
DbVisualizer 5.1
Users Guide

Copyright Onseven Software AB 2006

http://www.dbvis.com

Table of Contents

Getting Started and General Overview..7
Introduction ..7
Installing ...7
Installation structure...7

Java Properties...8
Install license key for DbVisualizer Personal...9
Uninstalling the license key...9
Useful Resources...10
Starting DbVisualizer ..10

Command line arguments ...10
The Main Window and Common Components ..11

Standard Components in the User Interface..12
Problem resolution ..19

How to satisfy the DbVisualizer support team..19
Load JDBC Driver and Get Connected...21

Introduction ..21
What is a JDBC Driver?..21
Get the JDBC driver file(s)...22
Connection Wizard..22
Driver Manager..27

Setup a JDBC driver...29
Loading JNDI Initial Contexts ..32
Errors (why are some paths red?)..33
Several versions of the same driver..33

Setup a database connection ...33
Setup using JDBC driver ...33
Setup using JNDI lookup ..35
Connection Properties..36
Always ask for userid and/or password ...41
Using variables in the Connection details..42

Connect to the Database..43
Connections Overview..45

Database Objects Explorer ...47
Introduction ..47
Create Database Connection ...48

Database Connection object ..48
Organizing Database Connections in Folders...51
Connections overview..52

Database Objects Tree...53
Standard Actions...53
Object Actions...54
Objects Tree Filtering ...56
Show Table Row Count ...58

Database Profiles...58
Database Specific Support ...58
Generic profile ...59

Object Views..65
Grid...65
Form...65

Source...66
Table Row Count ...67
Table Data..67
DDL Viewer..73
References...73
Procedure Editor ...74

SQL Commander ..76
Introduction ...76
Editor ..77

Database Connection, Catalog and Schema..78
Limiting Result Set size (Max Rows/Chars)...79
Load from and save to file...80
Editor Preferences...82
Permissions...84
Charsets and Fonts...85
Key Bindings..85
Client side Comments..86
Auto Completion ...87
SQL Formatter ...91
SQL History..92
SQL Bookmarks...92

Execution ...93
Execute Selected Block...93
SQL->Execute...93
SQL->Execute Current ...94
SQL->Execute Buffer..94
SQL->Execute Explain Plan (Oracle, SQL Server and DB2)..94
Commit and Rollback...97
SQL Scripts...97
Anonymous SQL blocks ..98
Stored Procedures...99
Client Side Commands ..99
Parameterized queries (variables)..105

Output View...106
Log..107
Result Set...108
DBMS Output (Oracle)..114

Query Builder...116
Introduction ...116

Current Limitations ..117
Creating a Query...117

Adding Tables...118
Joining Tables...119
Remove Tables and Joins...121
Query Details...121
SQL Preview...125

Testing the Query...125
Properties controlling Query Builder..126

Express joins as JOIN clause or WHERE condition ..126
Table and Column Name qualifiers..127
Delimited Identifiers ...127
Drag style and Diagram Size...127

Monitor and Charts...128
Introduction ...128
Monitor an SQL statement ...129

Monitor table row count ..130
Monitor table row count difference..132

Monitor window..133
Charts...135

Chart Controls ...136
Chart View...138
Export ...139

Edit Table Data..141
Introduction ...141

Permissions...141
Features that support editing ...141
Edits might be denied..142
Commit ..143
Error Log..143
Binary data/BLOB and CLOB..144

Inline Editor ...144
Insert a new row...144
Update an existing row..145
Delete a row..146
Cell pop up menu...146

Form Editor ..147
Form editor controls ..147
Row Values..148
Insert a row...149
Edit a row (update, delete or insert copy)...150
Import from File..152
Export from File..152
Editing Binary data/BLOB and CLOB...152

Create Table and Index Assistants..156
Introduction ...156
Create Table..156

Columns...157
SQL Preview...159
Execute..159

Create Index..159
Procedure Editor ..161

Introduction ...161
Create Procedure..161
Edit and Compile...163
Running in SQL Commander...165

SQL Bookmarks..167
Introduction ...167

What's a bookmark in DbVisualizer?..167
The Bookmarks Main Menu...167
Bookmark Editor ..169

