SetVar element is needed in the ObjectsTreeDef for DataNode's. Some object types have special meaning in DbVisualizer. Two
examples are the Catalog and Schema object types. For DataNode objects, you must use SetVar elements to identify them, with name
attributes set to "catalog" and "schema", respectively.

<DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}" isLeaf="false">
<SetVar name="catalog" value="${getCatalogs.TABLE_CAT}">
</DataNode>

All non Catalog or Schema DataNode's must use SetVar to set the "objectname" variable:

<DataNode type="Views" label="${sybase-ase.getViews.Name}" isLeaf="true">
<SetVar name="objectname" value="${sybase-ase.getViews.Name}">

220(245)

<SetVar name="rowcount" value="true/false">
</DataNode>

The objectname variable is used to identify the object represented by the data node, so that it can be uniformly referenced in object
views and object actions. Its value should be the identifier for the object as it is identified in the database, e.g., a table name or view
name.

The rowcount variable is optional and controls whether the object supports getting row count information via the select count(*) SQL
statement.

Another optional variable (not shown in the example above) is named acceptInQB. If set to true, nodes of this type can be used in the
Query Builder. It should only be set to true for object types representing tabular data that can be queried with an SQL SELECT
statement, such as tables, views, materialized views, etc.

<SetVar> variables are by default invisible in for example the NodeFormViewer. If you want to override this behavior then add the action
attribute and set its value to show. If you want to drop a variable completely from the node simply set the action attribute to drop.

<ObjectsViewDef> - Definition of the Object Views

The ObjectsViewDef element defines all views for the object types in the objects tree. These views are displayed in the Object View
area for the selected object. Which views should appear when selecting a node in the tree is based on the object type for the tree node
and the corresponding object view definition.

When an object is selected in the tree (sa in the screenshot below), its complete information is passed to the object view handler (right in
the sample). This handler determines, based on the object type, which object view should be used to present the information. When the
object view is found, all data views are created as tabs in the user interface. The selected object and its information is passed to each of
the data views for processing and presentation. The following shows how the Object View look in DbVisualizer and its

accompanying ObjectView definitions.

<ObjectView type="Logins">

<DataView type="Logins" label="Logins"

& &1 Logins fE Logm sa e
gisa y LS 2 : Nz | s <Command idref="sybase-ase.getlLogins"/>
J probe 8 /DataVi
Info | [3 Databases | #& Roles </ ReREeN/UEE
i]] </0ObjectView>
: <ObjectView type="Login">
Namewsa <DataView type="Info" label="Info"
suick | 1 viewer="node-form"/>
dhname: | master <DataView type="Databases" label="Databases"
fullname: | (null) viewer="grid"> .
Ianguageﬁ(num <Commqnd idref="sybase-ase.getlLoginDatabases" />
} </DataView>
totcau; |0 <DataView type="Roles" label="Roles"
totio: | 0 viewer="grid">
pwdala|2005—02-24 235914 <Command idref="sybase-ase.getLoginRoles"/>
</DataView>
</ObjectView>

Figure: The visual database objects tree, object view and the XML definition

The screenshot shows both the Logins node and its child nodes, sa and probe. From the GroupNode and DataNode declaration
examples in the previous sections, we know that these nodes are instances of the object types Logins (the Login node) and Login (the
two sub nodes, sa and probe).

The ObjectView XML definitions shows the data views for these two types, Logins and Login. Clicking on the node labeled Logins in the
tree will show the object view for the <ObjectView type="Logins"> definition while clicking on the node labeled sa or probe will show
the object view for the <ObjectView type="Login"> .

The example shows sa being selected. Its DataView definitions are (by label):

« Info
« Databases
* Roles

These views are presented in DbVisualizer as tabs. The label of each tab is the label defined in the DataView and the icons are defined by

221(245)

the respective object type.

The ObjectsViewDef root element has the following attributes:

<!-- Include the generic-view -->
&generic-view;
<ObjectsViewDef id="sybase-ase" extends="generic" >

</0ObjectsViewDef>

The first statement for the ObjectsViewDef elements is:
&generic-view;

This simply means that the generic-view entity defined at the top of the XML file is included in the XML, i.e., all its definitions are
accessible as is. One example is the ObjectView definition in the generic-view.xml file for the Table object type. It contains a lot

of DataView elements that identify all viewers for the Table. If you now want to use the generic Table DataView's but add a new
Abbreviations data view, then simply extend the generic Table DataView. This is done by adding a extends="generic" attribute in
the ObjectsViewDef element. By using the exact same object type in the extended ObjectView, you will then get this behavior. Read
more about extending ObjectView's in the Extending ObjectView section.

<ObjectView>

The ObjectView element is associated with an object type and groups all DataView elements that appear when the object type is
selected in the database objects tree. Here follows the ObjectView definition for the Login object type.

<ObjectView type="Login">
</ObjectView>

This element is simple as its only attribute is the type attribute. The type attribute value is used when a node is clicked in the database
objects tree to map the object of the type clicked and its ObjectView.

<DataView>

The DataView element is as important as the DataNode is in the ObjectsTreeDef. It defines how the viewer should be labeled in
DbVisualizer, which viewer (presentation form) it should use, commands and other things. The following is the DataView definitions for
the Login object type. (The ObjectView element is part of the sample just for clarification).

<ObjectView type="Login">
<DataView type="Info" label="Info" viewer="node-form"/>
<DataView type="Databases" label="Databases" viewer="grid">
<Command idref="sybase-ase.getlLoginDatabases"/>
</DataView>
<DataView type="Roles" label="Roles" viewer="grid">
<Command idref="sybase-ase.getlLoginRoles"/>
</DataView>
</0ObjectView>

The elements are used to define how the object is presented in DbVisualizer, as described in the introduction of the ObjectsViewDef
section. All three data view elements have a viewer attribute, which identifies how the data in the view should be be presented, e.g., as a
grid or a form. See the next section for a list of viewers.

Viewers

The viewer attribute for a DataView specifies how the data for the view should be presented. The following sections walk through the
supported viewers.

The following sample illustrates the viewer attribute.

222(245)

<ObjectView type="Login">
<DataView type="Info" label="Info" viewer="node-form"/>
</0ObjectView>

DataView definitions may be nested and the viewers are then presented with the nested DataView in the lower part of the screen.

grid

The grid viewer presents a result set in a grid, with standard grid features such as search, copy, fit, export, etc. The result set is
presented exactly as it is produced by the Command and any optional Output processing.

Here is a sample of the XML for the grid viewer:

<DataView type="Columns" label="Columns" viewer="grid">
<Command idref="oracle.getColumns">
<Input name="owner" value="${schema}"/>
<Input name="table" value="${objectname}"/>
</Command>
</DataView>

And here is a screenshot of the Columns tab created from the previous definition.