Bookmark list ..169
New and History root folders..171
SQL Editor ..171
Executing an SQL bookmark or folder of SQL bookmarks ..172

Tool Properties..174
Customizing DbVisualizer ...174

The user preferences (XML) file..174
General Settings..174

Appearance..175
Key Bindings..177
Database Connection ...181
Permissions...181
Data Formats...183
Table Data...184
Variables..185
Transaction ..185
Bookmarks...186
Monitor ..186
Grid...186
SQL Editor ...187
Debug...190

Database Settings...190
Authentication ...192
Delimited Identifiers ...192
Qualifiers...193
Transaction ..193
SQL Statements...193
Connection Hooks..195
Objects Tree..195
SQL Editor ..196
Database Specific settings...196

Export, Import and Print ...198
Introduction ...198
Export Grid data..198

Settings page..198
Data page..203
Preview...207
Output Destination ...207

Export Text data ..208
Export Graph data...209
Export Chart data..210
Import Table Data...210

Source File...211
Settings..211
Data Formats...213
Import Destination ...215
Import process..216

Print ..217
Grid...217
Graph...217

Print Preview..218
Plug- in Framework ...220

Introduction ...220
What features in DbVisualizer relies on the database profile?..220

How does DbVisualizer know what database profile to use?..222
XML structure..222

XML skeleton ...223
<DatabaseProfile> ..224
<Commands> - The SQLs used to interact with the database...225

<Command> ..226
<ObjectsTreeDef> - Definition of the Database Objects Tree...229

<GroupNode> - Static objects used for grouping ...231
<DataNode> - Dynamic objects created via SQL...231

<ObjectsViewDef> - Definition of the Object Views...235
<ObjectView> ...237
<DataView> ..237
Extending ObjectView..250

<ObjectsActionDef> - Definition of user actions..251
Variables..252
<ActionGroup> ..255
<Action> ...255

Conditional processing..263
When are conditional expressions processed?...263

Current limitations ..266

Getting Started and General Overview

Introduction

DbVisualizer is a feature rich, intuitive and multi database tool for developers and database
administrators, providing a single powerful interface across a wide variety of operating
systems. With its simple to use and clean interface, DbVisualizer has proven to be one of
the most cost effective database tools available, yet to mention that it runs on all major
operating systems and supports all major RDBMS that are available. Users only need to
learn and master one application. DbVisualizer integrates transparently with the operating
system being used.

This document gives a overview, installation tips and general information about the
product.

Note: All documents in the Users Guide are primarily focusing on the DbVisualizer Personal
edition.

The screen shots throughout the users guide are produced on Windows XP using the Alloy
look and feel.

Installing

Installing DbVisualizer is no different then installing other modern products. The standard
installation procedure is performed using a graphical application and you just need to
click through the questions that are displayed. Follow the instructions at the DbVisualizer
web site if you need information how to start the installation procedure specifically for your
platform.

Installation structure

The installer and launcher for DbVisualizer is based on the install4jTM product
(http: / /www.install4j.com). The structure of the installation directory (referred as DBVIS-
HOME throughout the users guide) contains the following. (The exact content may differ
between platforms):

.install4j/
doc/
lib/
resources/
wrapper/
dbvis.vmoptions
dbvis.exe
README.txt
uninstall.exe

http://www.incors.com/
http://www.install4j.com/
http://www.dbvis.com/products/dbvis/install/install.jsp

There is basically nothing in this directory that is of general interest except the dbvis.exe
file which is used to start DbVisualizer. For information how to increase the memory for the
Java process that runs DbVisualizer and also how to modify the Java version being used
please read the on- line FAQ for latest information.

Java Properties

DbVisualizer relies on few Java properties that can be used to modify characteristics of the
application. These DbVisualizer specific properties are available in the DBVIS-
HOME/resources/dbvis- custom.prefs file.

Note: Modifying these properties are rarely needed as the default values are sufficient for
most use.