Table: EMP

e 10¢ TT | 5chemas TT | Tables | EMP

‘@ Rowld | =2 References | * Columns Comment | =3 Constraints | @ Triggers | “% DDL

g Info | @ Columns | [Data | @ Row Count | o PrimaryKey | @ Indexes | W8 Grants

QNER, TABLE_MAME COLUMMN_MAME DATA_TYPE DATA TYPE_MOD [E]
SCOTT EMP EMPMNO MUMBER. fnull) (=]
SCOTT EmMP EMLAME WARCHARZ rull (L
SCOTT EmP 10B WARCHARZ null) (L
SCOTT EMP MGE. MUMBER. fnull) (L
SCOTT EmMP HIREDATE DATE rull (L
SCOTT EmP AL MUMEBER. null) (L
SCOTT EMP COMM MUMBER. fnull) (L
SCOTT EmMP DEPTMD MNUMEBEE, rull (nL

0.060 secf0.115 sec |8 /31 [1-7,

Figure: The grid viewer

The nesting capability for grid viewers is really powerful, as it can be used to create a drill-down view of the data. Consider the scenario
with a grid viewer showing all Trigger objects. Wouldn't it be nice to offer the user the capability to display the trigger source when
selecting a row in the list? This is easily accomplished with the following:

<DataView type="Trigger" label="Triggers" viewer="grid">
<Command idref="oracle.getTriggers">
<Input name="owner" value="${schema}"/>
<Input name="table" value="${objectname}"/>
</Command>
<DataView type="Source" label="Source" viewer="text">
<Input name="dataColumn" value="text"/>
<Input name="formatSQL" value="true"/>

223(245)

<Command idref="oracle.getTriggerSource">
<Input name="owner" value="${OWNER}"/>
<Input name="name" value="${TRIGGER_NAME}"/>
</Command>
</DataView>
<DataView type="Info" label="Info" viewer="node-form"/>
</DataView>

* The first DataView definition defines the top grid viewer and the command to get the result set for it.

* The next DataView is the nested text viewer, specifying various input parameter for the viewer along with the command to get
the source for the trigger. The difference here is that the input parameters for this command reference column names in the top
grid. Since this viewer is nested, it will automatically be notified whenever an entry in the top grid is selected.

* The third nested DataView is presented as a tab next to the Source viewer, and presents additional information about the
selected trigger.

The following screenshot illustrates the above sample:

ﬂlnfu | & columns] [Data | @ Row Count | . Primary Key | Indexes | W8 Grants
o Row Id] =a References] # Columns Comment] =1 Constraints] © Triggers S5 DDL

QOWNER TRIGGER_MAME TRIGGEE_TYPE TRIGGERING_EYEMNT TABLE_QWHEHY)
SCOTT TRIG1 AFTER, EACH ROW INSERT SCOTT [=]
SCOTT TRIGZ BEFORE EACH ROW [INSERT SCOTT

‘ ol

0.017 sec/0.000 sec |2/ 12 [1-2
“¥ Source | @ Info
& EF =

1 TRIGGER "SCOTT"."TRIGL" AFTER -
2 INSERT

3 il

% T4 REFEREMCIMG HEW RS newRow FOR ERCH ROM

5 HHEH

6 {

T newRow.a <= 1H

B) =
1:1 | Ins) | Juntitlec

Figure: Example use of nested DataViews

Adding custom menu items in the grid

The menultem parameter specifies entries that should appear in the right-click menu in the grid. The value for the menultem is the
label for the item, while the child Input element specifies the SQL command that should be produced for all selected rows when the menu
item is selected. The result of a custom menu item is that the grid viewer creates a statement that it copies to the SQL Commander; it will
never execute the produced SQL in the scope of the viewer.

The following is an example with two menu items:

« Script: SELECT ALL
* Script: DROP TABLE

The variables in the SQL statement should identify column names in the result set. The user may select any columns in the visual grid and
choose a custom menu item. It is only the actual rows that are picked from the selection as the columns are predefined by the menultem
declaration.

The variables specified in these examples starts with ${schema=...} and ${object=...}. These defines that the first variable represents
a schema variable while the second defines an object. This is needed for DbVisualizer to determine whether delimited identifiers
should be used and if identifiers should be qualified, as defined in the connection properties for the database.

<Input name="menuItem" value="Script: SELECT ALL">

224(245)

<Input name="command" value="select * from ${schema=0WNER}${object=TABLE_NAME}"/>
</Input>
<Input name="menuItem" value="Script: DROP TABLE">

<Input name="command" value="drop table ${schema=0WNER}${object=TABLE_NAME}"/>
</Input>

Here is a sample:

[T Tables | =3 References | ® Takle Comments |

TABLE_MAME | TABLESPACE _MAME | CLUSTER._MAN

BOMUS UsERS il
CHECK _COMSTE USERS frnull
CLOBTEST USERS fnully
DEFT [o
EMF | i
EMPL | Inus
FF Copy Selection AE
FK1 | [Copy Selection @¥ith Column Header) “H
SALGRA & Export.. TE
T4 .

L T i
TS 1 T Export Selection...
T _Ph Fit Column Widths
Two_Ph Default Column Widths
TYPES

< Find... ~F

2, Erowse Row in Form...
Tl Describe Data..
[calculate Selection... fitls

[] o® Show/Hide Cell Browser...

[0 “8 Show/ Hide Quick Filter...
“& Set Quick Filter for Selection

[7d Column Visibility...
| . Script: SELECT ALL
¢ Script DROP TAELE

Figure: Custom menu items in grid viewer

The result of selecting a menu item defined as a menultem input parameter is that the specified command is copied to the current SQL
editor.

Setting initial max column width

Some result sets may contain columns with very wide data. The following parameter sets an initial maximum column width for all columns
in the grid.

<Input name="columnWidth" value=""/>

text

The text viewer presents data from one column in a result set in a text browser (read only editor). This viewer is typically used to present
large chunks of data, such as source code, SQL statements, etc. If the result set contains several rows, the text viewer reads the data in
the column for each row and present the combined data.

Here is a sample of the XML for the text viewer:
<DataView type="Source" label="Source" viewer="text">
<Input name="dataColumn" value="text"/>

<Input name="formatSQL" value="true"/>
<Command idref="oracle.getTriggerSource">

225(245)

<Input name="owner" value="${schema}"/>
<Input name="name" value="${objectname}"/>
</Command>
</DataView>

And here is a screenshot of the Source tab based on the previous definition.

igger: UPDATE_JOB_HISTORY (EMPLOYEES)
0 HR | Triggers | UPDATE_JOB_HISTY (EMPLOTEES)

@ Info | ¥ Source | SB DOL

S EH &

1 TRIGGER uwpdate_job_history AFTER

2 UPOATE

3 OF job_id,

+ department_id

5 oH

G employees FOR EACH ROMW BEGIN add_job_historyi:old.employee_id, :old.hire_dote, sys

T EHD;

[P
1:1 | INS| [||L|ntitl.acEJ

Figure: The text viewer

Specify what column to browse

By default, the text viewer uses the data in first column. This behavior can be controlled by using the dataColumn input parameter.
Simply specify the name of the column in the result set or its index (starting at 1 from the left).

<Input name="dataColumn" value=""/>

Enable SQL formatting of the data
The text viewer includes the SQL Formatting toolbar button, which when pressed formats the content in the viewer. The formatSQL

input parameter is used to control whether formatting should be enabled by default. If formatSQL is not specified, no initial formatting is
made.

<Input name="formatSQL" value=""/>

form

The form viewer presents row(s) from a result set in a form. If several rows are in the result, they are presented in a list. Selecting one
row from the list presents all columns and data for that row in a form.

Here is a sample of the XML for the form viewer:

<DataView type="Info" label="Info" viewer="form">
<Command idref="oracle.getTable">
<Input name="owner" value="${schema}"/>
<Input name="table" value="${objectname}"/>
</Command>

226(245)

</DataView>

And here is a screenshot of the Info tab based on the previous definition.

Table: EMPLOYEES

e 10g EM | 5chemas | HR | Tables | EMPLOYEES

@ Eowld | =2 References | ® Columns Comment | =3 Constraints | @ Triggers | <% DDL

G Info | [Columns | [Data | @& Row Count | o PrimaryKey | @ Indexes | W8 Grants

OWMNER:
TABLE_MAME:
TABLESPACE_MaAME:
CLUSTER._MAME:
[OT _MAME:
STATUS:
PCT_FREE:
PCT _USED:
IM_TRAMNS:
A _T RAMNS
IMITLAL_EXTEMNT:
MEXT _EXTENT:
MIN_EXTEMNTS:
MAK _EXTEMNTS:
PCT _INCREASE:

FREELISTS:

HR
EMPLOYEES
EXAMPLE
chully

mull
YALID

10

(nully

1

235

63536
(nully

1
2147483645
ally

(nully

Figure: The form viewer

node-form

The node-form viewer presents all data associated with the selected object (variables).

Here is a sample of the XML for the node-form viewer:

<DataView type="Constraint" label="Constraint" viewer="node-form">
<Input name="hidecolumn" value="oracle.getKeys.TABLE_OWNER"/>
</DataView>

And here is a screenshot of the Constraint tab based on the previous definition.

227(245)

~% Constraint: EMP_DEPT_FK (Foreign Key)

Actions w

cle 10g Ehd memas | HR | Tables | EMPLOYEES | Constraints | EMP_DEFT_FE (Foreigh Key)

=3 Constraint

OwrER:
TABLE_MAME:
COMNSTRAINT _MWAME:
COMNSTRAINT _TYFE:
SEARCH_COMDITION:
R _OWHER:
R_CORSTRAINT _MAME:
DELETE_RULE:
STATUS:
DEFEREABLE:
DEFERRED:
WALIDATED:
CEMERATED:

BALD:

RELY:

LAST _CHANGE:

HR

EMPLOYEES
EMP_DEPT_FK
Foreign Key
(ully

HR

DEPT_ID_PK

MO ACTION
EMABLED

NOT DEFERRAELE
IMMEDIATE
VALIDATED

SER MNAME

(ully

ull)
2006-07-21 23:48:39.0

N

INDEX_OWHNEE: dull

Figure: The node-form viewer

Hiding columns

There may be data associated with the object that you don't want to present in the node form for the user. The hidecolumn input
parameter control what data for the object that should be invisible and you may repeat the this option as many times you like to handle
multiple hidden variables.

<Input name="hidecolumn" value="oracle.getKeys.TABLE_OWNER"/>

table-refs

The table-refs viewer shows the references graph for the current object (this must be an object supporting referential integrity constraints,
such as a Table),

Here is a sample of the XML for the table-refs viewer:
<DataView type="References" label="References" viewer="table-refs"/>

And here is a screenshot of the References tab based on the previous definition.

228(245)

able: EMPLOYEES

Oracle 10g9: 5Y5TEM | Schemas | HR | Tables | EMPLOYEES

| Info | Fcowmns | Moaa | @ row Count | o Primary ey | G Indexes | W8 Grams
“® Row ld | =@ References | ® Colurns Comment | =3 Constraints | @ Triggers | <% oL

@ @ I Q%@Qﬂ | S | MIOrganic“Or‘thognnal][[ircular]

HR.JOB_HISTORY
o EMPLOYEE_ID HUMEER)s)

e BTART_DATE MTE
END_DATE MTE
JGE_ID VARCHARR (100

DEPARTWENT_ID WUMEER W)

HR.DEFA RTMENTS

.+ DEPARTMENT_ID WUMEBER)
DEPARTMEKT_HAME WARCHARZ A
WAHASER_ID HUMEBER 15)
LOCATION_ID HUMEBER K1)

|?8% |Tab|es: 5 |References: 5

Imported Keys | Exported Keys

Figure: The table-refs viewer

tables-refs

The tables-refs viewer shows the references graph for several tables in the result set (the result set must contain objects supporting
referential integrity constraints, such as a Table).

Here is a sample of the XML for the tables-refs viewer:

<DataView type="References" label="References" viewer="tables-refs">
<Command idref="getTables">
<Input name="catalog" value="${catalog}"/>
<Input name="schema" value="${schema}"/>
<Input name="table" value="${objectname}"/>
<Input name="type" value="${tableType}"/>
</Command>
</DataView>

And here is a screenshot of the References tab based on the previous definition.

229(245)

TEM | Schemas | HR | Tahles

ﬁTabIes =3 References | ® Table Comments |

& E Q%@QE | % W m[mganic][Onhugunal][Circular]

Aphe_AE1oEy

o ummnAD MR L
e dnemimais DAE
wm i e
Ao FAACHAR 1] ALEW Ul e
| e wwutwan wuienpy |
o B L] HuIEAN] L1 =]
LG IOWES o eyt caman pamHAm
_u-"“"‘ pmnu.m::: am_ia pARCHAE pI|
WHAALAT MILIEA |
FHOREHILNER FAACHARI IR
) e WA IALLA MUUEEA N
AN GEFRET WEN TS anmao FAADWMAE IR
1umr WA N

“omeamieni_o MLMEEA Y
DR A IR R) ARCHARE B
MAMARERID MLMEER)

COMIAION AT MMEEA R
UAMEERID MuREAp|
LocAnonn HLMIER |§ _L DEFARTUEN 0 HAINEA A) —l

| AL LT M
‘s Leamnn HRE R

ITRRETADORESY B ARCHARE AE|

FONTALOE PAHAINE|

aw » R I
IAEIAOIMEE B AACHARE Y| eI MIEIES

mRrm cwagy semummon WA
UM HAE RARCHAR [N A oS
oL MU R Cemmmnn muEeA)

AECOH KAUE FARCHAR |3

|4?% |Tab|es: 10 [References:]A

Figure: The tables-refs viewer

table-data

The table-data viewer shows the data for a table in a grid with editing features.

Information presented in the grid is obtained automatically by the viewer via a traditional SELECT * FROM table statement, i.e., the

object type having this viewer defined must be able to support getting a result set via this SQL statement.

Here is a sample of the XML for the table-data viewer:

<DataView type="Data" label="Data" viewer="table-data">
<Input name="disableEdit" value="<true/false>"/>
</DataView>

And here is a screenshot of the Data tab based on the previous definition.

230(245)

Table: EMP Actions w

Oracle 10g: SCOTT | Schemas | TT | Tables | EMP

‘@ Rowld | =2 References | * Columns Comment | 3 Constraints | @ Triggers | % DDL
@ Info] [T Columns] [flData | @ Row Count | o PrimaryKey | G Indexes | W Crants
2 ¥9 @d HEE 29 BB
EMPMNO EMAME JOB MGE HIREDATE SAL (E]
1 TI69 5MITH CLERKa FA02 1980-12-17 Q000000 BOO (I"ILIE
2 7499 ALLEMN SALESM AN FEAE 1981-02-20 00:00:00.0 1500
3 7521 WARD SALESMAMN FE9H 1981-02-22 00:00:00.0 1250
457 FLEE JOMNES M ANACER 7839 13E1-04-02 0000000 2975
5 7654 MARTIMN SALESM AN FEA8 1981-09-28 00:00:00.0 1250
= TE9E BLAKE M ANASER FE39 1981-05-01 00:00:00.0 2850 {nul
7 TTE2 CLARK M ANASER FEIS 1981-06-05 Q000000 2450 {nul
=] F7BE|SCOTT AMALYST FLe6 1987 -04-19 00:00:00.0 3000 {nul
9 FE39 KING PRESIDEMNT |{null) 1981-11-17 0Q:00:Q0.Q 5000 {nul
10 7844 TURMER SALESMAN FEIE 1981-09-08 00:00:00.0 1500
11 FE7E | ADAMS CLERK F7EE 1987-05-23 00:00:00.0 1100 {nul
12 7900 JAMES CLERK FE9H 1981-12-03 00:00:00.0 950 (nul
13 7902 FORD ANALYST F5E6 1981-12-03 Q0:00:00.0 2000 {nul
14 7234 MILLER CLERK F782 1 1982-01-23 00:00:00.0 1300 {nul
1
Max Rows: 6000 | Max Chars: |-1 |0.015 secin.006 sec [14 78 |1-1°

Figure: The table-data viewer
Disable data editing

The default strategy for the table-data viewer is to automatically check whether the data can be edited or not. If editing is allowed a few
related buttons will appear in the toolbar. However, sometimes you may want to disable editing completely for the table-data viewer. Do
this with the following input element:

<Input name="disableEdit" value=""/>

table-rowcount
The table-rowcount viewer shows the row count for a (table) object.