The following are the properties handled by DbVisualizer:

Property Description

dbvis.driver.ignore.dir=lib:resources:.
install4j

Specify directories from DBVIS-HOME that
should not be listed in the Driver Manager
"System Classpath" list. Directories are
separated with ":".
Accepted values: one or several directory
names starting from DBVIS-HOME.

dbvis.grid.encode=false

Specifies if encoding of data in result set
grids will be performed or not. If set to
true then make sure the
dbvis.grid.fromEncode and/or
dbvis.grid.toEncode is set too.

dbvis.grid.fromEncode=ISO8859_1 Encoding used when translating text data
that is fetched from the database

dbvis.grid.toEncode=GBK Encoding used when translating data that
will appear in the result set grid

dbvis.formeditor.unlimitedfields=false
Specify whether the form editor should
ignore the max column length and allow
any number of characters to be entered

dbvis.usegetobject=false

Specifies if the generic
ResultSet.getObject() method in JDBC will
be used in favor of the data type specific
get methods or not. Default is false.

dbvis.savedatacolumns=false Column layout changes such as

http://www.dbvis.com/products/dbvis/faq.html

reordering and/or visibility is saved for all
grids in the Objects Views *except* for
the "Data" grid. This property can be used
to also include the layout in the "Data"
grid. Note: This will result in DbVis saving
the layout for each table that is displayed
in the Data grid = huge XML file...

dbvis.disabledataedit=false

Specifies if table data editing should be
completely disabled, i.e. the form and
inline editors. Note: This have only effect
when used with a licensed edition.

dbvis.showactionresult=false
This defines whether the result for all
actions should be displayed or
only failures (default).

Note: These properties may change in future versions of DbVisualizer. Some are also
experimental and may be removed or instead introduced in the DbVisualizer GUI.

Install license key for DbVisualizer Personal

If you have a license key file for DbVisualizer Personal then start DbVisualizer and open the
Help- >License Key window. Enter the name of the license file in the License Key File
field or launch the file chooser by pressing the "..." button to the right of the license file
field. Once the file is loaded press the Install License button.

Uninstalling the license key

There may be situations when uninstalling the license key is desirable. Do this by removing
(or renaming) the following file:

Operating
System File Name

Windows C:\Documents and Settings\<user>\.dbvis\dbvis.license

UNIX/Linux /home/<user>/.dbvis/dbvis.license

Mac OS X /Users/<user>/.dbvis/dbvis.license

Useful Resources

Resources related to DbVisualizer that are useful

1. The home of DbVisualizer
2. The FAQ which is regularly updated with frequently asked questions and known

problems
3. The User Guide
4. The Databases and JDBC Drivers online page. This page gives information about

supported databases and JDBC drivers
5. The Minq forums
6. The on line problem report form. This is the recommended channel for product

support and general questions

Starting DbVisualizer

Starting DbVisualizer depends on what platform being used.

• Windows
Locate the DbVisualizer sub menu in the Start menu. Select the DbVisualizer entry
in that menu

• Linux/Unix
Open a shell and change directory to the DbVisualizer installation directory. Execute
the dbvis program

• Mac OS X
Double click on the DbVisualizer application or DbVisualizer.app application
bundle.

Command line arguments

DbVisualizer supports a range of command line arguments. These are listed in the Help-
>Usage Information menu choice in DbVisualizer.

Usage: dbvis [-help] [-up <path>] [-sqlfile <path>]
 [-windowtitle <title>]
 [connect options] [remote options]

General Options:
 -help Display this help
 -up <path> Use an alternate user preferences file
 -sqlfile <path> Load file into the SQL Commander editor
 -windowtitle <title> Additional window title
 -execute Will execute SQL file automatically
 -invisible No windows will be displayed

Driver Connect Options:
 -driver Setup and connect using the following Driver options:
 -alias <name> Database alias
 -drivername <name> Driver name

http://www.dbvis.com/support/supportform.jsp
http://www.minq.se/forum/index.jspa
http://www.dbvis.com/products/dbvis/drivers.html
http://www.dbvis.com/products/dbvis/doc/main/doc/index.html
http://www.dbvis.com/products/dbvis/faq.html
http://www.dbvis.com/products/dbvis

 -path <path> Path to driver class
 -class <class> JDBC Driver class
 -url <url> Connection URL
 -userid <user> Userid to connect as
 -password <pw> Connect password

JNDI Connect Options:
 -jndi Setup and connect using the following JNDI options:
 -alias <name> Database alias
 -drivername <name> Driver name
 -path <path> Path to initial context class
 -class <class> Initial context class
 -url <url> Provider URL
 -lookup <name> Lookup name
 -userid <user> Userid to connect as
 -password <pw> Connect password

Remote Options:
 -attachremote Attach to remote DbVisualizer instance
 -enableremote Enable remote attachment
 -host <host> Remote host name (default: localhost)
 -port <port> Remote port (default: 8787)

The Main Window and Common Components

The DbVisualizer user interface screenshot below is organized with the database objects
tree to the left and two tabs at the right.