The row count is obtained automatically by the viewer via a traditional SELECT COUNT(*) FROM table statement, i.e., the object type
having this viewer defined must be able to support getting a result set via this SQL statement.

Here is a sample of the XML for the table-rowcount viewer:
<DataView type="RowCount" label="Row Count" viewer="table-rowcount"/>

And here is a screenshot of the Row Count tab based on the previous definition.

231(245)

Table: EMP

OTT | Schemas | OTT | Tables | EMP

‘e Rowld | =2 References | * Columns Comment | =3 Constraints | @ Triggers | % DOL
g Info | [Columns | (7] Data | @ Row Count | . PrimaryKey | G Indexes | W Grants

Number of rows: 14

Figure: The table-rowcount viewer

<Command>

Please read the Command section above, as the capabilities of this element are the same when used with a data view.

<Message>

The Message element is very simple: it defines a message that should appear at the top of the viewer. The Message element is used to
define the text for a description of the data presented in the viewer. The text in the message may contain common HTML tags such as
 (bold), <i> (italic),
 (line break), etc.

Here is a sample of the XML for using the Message element in a grid viewer:

<ObjectView type="RecycleBin">
<DataView type="RecycleBin" label="Recycle Bin" viewer="grid">
<Command idref="oracle.getRecycleBin">
<Input name="schema" value="${schema}"/>
<Input name="login_schema" value="${dbvis-defaultCatalogOrSchema}"/>
</Command>
<Message>
<! [CDATAL
<html>
These are the tables currently in the recycle bin for this schema. Right click on a bin
table in objects tree to restore or permanently purge it.

Note: The recycle bin is always empty if not looking at the bin for your
login schema (default).
</html>
11>
</Message>
</DataView>
</ObjectView>

232(245)

And here is a screenshot of the Recycle Bin tab based on the previous definition.

" Recycle Bin

Oracle 10g: SCOTT | Schemas | SCOTT | Recycle Bin
&9 Recyele Bin

These are the tables currently in the recycle bin for this schema. Eight click on a hin takle in objects

iree to restare or permanenthy purge it.
Mote: The recycle bin is always empty if not looking at the bin for your login schema

(default)
OBJECT _MAME QRIGINAL_MNAME QOPERATION TYPE TS_NM@]
BIMNG HY X Ex i 17 g0k jAZgEz0A==%0 EMP DEOP TABLE USERS
BIMNG HVx Exvi 17 g0k jAZgEz0A==50 EMP1 DROP TABLE USERS
BIMNEHYX Exive [t 70K jAZgEz0A= =50 |FK. DROP TABLE USERS
BIMNGHY X Exiii 170K jaZgEzoa==%0 |FK1 DEOFP TABLE USERS

=]

0.010 sec/0.0032 sec [4 /15 [1-

Figure: The appearance of a Message in a viewer

Extending ObjectView

An existing ObjectView definition in, for example, the generic-view.xml file can be extended in a database profile by using a few action
attributes for each of the DataView elements. To extend a definition, the object type specified in the ObjectView type attribute must
match the type in the parent profile. You have the following options when extending a definition:

+« Adding a DataView

Simply add the DataView definition and it will be added to the current list of DataView definitions
+ Dropping an existing DataView

Add the <DataView type="xxx" action="drop"> to drop the dataview type named "xxx"

* Replacing a DataView
Just add the DataView with the exact same type as in the parent DataView. All the settings of the new DataView will replace the
old one

<ObjectsActionDef> - Definition of user actions

The previous sections describe how to define which objects should appear in the objects tree, and which views should be displayed when
selecting an object in the tree. The ObjectsActionDef section in the profile defines which operations are available for the object types
defined in the ObjectTreeDef. Object actions are very powerful, as they offer an extensive humber of features to define actions for
almost any type of object operation.

In DbVisualizer, the object type actions menu is accessed via the right-click menu in the objects tree or via the Actions button in the
object view:

233(245)

Table: COUNTRIES

10g: scott | Schemas TT | Tables | C

Actions w

&£ Drop Table... _]

* Columns Comment | -3 Constrain| k. Rename Table...

@ Indexes | I Grants |

@ Y dd EE AP

Quick Filter

.;'ﬁlnfn I ﬂCDIumns] ﬁData [: Comment Table...

b Copy Table...

|: Truncate Table...
% Import Table Data...

Show Fows Containing: |

Create Index...

COUNTRY_ID | COUNTRY_NAME SEALIE Dl o Sl [y :
1 AR Argenting Script Object to New SQL Editor »
2 Al Aystralia
3 BE Belgium 1 ﬂ
A =)= BErazil 2

Figure: The Actions menu for the selected object

All of the operations for the selected Table object in the figure above are expressed in the ObjectsActionDef section. The

implementation for these actions are either declared completely with XML elements via standard object actions, or via specialized action
handlers. (The API for action handlers is not yet documented). The following screenshot shows the dialog appearing when executing an

action via the default action handler:

B, Create Trigger

Ohject Details
Database Connection: |M\,fSG!L |
Datahase: |puredb |
Trigger: |c|eanup |
Drap if Exist: [
Trigger Time: (@|BEFORE| O AFTER
Trigger Event; (O DELETE @ INSERT (O UPDATE
Table: [EMPLOYEES -]
1 begin
2 _
S -- Insert your own trigger code here
4 -
5 declare Pl integer;
Source Template: g get Pl = 10:
7 if Pl = 10 then
g signal sglstate 'TA400':
9 end if;
10 end
[Show S6L Script j [Cancel

Figure: The default action handler

The first field in the dialog, Database Connection, is always present and shows the alias of the database connection the selected object
is associated with. At the bottom, there is a Show SQL control that, when enabled, displays the final SQL for the action. The bottom right
buttons are used to run the action (the label of the button may be Execute or Script based on the action mode), or to Cancel the action

completely.

234(245)

Variables

Variables are used to reference data for the object for which the action was launched, and the data for all its parent objects in the objects
tree. Variables are also used to reference input data specified by the user in the actions dialog. Variables are typically used in the
Command, Confirm, Result and SetVar elements.

Variables are specified in the following format:
${variableName}

The following is an example for a Rename Table action. It first shows the name of the database connection (which is always present)
along with information about the table being renamed. The last two input fields should be entered by the user and identify the new name
of the table. The New Database control is a list from which the user should select the name of the new database. The new table name
should be entered in the New Table Name field.

If the Show SQL control is enabled, you will see any edits in the dialog being reflected directly in the final SQL Preview.