Database Objects Tree
This tree keeps (at the top level) all the Database Connection objects (or folder
objects with their purpose to organize Database Connections). Use this tree to
navigate and explore the database. Clicking on an object will change the view in the
Object View tab to show details about the selected object.

Object View
This tab shows detailed information about the selected tree node. Every object type
have their own representation in the object view tab.

SQL Commander
The SQL Commander is used to execute SQL statements and scripts.

Figure: The DbVisualizer main window

Standard Components in the User Interface

The following section presents some generic topics that are worth knowing when you using
DbVisualizer.

Grid, Graph and Chart

Grid, graph and chart are three terms that are often used in the application and in the
documentation. The following explains what they represent.

Grid

Graph

Chart

Figure: The grid, graph and chart terms

Note: The reason the documentation refer to grid rather then table is that table may be
mixed with a database table.

Context Sensitive Components

All components in the user interface are context sensitive i.e. buttons, menu items,
etc.These are enabled only if they can be used in the current scope.

Tool tips

Tooltips are used to explain a component. They are also used to express status information
about components. An example is the grid column header tooltip that shows information
about the column.

Figure: Tooltip example

Grids

Grids are used heavily in DbVisualizer and requires a brief introduction.

Figure: Grid overview

The screenshot shows the grid and controls that are available in the Database Objects-
>Data tab but the differences are minor compared to the standard grid.

Right click menu

The generic right click menu contains the following operations:

Figure: Grid right click menu

Menu Choice Description

Select All Selects all cells (aka rows and columns) in the grid

Select Row Selects all cells in the row

Copy Selection Copy all selected cells onto the system clipboard

Copy Selection (With Column Header) Copy all selected cells including column header
onto the system clipboard

Export Launch the export dialog

Export Selection Export the selection using the standard export
feature

Fit Column Widths Automatically fit all column widths according to
the widest cell value

Default Column Widths Set the column width equally for all columns

Find Launch the find dialog

Browse Row in Form Displays all data for the selected row in a form.
Note: this is just a read only form as editing is not

allowed.

Describe Data Show detailed information about the columns in
the grid

Calculate Selection
Displays some metrics about the current
selection. This is especially useful for numeric
fields. Read more in Calculate Selection below.

Show/Hide Cell Browser
Displays or hides the cell browser. This browser
shows the selected cell value below the grid.
Useful when browsing complex data or images

Show/Hide Quick Filter
Displays or hides the quick filter pane. Read more
about Quick Filters in the Database Objects
Explorer document.

Set Quick Filter for Selection Sets the selected value as the current quick filter

Column Visibility
Displays the column visibility menu. Use this to
control what columns should be displayed in the
grid. Read more in Column Visibility below.

(The menu may contain additional entries based on the current scope).

Calculate Selection

The Calculate Selection feature is used to perform some calculations on the current
selection. It is primarily used to calculate on selections keeping numbers. The following is
an example of what it shows.

Figure: The calculate selection popup

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseExplorer/databaseExplorer.html#mozTocId826620
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseExplorer/databaseExplorer.html#mozTocId826620

Property Description

Number of Cells shows the number of cells in the selection.

Valid Numbers lists the number of valid numbers in the selection.

Null Values shows the total of null values in the selection.

Bytes shows the total number of bytes in the selection after that the data
has been translated to text

Sum shows the total summary of the selection

Min shows the minimum number in the selection

Avg shows the average value of the selection by doing sum / number of
valid numbers

Max shows the maximum number in the selection

Either click the red cross icon or anywhere in the popup to close it.

Column Visibility

The Column Visibility feature is used to control what columns should appear in a grid. The
column visibility dialog is displayed either by choosing the Column Visibility right menu
choice in the grid or by clicking the button above the vertical scrollbar in the grid.