5, Rename Table

Ohject Details
Database Connection: |ru1\,rSGL

|
Datahase: |test |
|

Tahle: |cu5tnnﬂer

Mew Datahase: |test |3|

MNew Tahle Name: |CUST |
[¥] Show SQL " Execute I l Cancel]
SaL Preview

rename table “test’. 'customer® to “test'. "CUST"

Copy Scriptto SOL Editor

Figure: The default action handler

The complete action definition for the previous Rename Table action is as follows:

<Action id="mysql-table-rename" label="Rename Table" reload="true" icon="rename">
<Input label="Database" style="text" editable="false">
<Default>${catalog}</Default>
</Input>
<Input label="Table" style="text" editable="false">
<Default>${objectname}</Default>
</Input>
<Input label="New Database" name="newCatalog" style="list">
<Values>
<Command><SQL><! [CDATA[show databases]]></SQL></Command>
</Values>
<Default>${catalog}</Default>
</Input>
<Input label="New Table Name" name="newTable" style="text"/>
<Command>
<SQL>
<1 [CDATA[
rename table “${catalog} . ${objectname}’

235(245)

to "${newCatalog} . ${newTable}"
11>
</SQL>
</Command>
<Confirm>
<! [CDATA[
Confirm rename of ${catalog}.${objectname} to ${newCatalog}.${newTable}?
11>
</Confirm>
<Result>
<! [CDATAL
Table ${catalog}.${objectname} renamed to ${newCatalog}.${newTable}!
11>
</Result>
</Action>

First, there is the Action element with some attributes specifying the label of the action, icon and whether the objects tree (and the
current object view) should be reloaded after the action has been executed.

The next block of elements are Input fields defining the data for the action. As you can see in the example, there is a ${catalog}
variable in the Default element for the Database input and an ${objectname} variable in the Default element for the Tableinput. The
values for these variables are fetched from the selected object in the objects tree. Variables are evaluated by first checking if the variable
is in the scope of the action dialog (i.e., another input field), then if the variable is defined for the object for which the action was
launched, and then if it is defined for any of the parent objects until the root object in the tree (Connections node) is reached. If a variable
is not found, its value is set to (null).

In the previous XML sample, the value of the ${catalog} variable is the name of the database in which the table object is stored. The $
{objectname} is the current name of the table (these variables are described in the ObjectsTreeDef section).

The New Database input field is a list component which shows a list of databases based on the result set of the specified SQL command.
The Default setting for the database will be the database in which the table is currently stored based on the ${catalog} variable.

The New Table Name input field is a simple text field in which the user may enter any text.

Both the New Database and New Table Name fields are editable and should be specified by the user. This data is then accessible via
the variables specified in the name attribute, i.e., newCatalog and newTable.

The Commandelement declares the SQL statement that should be executed by the action. In this example, the SQL combines static text
with variables.

<ActionGroup>

The ActionGroup element is a container and groups ActionGroup, Action and Separator elements. It is used to define what actions
should be present for a particular object type. It also defines in what order the actions should appear in the menu and where any
separators should be. ActionGroup elements can be nested to create sub menus.

<ActionGroup type="Table">

The attributes for an ActionGroup are:

- type
this defines what object type the ActionGroup represents. This attribute is valid only for top level action groups. An example is
the object of type Table, the corresponding ActionGroup will only be displayed when the selected object is a Table.

« label
this attribute is required for nested action groups. This label is displayed as the sub menu label for the nested action group. (The
label attribute have no effect on top level action groups).

<Action>

The action element defines the action.

<Action id
icon

"oracle-table-drop'
"remove"

236(245)

label = "Drop Table..."

reload = "true"

mode = "execute"
processmarkers = "false"
resultsetaction = "ask">

The attributes for an action are:

- id
the id for the action. The recommended syntax for the id is "profileName-objectType-someGoodActionName"
* icon
specifies an optional icon that should be displayed next to the label in the menu
+ label
the label for the action as it should appear in the menu in the action dialog
* reload

specifies if the parent node (in the objects tree) should be reloaded after successful execution. This is recommended for actions
that change the visual appearance of the object, such as remove, add or name change
+ mode attribute, can be set to any of these:
* execute
(default) - show the action dialog, process user input and execute the final SQL within the scope of the action dialog
* script
show the action dialog, process user input and send the final SQL to the SQL Commander
* script-immediate
will not show the action dialog but instead pass the final SQL directly to the SQL Commander
* processmarkers
* true - IN parameter markers in the SQL are processed with the JDBC driver. Not all drivers supports this
« false - (default) parameter markers are not be processed
* resultsetaction attribute, is only valid in combination with mode="execute". It can be set to any of:
+ ask
if the final SQL produced a result set, ask the user whether the result set should be displayed in a window or copied as
text to the SQL Commander

+ show
if the final SQL produced a result set, show it in a window
+ script

if the final SQL produced a result set, copy it to the SQL Commander.
+ class
used to launch a custom class. The execute attribute is obsolete if this attribute is set
« classargs
optional attribute used to specify arguments to the action hander defined by the class attribute

<Input>

An Input element specifies the characteristics of a visible field component for the actions dialog. The label attribute is recommended and
is presented to the left of input field. If a label is not specified, the input field will occupy the complete width of the action dialog. All input
fields are editable by default. The name attribute is required for editable fields and should specify the identity of the variable in which the
user input is stored.

This is a minimal definition of an input field. It will show a read-only text field control labeled Size.

<Input label="Size" editable="false"/>

If the input field is changed to be editable, the name attribute must be used to specify the identifier for the variable name.
<Input label=Size" editable="true" name="theSize"/>

Any input element may contain the tip attribute. It is used to briefly document the purpose of the input field and is displayed as a tooltip
when the user hovers the mouse pointer over it.

<Input label=Size" editable="true" name="theSize" tip="Please enter the size of the new xxx"/>

Input fields can be aligned on a single row with the linebreak attribute. The default behavior is that every input field is displayed on a
single row. Use the linebreak="false" attribute to define that the next input field will be arranged on the same line. To re-start the
automatic line breaking feature you must use the linebreak="true" attribute.

237(245)

<Input name="size" label="Size" style="number" linebreak="false">
<Default>10</Default>

</Input>

<Input name="unit" style="1list" linebreak="true">
<Labels>KB|MB</Labels>
<Values>KIM</Values>
<Default>M</Default>

</Input>

The previous example shows the use of the linebreak attribute. The size number field and the unit list will appear on the same line.

Specifying the default value as a result from an SQL statement is a trivial task:

<Input label=Size" editable="true" name="theSize">
<Default>
<Command>
<SQL>
select size from systables where tablename = '${objectname}’
</SQL>
</Command>
</Default>
</Input>

Since Default here will execute an SQL statement, it will automatically pick the value in the first row's first column and present it as the
default. SQL may be specified in the Default and Values elements (as well as in the Labels element for list and radio styles). An
alternative to embedding the SQL in the element body, as in the previous example, is to refer to a command via the standard idref
attribute:

<Input label=Size" editable="true" name="theSize">
<Default>
<Command idref="getSize">
<Input name"objectname" value="${objectname}"/>
</Command>
</Default>
</Input>
Instead of having duplicated SQLs in multiple actions, consider replacing these with Command elements referred via the idref attribute.

Referencing commands in actions via the idref attribute is recommended when the same SQL is used in several actions. Use Input
elements to pass parameters to the command.

The following sections presents the supported styles that can be used in the Input element.

text (single line)
The text style is used to present single-line data in a text field.

<Input label="Enter your userid" name="userid" style="text">
<Default>agneta</Defaul t>
</Input>

* The optional Default element is used to define a default value for the field. Variables, static text and Command elements can be
used to define the default value.
* Atext input is editable by default. To make it read only just specify editable="false"

text-editor (multi line)
A text-editor field is the same as the text style except that it presents a multi-line field.

<Input label="Description" name="desc" style="text-editor" editable="true" args="height=50"/>

238(245)

The args="height=50" attribute defines the height (in DLU) for the text-editor. The default height is 30 DLU's.

number
A number style is the same as text except that it only accept number values.

<Input label="Size" name="size" style="number" editable="true"/>

password
A password field is the same as text except that it masks the value as "***",

<Input label="Password" name="pw" style="password" editable="true"/>

Note that the password in visible in plain text in the SQL Preview.

list (large number of choices)

The list style displays a list of choices in a drop-down component. The list can be editable, meaning that the field showing the selection
may be editable by the user. Here is a sample XML for the list style.

<Input label="Select index type" name="type" style="list">
<Values>PizzalPastalBurger</Values>
<Default>Pasta</Default>

</Input>

The Values element should, for static entries, list all choices separated by a vertical bar (|) character. A Default value can either list the
name of the default choice or the index number (first choice starts at 0). In the example above, setting Default to {2} would set Burger
to the default selection.

It is also possible to use the Labels element. If present, this should list all choices as they will appear in the actions dialog. Consider these
as being the labels shown to the user, while Values in this case should list the choices that will go into the final SQL via the variable. Here
is an example:

<Input label="Select index type" name="type" style="list">
<Values>PizzalPastalBurger</Values>
<Labels>Pizza the French stylelPasta BologneselTexas Burger</Labels>
<Default>Pasta</Default>

</Input>

If the users selects Texas Burger then the value for variable type will be Burger.

The following shows how to use SQL to feed the list of values:

<Input label="New Database" name="newCatalog" style="list">
<Values>
<Command>
<SQL>
<! [CDATAL
show databases
11>
</SQL>
</Command>
</Values>
<Default>${catalog}</Default>
</Input>

Here a Command element is specified as a sub element to Values. The result of the show databases SQL will be presented in the list

239(245)

component.

To make the list editable, specify the attribute editable="true".

radio (limited number of choices)
The radio style displays a list of choices organized as button components. The only difference between the radio and list styles are:

* All choices for a radio style are displayed on the screen (better overview of choices but suitable only for a limited number of

choices)
e The args="vertical™" attribute can be specified for radio style to present the radio choices vertically

See the list style for complete capabilities of the radio style.

check (true/false, on/off, selected/unselected)

The check style is suitable for yes/no, true/false, here/there types of input. Its enabled state indicates that the Value for the input will be
set in the final variable. If the check box is disabled, the variable value is blank

<Input label="Cascade Constraints" name="cascade" style="check">
<Values>compact</Values>
</Input>

e This will create a check component with the label Cascade Constraints
» Enabling the check box will set the value of the variable identified by name (cascade) to the value of Value, which is compact.
« If the check box is unchecked, the variable value will be blank

separator (visual divider between input controls)

The separator style is not really an input element but is instead used to visually divide the fields in the in the actions dialog. If the label
attribute is specified, it will be presented to the left of the separator line. If no label is specified, only the separator is displayed.

<Input label="Content" style="separator"/>

The separator is a useful substitute for the standard label presented to the left of every input field. Here is a sample:

240(245)

Dhject Details
Datakbase Connection:

Schema:

Function:
Options
Feturn Data Type:

|PostgresoL 2.1.4

|infurmatiun_schema

[Genkeys

[NTECER

Language: @50l OC O INTERMAL

Walatility: (D WOLATILE @ STABLE O IMMUTAELE

Returns 5et: [+

Strict [+

Security of Definer: [
Parameters

- Marne limeger Data Type &J

narne varchar E

Lv |

Source

select $1 + 188

Figure: Sample showing separators and wide fields

The previous figure shows the use of separators and two fields that extend to the full width of the action dialog. The separators for

Parameters and Source are here used as alternatives to labels for the fields below them.

grid (configurable multi row inputs)

The grid input style is presented as a grid with user controls to add, remove and move rows. The columns that should appear in the grid
are defined by using any of the primitive styles: text, number, password, check, list and radio. The grid style is useful for data that
allows the user to define multiple entries. Examples are, defining columns that should appear in a table index, setup data files for a

tablespace or databank.

This example shows a grid style definition that will ask the user for parameters that will be part of a create procedure action.

<Input name="parameters" style="grid">
<Arg name="output" value="${direction} ${name} ${type}${_default}"/>

<Arg name="newline"

value=", "/>

<Input name="name" label="Name" style="text">
<Default>parm</Default>

</Input>

<Input name="direction" label="Direction" style="list">

<Values>INIINOUTIOUT</Values>
<Default>IN</Default>

</Input>

<Input name="type" label="Type" style="text">
<Default>VARCHAR(20@)</Default>

</Input>

<Input name="default" label="Default" style="text">
<Default></Default>

</Input>

<SetVar name="_default" value='#default.equals("") ? ""

</Input>

" default "

+ #default'/>

241(245)

Here is how it looks:

Marne | Direction | Type o
id 1N integer
name I [~ [vARCHAR(20)
sead 1] ARCHAR(20)
IMOUT g
rie —{our E

The sub elements for the grid style is different from the other input styles as it accepts sub <Input> elements. These input styles defines
what columns should appear in the grid and the first input style will appear to the leftmost and the last in the rightmost column.

This example doesn't specify the label attribute as we want the grid to extend the full width of the actions dialog. The grid style use the
<Arg> elements to customize the appearance and function of the field. The following arguments are handled by the grid style:

- output

Defines the output format for each row in the grid. The value may contain variables and static text. To create conditional output
check the <SetVar> element below
*+ newline

Defines the static text that should separate every row in the grid. A "\n" somewhere in the value will be converted to a true
newline in the final output
* rowprefix
Specifies any prefix for every row in the grid
* rowsuffix
Specifies any suffix for every row in the grid

The resulting parameter list is created automatically by the control and is available in the variable name specified in the example to be
parameters.

The <SetVar> element in the context of a grid style is used to process the data that will appear as defined by the <Arg
name="output"> element. It is used to process the data for every row in the grid. Let's say that the output must contain the word
"default" if the value in a column named "Default" is entered. <SetVar> is used to handle this:

<SetVar name="_default" value='#default.equals("") ? "" : " default " + #default'/>

The #default input value is here evaluated and if it is not empty the " default " text s prefixed to the value of the #default value. The
result is stored in the "_default" variable which is also refered in the output argument above.

<SetVar>

The SetVar element is very powerful, as it is used to do conditional processing and create new variables based on the content of other
variables.

Consider an SQL statement for creating new users in the database:
create user 'user' identified by 'password'

In this case it is quite easy to map the user field to an Input element for the action since it is a required field. The question arise for
password which is optional. The identified by clause should only be part of the final SQL if the password is entered by the user. The
solution for this scenario is to use the SetVar element. Here is the complete action definition:

<Action id="mydb-user-create" label="Create User" reload="true" icon="add">
<Input label="Userid" name="userid" style="text"/>
<Input label="Password" name="password" style="password"/>
<SetVar name="_password" value='#password.equals("") ? "" : " identified by \"" + #password + "\""'/>
<Command>
<SQL>
<! [CDATAL
create user ${userid} ${_password}
11>
</SQL>
</Command>
</Action>

242(245)

The SetVar element accepts two attributes:

* name
should specify the name of the new variable
+ value

this should contain the expression that will be evaluated. The expression is based on the OGNL toolkit provided by www.ognl.org.
This is an expression library that mimics most of what is being supported by Java. Variables are referenced as #variableName.

The expression in the example above checks whether the password variable is empty. If it is empty, a blank value is being assigned to
the _password variable. If it is not empty, the value for _password will be set to identified by "theEnteredPassword".