Figure: The column visibility dialog

The column visibility dialog shows all columns that are available in the grid. The check
mark in front of a column name indicates that the column is visible in the grid while an
unchecked box indicates that it will be invisible. Columns can be made invisible either by
selecting a checked column name in this list or by using the Remove Column menu choice
in the grid column header menu. The order of the columns can also be adjusted in this
dialog. Just select a row and then move it up (left in grid) or down (right in grid).

The Default Layout resets the grid by making all column visible and put them in their
default locations.

Note 1: Modifying column visibility in conjunction with column resizing and column
ordering is saved between invocations of DbVisualizer for all grids in the various Object
Views except the Data tab.

Note 2: If modifying column visibility in the Data tab then these changes will persist
throughout the session i.e if you for example remove the column Name in the Data tab for
the table EMPLOYEE then will Name not appear if doing a reload or subsequent shows of
the Data tab for that table. You must manually make it visible again or simply select
Default Layout to bring it back. Another solution is to restart the application.

Problem resolution

There are situations when problems, errors or even bugs occur. The runtime environment
for DbVisualizer is rather complicated when it comes to tracking the source of a potential
problem since it's not only DbVisualizer that may cause the problem but also the actual
JDBC driver(s).

There are a few things that you can do before reporting problems based on at what stage
the problem occurs:

1. Make sure you are using the latest version of Java 1.4
2. Make sure you are using at least the version of the JDBC driver that we've tested

DbVisualizer with
3. Read the DbVisualizer FAQ.
4. Check the on- line Forums.
5. Read the DbVisualizer Users Guide.

If you cannot find a solution to resolve the problem then please do the following and email
us the debug output:

• Problem during installation or when starting DbVisualizer
Debugging the installer

• Error or problem while using DbVisualizer
Debugging DbVisualizer

Use the DbVisualizer problem report form or email support@dbvis.com. We appreciate
detailed reports as well as screenshots when possible.

How to satisfy the DbVisualizer support team

Quite often we get incomplete problem reports and need to follow- up for additional
information. If an error or problem occur then you can do the following to let DbVisualizer
create system details that you then paste into a support email or in the problem report
form:

1. Select the Connection tab
2. In the Connection Message area select the right click menu
3. In the menu select Copy
4. This will copy system details to the clipboard. Then paste the details into an email or

in the problem report form mentioned above.
5. A bonus is if you provide screen shots! An image says more then ... you know.

mailto:support@dbvis.com
http://www.dbvis.com/support/supportform.jsp
http://www.dbvis.com/products/dbvis/faq.html#6.11
http://www.dbvis.com/products/dbvis/faq.html#6.11
http://www.dbvis.com/products/dbvis/faq.html#2.1
http://www.dbvis.com/products/dbvis/doc/main/doc/index.html
http://www.dbvis.com/forum
http://www.dbvis.com/products/dbvis/faq.html
http://www.dbvis.com/products/dbvis/drivers.html
http://www.java.com/

Figure: The connection message right click menu

Load JDBC Driver and Get Connected

Introduction

This document describes the way JDBC drivers are managed in DbVisualizer and all aspects
about getting connected with your database(s).

Fast track: If you are impatient then please go ahead and read the Connection Wizard
section. It is the recommended feature in DbVisualizer to create database connections.

What is a JDBC Driver?

DbVisualizer is as you know a generic tool to administrate and explore databases.
DbVisualizer is in fact quite simple since it do not deal with how to communicate with each
database. The hard job is done by the JDBC driver which is a set of Java classes that are
either organized in a directory structure or collected into a JAR or ZIP file. The magic of
these JDBC drivers is that they all match the JDBC specification and the standardized Java
interfaces. This is what DbVisualizer relies on. A JDBC driver is a database and database
version specific implementation and there are a range of drivers from the database vendors
themselves and 3:rd party authors. In order to establish a connection with a database using
DbVisualizer it needs to load the driver and then get connected to the database through the
driver.