The SQL in the Command element now refer the new ${_password} variable instead of the original ${password}.

It is recommended that variables produced via SetVar elements are prefixed with an underline (_) to highlight were they come from.

<Confirm>

The Confirm element is displayed to the user when a request to Execute the action is made. If there are only read-only input fields in the
action, this message is displayed in the body of the action dialog. The message is displayed in a confirmation dialog if there are editable
fields.

<Confirm>Really drop table ${table}?</Confirm>

Note that the message text can be composed of HTML tags such as , <i>,
, etc.

<Result>

The Result element is optional and if specified, it is shown in a dialog after successful execution.

NOTE: Result elements are currently not displayed in DbVisualizer. It is however recommend that you specify these as they will most likely
appear in some way or another in a future version. If you want to test the appearance of Result elements then open the DBVIS-
HOME/resources/dbvis-custom.xml file in a text editor and make sure dbvis.showactionresult is set to true.

<Result>Table ${table} has been dropped!</Result>

* The Result message will be displayed in a dialog after successful execution.
« If the execution fails, a generic error dialog is displayed and the Result is not displayed.

<Command>
The Command element specifies the SQL code that is executed by the action.

<Command>
<SQL>
<! [CDATAL
drop table ${table} mode ${mode} including constraints ${includeconstraints}

11>
</SQL>
</Command>

Conditional processing

Conditional processing means that a profile can adjust its content based on certain conditions. A few examples:

* Which version of the database it is

243(245)

http://www.ogn.org/

* The format of the database URL

e The client environment i.e Java versions, vendor, etc.
* User properties

« Database connection properties

Conditional processing is especially useful for adapting the profile for different versions of the database (and/or JDBC driver). Another use
for the conditional processing is to replace generic error messages with more user friendly messages.

Programmers familiar with if, else if and else will easily learn the conditional elements.

Depending on in which of the two phases the conditions should be processed, some restrictions and rules apply. Please read the following
sections for more information.

When are conditional expressions processed?

There are two phases when conditions are processed:

1. Conditional processing when database connection is established
<If>, <Elself> and <Else> elements can be specified almost everywhere in the profile.

2. Conditional processing during command execution
The <OnError> element is used to define a message that will appear in DbVisualizer if a command fails. Conditions are used to
control what message should appear.

DbVisualizer uses the type attribute to determine which If elements should be executed in which phase. If this attribute has the
value runtime, it will be processed in the second phase. If it is not specified or set to load, it will be processed in the first phase.

Conditional processing when database connection is established
The following example shows the use of conditions that are processed during connect of the database connection.

<Command id="sybase-ase.getLogins">
<If test="#DatabaseMetaData.getDatabaseMajorVersion() lte 8">
<SQL>
<! [CDATAL
select name from master.dbo.syslogins
11>
</SQL>
</If>
<ElselIf test="#DatabaseMetaData.getDatabaseMajorVersion() eq 9">
<SQL>
<1 [CDATA[
select name, suid from master.dbo.syslogins
11>
</SQL>
</Elself>
<Else>
<SQL>
<1 [CDATA[
select name, suid, dbname from master.dbo.syslogins
11>
</SQL>
</Else>
</Command>

The above means that if the major version of the database being accessed is less then or equal to 8, the first SQL is used. If the version is
equal to 9, the second SQL is used, and the last SQL is be used for all other version. The test attribute may contain conditions that are
ANDed or ORed. Conditions can contain multiple evaluations, combined using parenthesis. The If, ElseIf and Else elements may be
placed anywhere in the XML file.

Here is another example that controls whether certain nodes will appear in the database objects tree or not.

<!-- Getting Table Engines was added in MySQL 4.1 -->

244(245)

<If test="(#dm.getDatabaseMajorVersion() eq 4 and #dm.getDatabaseMinorVersion() gte 1)
or #dm.getDatabaseMajorVersion() gte 5">
<GroupNode type="TableEngines" label="Table Engines" islLeaf="true"/>
<!-- "Errors" was added in MySQL 5 -->
<If test="#dm.getDatabaseMajorVersion() gte 5">
<GroupNode type="Errors" label="Errors" islLeaf="true"/>
</If>
</If>

As you can see, this example contains nested uses of If.

Conditional processing during command execution

Using conditional processing to evaluate any errors from a Command may be useful to rephrase error messages to be more user friendly.

<Commands>
<OnError>
<!-- The ORA-942 error means "the table or view doesn't exist" -->
<!-- It is catched here since these errors typically indicates -->
<!-- that the user don't have privileges to access the SYS and/or -->

<!-- V§ tables. -->
<If test="#result.getErrorCode() eq 942" context="runtime">
<Message>
<1 [CDATA[
You don't have the required privileges to view this object.
11>
</Message>
</If>
<ElseIf test="#result.getErrorCode() eq 17008" context="runtime">
<Message>
<! [CDATAL
Your connection with the database server has been interrupted!
Please reconnect to re-establish the connection.
11>
</Message>
</Elself>
</0OnError>

</Commands>

The OnError element can be used in Commands and Command elements. If used in Commands element, its conditions are processed
for all commands. If it is part of a specific Command, it is processed only for that command.

Current limitations

*« The SQL statements in the profile must be statements that DbVisualizer can execute with JDBC. It can not contain any
executables, scripts or OS specific calls

« It is not possible to specify conditions or compound commands, i.e., everything needed to execute a command must be
expressed in a single SQL statement.

245(245)

	Getting Started and General Overview
	Introduction
	Installing
	Installation structure
	Java Properties

	Install license key for DbVisualizer Personal
	Uninstalling the license key
	Useful Resources
	Starting DbVisualizer
	Command line arguments

	The Main Window and Common Components
	Standard Components in the User Interface
	Grid, Graph and Chart
	Context Sensitive Components
	Tooltips
	Grids
	Sorting
	Right-click menu
	Calculate Selection
	Column Visibility
	Auto Resize
	Quick Filter

	Checking for Updates
	Problem resolution
	Debugging DbVisualizer
	How to satisfy the DbVisualizer support team

	Load JDBC Driver and Get Connected
	Introduction
	What is a JDBC Driver?
	Get the JDBC driver file(s)
	Connection Wizard
	Driver Manager
	JDBC Driver Finder
	Loading and Configuring Drivers Manually
	Setup a JDBC driver
	JDBC drivers that requires several JAR or ZIP files
	The JDBC-ODBC bridge

	Loading JNDI Initial Contexts
	Errors (why are some paths red?)
	Several versions of the same driver

	Setup a database connection
	Setup using JDBC driver
	Setup using JNDI lookup
	Connection Properties
	Database Profile
	Driver Properties
	Driver Properties for JDBC Driver
	Driver Properties for JNDI Lookup

	Always ask for userid and/or password
	Using variables in the Connection details

	Connect to the Database
	Connections Overview

	Database Objects Explorer
	Introduction
	Create a Database Connection
	Database Connection object
	Alias
	Default database and schema
	Remove and copy database connection objects
	Database Connection detailed information
	Search

	Organizing Database Connections in Folders
	Connections overview

	Database Objects Tree
	Standard Actions
	Object Actions
	Common Object Actions
	Create Table
	Create Index
	Import Table Data
	Script Object to SQL Editor
	Script Object to New SQL Editor

	Objects Tree Filtering
	Show Table Row Count

	Database Profiles
	Database Specific Support
	Generic profile
	Catalog/Database object
	Schema object
	Table Type object
	Table object
	Procedure object

	Object Views
	Grid
	Form
	Source
	Table Row Count
	Table Data
	Right-click menu
	Where Filter
	Quick Filter
	Monitor row count
	Editing