Figure: The runtime environment with the JDBC interface, JDBC driver and sample
databases

It is also possible to obtain a database connection using the Java Naming and Directory
Interface (JNDI). This technique is widely used in enterprise infrastructures such as
application server systems. It does not replace JDBC drivers but rather adds an alternative
way to get a handle to an already established database connection. To enable database
"lookup's" using JNDI an Initial Context implementation must be loaded into the Driver
Manager. These are then used in the connection properties in order to lookup a database
connection. The following information explains the steps of how to get connected using a
JDBC Driver and also how to use JNDI to obtain a database connection.

A JAR, ZIP or directory that is loaded into the driver manager consists of a number of Java
classes that forms the complete implementation of the JDBC driver. DbVisualizer
automatically recognize the classes that are used to initiate the connection with the
database and presents them in the Driver Class list. You must select the correct class in
this list to make sure DbVisualizer successfully can initiate the connection. Consult the
driver documentation for information of which class to select or if the number of found
classes are low, figure out by trying each of them.

Get the JDBC driver file(s)

DbVisualizer do not include any JDBC driver so first you must grab a JDBC driver file(s) that
works with the actual database and the version of it. The following online web page lists an
up to date listing of the tested combinations:

Databases and JDBC Drivers

Information about almost all drivers that are available is maintained by Sun Microsystems in
this page:

JDBC Data Access API - Drivers

Download the driver to an appropriate directory. Make sure to read the installation
instructions provided with the driver. Some drivers are delivered in ZIP or JAR format but
need to be unpacked in order to make the driver files visible to the Driver Manager.
The Databases and JDBC Drivers web page lists from where to download each driver and
also what steps is needed to eventually unpack, install and load the driver in DbVisualizer.

(Drivers are categorized into 4 types. We're not going to explain the differences here but
just give a hint that the "type 4" aka "thin" drivers are easiest to maintain since they are
pure Java drivers and do not depend on any external DLL's or dynamic libraries i.e try to get
a type 4 driver even though DbVisualizer works with any type of driver).

Connection Wizard

The Connection Wizard greatly simplifies the steps needed to load the JDBC driver and
create a new database connection. It is based on a few wizard pages in which information
about the driver file(s) and connection data should provided. Once the new database

http://www.dbvis.com/products/dbvis/drivers.html
http://industry.java.sun.com/products/jdbc/drivers
http://industry.java.sun.com/products/jdbc/drivers
http://www.dbvis.com/products/dbvis/drivers.html

connection has been created it will appear in the database objects tree.

Note: The wizard cannot be used to define database connections via JNDI data sources.

The first wizard screen look like this.

Figure: Connection Wizard - Page 1

In the connection alias field enter the name of the new database connection. This is the
name that will be used in DbVisualizer.
Press Next to connect to the next page.

In this page select the driver from the list that you are going to use. The red icon indicates
that the driver is not ready yet while a green icon indicates that it has been properly
configured (simply press Next to continue). If the driver you select is not yet configured the
following will be displayed. Press the Load Driver File(s) button to open a file chooser in
which you should select the JAR or ZIP file(s) that contain the driver implementation.

Figure: Connection Wizard - Page 2

In the file chooser locate the files needed to load the JDBC driver. (Select multiple files by
pressing the SHIFT key).

Figure: Connection Wizard - Page 3

Once the driver has been properly a green icon will appear in front of the driver name. Press
Next to continue to the last page.

Figure: Connection Wizard - Page 4

In the last wizard pane enter details for the new database connection.

Figure: Connection Wizard - Page 5

Press Test Connection to check if the connection can be established. Press Finish to
create the new database connection and connect it.

It is recommended that you skip reading the rest of this document if you don't :

• want to learn how the driver manager in DbVisualizer works
• need to have several versions of the same JDBC driver loaded simultaneously
• need to establish a connection via the JNDI interfaces (Java Naming and Directory

Interface)
• need to add a Driver that do not exist in the wizard list of drivers

Driver Manager

The Driver Manager in DbVisualizer is used to define the drivers that will be used to
communicate with the actual databases. Start the driver manager dialog using the Tools-
>Driver Manager menu choice.

The left part of the driver manager dialog lists a collection of driver names and a symbol
indicating whether the driver has been configured or not. The right part displays the
definition of the selected driver in terms of the following:

• Name
A driver name in the scope of DbVisualizer is a logical name for either a JDBC driver
or an Initial Context in JNDI. This name is later listed in the Connection tab setup
when selecting what driver to use for a database connection

• URL Format
The URL format specifies the pattern for the JDBC URL or a JNDI Lookup name. The
purpose is to assist the user in the connection tab while entering the URL or lookup
name

• Default Class
Defines the default class to use when connecting

• Web Site
Link to the DbVisualizer web site containing up to date information how to download
the driver.

• Driver File Paths
Defines all paths to search for JDBC drivers or Initial Contexts during connect with the
database. The Driver File Paths is composed of two tabs, the User Specified tab is
used to locate and identify dynamically loaded JDBC drivers or Initial Context classes.
The System Classpath tab lists all paths that are part of the Java system classpath.

Note: Do not bother about the System Classpath tab unless you are using the JDBC-ODBC
driver.

Figure: Driver Manager dialog

The driver list contains initially a collection of default drivers. These are not fully configured
as the actual paths used to search for the classes need to be identified. The list can be
edited as drivers can be created, copied, removed and renamed. A driver is ready once a
default class has been identified and this state is indicated with a green check icon in the
list. Not ready drivers are indicated with a red cross icon.

Note: Only ready (configured) drivers will appear in the Connection tab driver list.

The figure shows four drivers that are ready, MySQL RefFS, Oracle Thin , SQL Server and
Sybase ASE.

Setup a JDBC driver

The recommended way to setup a driver is to pick a matching driver name from the list and
then simply load the JAR, ZIP or directory that keeps the actual driver class(es) i.e if you are
going to load the JDBC driver for Oracle then select the Oracle driver in the list. You can
also create a new driver or copy an existing one.

Note: Check the following online web page with the most current information about the
tested databases and drivers.

• It lists what databases and drivers that has been tested
• Download links to JDBC drivers
• Information of what files to load in the driver manager for each JDBC driver
• Information of what Driver Class that should be chosen

Databases and JDBC Drivers

To load jar file(s) then press the Load button to the right of the User Specified paths tree
to show the file chooser and load the driver jar(s).

http://www.dbvis.com/products/dbvis/drivers.html

Figure: File Chooser dialog

It is important to load the root of the JDBC Driver i.e a JDBC Driver implementation consists
in most cases of several Java classes. These are also in most cases organized using the
package mechanism in Java. Example:

oracle.jdbc.driver.OracleDriver

Each package part in the name above (separated by ".") will be represented by a directory in
the file system. These directories are either explicitly visible in the file system or implicitly if
the driver is packaged in a ZIP or JAR file. The root of the driver is in this case where the
oracle directory is located. In the Oracle example this is the ojdbc14.jar JAR file so the
driver manager must load this path in order to find the driver class. If the driver is
packaged in a ZIP file or a directory then point the driver manager to that path in order for
the driver manager to locate the driver class.

Once a connection is established in the Connection tab will DbVisualizer search the selected
drivers path tree's in the following order:

1. User Specified
2. System Classpath

These are searched from the top of the tree i.e if there are several identical classes in for
example the dynamic tree then the topmost class will be used. Loading several paths with
different versions of the same driver in one driver definition is not recommended even
though it works (if you do this then you must move the driver you are going to use to the
top of the tree). The preferred solution to handle multiple versions of a driver is to create
several driver definitions.

Once one or several classes has been identified and listed in the Driver Class list then
make sure you select the correct Driver Class from the list. See the table earlier for
assistance.

JDBC drivers that requires several JAR or ZIP files

Some drivers depend on several ZIP, JAR files or directories. An example is if you want XML
support for an Oracle database. In addition to the standard jar file for the driver you then
also need to load two additional jar files. These are not JDBC driver files but adds
functionality needed for the driver to fully support XML.

Simply select all JARs at once and press Open in the file chooser dialog. The Driver
Manager will then automatically analyze each of the loaded files and present any JDBC
driver classes or JNDI initial context classes in the tree.

Figure: File Chooser dialog

The JDBC- ODBC bridge

The JDBC-ODBC driver is by default part of most Java installations. The JdbcOdbcDriver
class is included in a JAR file that is commonly named rt.jar and is stored somewhere in the
Java directory structure. DbVisualizer automatically identifies this JAR file in the System
Classpath tree. To locate the JdbcOdbcDriver simply press the Find Drivers button to the
right of the System Classpath tree. Once found then make sure the
sun.jdbc.odbc.JdbcOdbcDriver is selected as the Default Class.