	DDL Viewer
	References
	Navigator
	Procedure Editor

	SQL Commander
	Introduction
	Physical Database Connections and Transactions

	Editor
	Database Connection, Catalog and Schema
	Limiting Result Set size (Max Rows/Chars)
	Load from and save to file
	Load Recent

	Editor Preferences
	Multiple editors

	Permissions
	Charsets and Fonts
	Key Bindings
	Client side Comments
	Auto Completion
	SQL Formatter
	SQL History
	SQL Bookmarks

	Execution
	SQL->Execute
	SQL->Execute Current
	SQL->Execute Buffer
	SQL->Execute Explain Plan (Oracle, SQL Server and DB2)
	Auto Commit, Commit and Rollback
	SQL Scripts
	Anonymous SQL blocks
	Stored Procedures
	Client Side Commands
	@run - run SQL script from file
	@cd <directory> - change directory
	@<file> - run SQL script from file
	@export - export result sets to file
	Example 1: @export with minimum setup
	Example 2: @export with automatic table name to file name mapping
	Example 3: @export all result sets into a single file
	Example 4: @export using predefined settings

	@exit [nocheck] - Exit DbVisualizer
	@echo - Echo text
	@window iconify - Iconify the main window
	@window restore - Raise the main window
	@desc table - Describe the columns in table
	@spool log - Save log to file
	@stop on error - Stop execution if any error occurs
	@stop on warning - Stop execution if any warning occurs
	@set autocommit - Sets the auto commit state
	@commit - Commits the current transaction
	@rollback - Rollback the current transaction
	@set serveroutput - Enable/disable the DBMS output management for Oracle

	Variables
	Variable Syntax
	Pre-defined Variables
	Variable Substitution in SQL statements

	Parameter Markers

	Output View
	Log
	Log controls
	Auto clear log

	Result Set
	Result set menu
	Editing
	Multiple result sets produced by a single SQL statement
	Text
	Chart

	DBMS Output (Oracle)

	Query Builder
	Introduction
	Current Limitations

	Creating a Query
	Adding Tables
	Joining Tables
	Manually Joining Tables
	Joining Tables Automatically
	Join Properties

	Remove Tables and Joins
	Query Details
	Columns
	Conditions
	Grouping
	Sorting

	SQL Preview

	Testing the Query
	Loading a Query from the SQL Editor
	Properties controlling Query Builder
	Express joins as JOIN clause or WHERE condition
	Table and Column Name qualifiers
	Delimited Identifiers
	Drag style and Diagram Size

	Monitor and Charts
	Introduction
	Monitor an SQL statement
	Monitor table row count
	Monitor table row count difference

	Monitor window
	Charts
	Chart Controls
	Data
	Layout

	Chart View
	Zooming
	Rotating

	Export

	Create and Alter Table
	Introduction
	Create Table
	Columns tab
	Primary Key tab
	Foreign Keys tab
	Unique Constraints tab (database-specific)
	Check Constraints tab (database-specific)
	Indexes tab (MySQL only)
	SQL Preview
	Execute

	Alter Table

	Edit Table Data
	Introduction
	Features that support editing
	Update and Delete must match one table row
	Edit Multiple Rows
	Data Type checking
	New Line and Carriage Return

	Grid Editor
	Insert row
	Update row
	Delete row(s)
	Duplicate row(s)
	Copy/Paste
	Paste data from Excel and OpenOffice

	Insert pre-defined values (Set Selected Cells)
	Undo Edit(s)
	Key Column(s) Chooser
	Preview Changes
	Saving Changes
	Transaction Control
	Permissions
	Errors

	Form Editor/Viewer
	Cell Editor/Viewer
	Binary/BLOB
	Image Viewers
	XML Viewer
	Serialized Java Objects Viewer
	Hex Viewer

	Large text data/CLOB

	Import from File
	Export to File

	Table Data Navigation
	Introduction
	Data Navigation
	Adding Context Information to the Graph
	Arranging the Graph
	Exporting and Printing the Graph

	Procedure Editor
	Introduction
	Create Procedure
	Edit and Compile
	Running in SQL Commander

	SQL Bookmarks
	Introduction
	What's a bookmark in DbVisualizer?

	The Bookmarks Main Menu
	Bookmark Editor
	Bookmark list
	New and History root folders
	SQL Editor
	Monitor information
	The Note field

	Executing an SQL bookmark or folder of SQL bookmarks

	Tool Properties
	Customizing DbVisualizer
	The user preferences (XML) files

	Export Settings
	Import Settings
	General Settings
	Appearance
	Fonts

	Key Bindings
	Database Connection
	Driver Manager
	Permissions
	SQL Commander Permissions
	Inline Editor Permissions

	Time Zone
	File Encoding
	Data Formats
	Date, Time and Timestamp formats
	Number formats

	Table Data
	Transaction
	Bookmarks
	Monitor
	Form Viewer
	Grid
	Copy
	Colors
	Binary/BLOB and CLOB Data

	SQL Editor
	Statement Delimiters
	SQL Formatting
	Auto Completion
	Comments

	Variables
	Proxy Settings

	Database Settings
	Authentication
	Delimited Identifiers
	Qualifiers
	Physical Connection
	Transaction

	SQL Statements
	Connection Hooks
	Objects Tree Labels
	SQL Editor
	Query Builder
	Database Specific settings
	Data Types (Oracle)
	Data Types (DB2 and JavaDB/Derby)
	Explain Plan (Oracle, SQL Server and DB2)
	Explain Plan (Oracle)
	Explain Plan (DB2)
	Objects Tree (Oracle)

	Export, Import and Print
	Introduction
	Export Schema
	Output Format
	Output Destination
	Object Types
	Options
	Settings
	Logging

	Export Grid data
	Settings page
	Output Format
	Encoding
	Data Format
	Quote Text Data
	Options
	CSV
	HTML
	SQL
	XML

	Settings

	Data page
	Generate Test Data
	Test data generator example

	Preview
	Output Destination

	Export Text data
	Export Graph data
	Export Chart data
	Import Table Data
	Source File
	Settings
	Data Formats
	Import Destination
	Import process

	Print
	Printer Setup
	Grid, Chart and Plain Text
	Graph

	Print Preview

	Plug-in Framework
	Introduction
	What features in DbVisualizer relies on the database profile?
	How does DbVisualizer know what database profile to use?

	XML structure
	XML skeleton

	<DatabaseProfile>
	<Commands> - The SQLs used to interact with the database
	<Command>
	Result set
	<Input> - Setting command input
	<Output> - Redefine command output

	<ObjectsTreeDef> - Definition of the Database Objects Tree
	<GroupNode> - Static objects used for grouping
	<DataNode> - Dynamic objects created via SQL
	<Command>
	<Filter>

	<SetVar>

	<ObjectsViewDef> - Definition of the Object Views
	<ObjectView>
	<DataView>
	Viewers
	grid
	text
	form
	node-form
	table-refs
	tables-refs
	table-data
	table-rowcount

	<Command>
	<Message>

	Extending ObjectView

	<ObjectsActionDef> - Definition of user actions
	Variables
	<ActionGroup>
	<Action>
	<Input>
	text (single line)
	text-editor (multi line)
	number
	password
	list (large number of choices)
	radio (limited number of choices)
	check (true/false, on/off, selected/unselected)
	separator (visual divider between input controls)
	grid (configurable multi row inputs)

	<SetVar>
	<Confirm>
	<Result>
	<Command>

	Conditional processing
	When are conditional expressions processed?
	Conditional processing when database connection is established
	Conditional processing during command execution

	Current limitations