Loading JNDI Initial Contexts

Initial Context classes are needed in order to get a handle to a database connection that is
registered in a JNDI lookup service. These classes are similar to JDBC driver classes since an
Initial Context implementation is required.

Note: Remember that the appropriate JDBC driver classes must be loaded into the Driver
Manager even if the database connection is obtained using JNDI.

To load Initial Context classes into the Driver Manager simply follow the steps outlined for
loading JDBC drivers. The difference is that you will instead load locations that contain
Initial Context classes instead of JDBC drivers. Once Initial Context classes have been found
the following will appear in the Driver Manager list.

Figure: Driver Manager List with Initial Context classes

The visual difference between the identified JDBC drivers and Initial Context classes is the
icon in the tree.

The figure shows the required JAR files in order to first obtain the JNDI handle and then also
the actual JDBC driver that is needed to interface the database. Check with the application
server vendor or similar for more information of what files that need to be loaded to get
connected via JNDI.

Errors (why are some paths red?)

A path in red color indicates that the path is invalid. This may happen if the path has been
removed or moved after it was loaded into the driver manager. Simply remove the
erroneous path and locate the correct one.

Several versions of the same driver

The Driver Manager supports loading and then using several versions of the same driver
concurrently. The recommendation is to create a unique driver definition per version of the
driver and then name the drivers properly. Ex. Oracle 9.2.0.1 , Oracle 10.2.1.0.1 , etc.

Setup a database connection

This section explains how to setup a Database Connection in the Connection tab.

Setup using JDBC driver

A Database Connection in DbVisualizer is the root of all communication with a specific
database. It requires at a minimum that a driver is selected and a Database URL is
specified. A new Database Connection is created using the Database- >Add Database
Connection menu choice in the main window:

Figure: New Database Connection using JDBC driver

The Connection tab is the only enabled tab if you are not already connected to the
database. Database connection objects appear throughout the application and are by
default listed by their URL. A URL can be, and often is, quite complex and long. The
Database Alias is used to optionally set a more readable name of the database connection.
The Driver list when opened shows all defined drivers that have been defined properly in
the Driver Manager. Just open the list and select the appropriate driver. The URL Format
lists the format that the driver supports.

Tip: Put the mouse pointer on the URL Format and click with the mouse to copy the format
template into the URL field.

The < and > characters indicates that they are the boundary for a placeholder and that they
shall be replaced with appropriate values. Ex.

jdbc:oracle:thin:@proddb:1521:bookstore
jdbc:sybase:Tds:localhost:2638

jdbc:db2://localhost/crm
jdbc:microsoft:sqlserver://localhost;DatabaseName=customers

Userid and Password is optional but most databases require that they are specified.

Some drivers accept additional proprietary parameters described in the Connection
Properties section.

Setup using JNDI lookup

The information needed in order to obtain a database connection using JNDI lookup is
similar to getting connected using a JDBC driver.

Figure: New Database Connection using JNDI lookup

The figure above shows parameters to connect with a lookup service via the MySQL RefFS
driver. The /tmp/ jnditest4975.tmp/test lookup name specifies a logical name for the

database connection that will be used. This example is in its simplest form since userid and
password is not specified, nor where the database connection is finally fetched from. Any
errors during the process of getting a handle to the database connection will appear in the
Connection Message area.

Connection Properties

In addition to the standard connection parameters (URL, Driver, Userid, Password, etc.)
there are also a collection of connection properties. What properties are available depends
on what database type is chosen. Some database types have more properties then others.
What edition of DbVisualizer being used do also affect what connection properties are
available.

All supported database types (Oracle, Informix, Mimer, DB2, MySQL, etc.) are listed in the
Database tab in the Tool Properties window. Each of the database types collects a number
of properties that will be applied to any database connection of that type. Briefly it means
that a database connection defined as being a PostgreSQL database type will use the
PostgreSQL properties defined in Tool Properties. The Connection Properties can then be
used to override some settings specifically for a database connection. The advantage with
this inheritance model is that property changes can be made for all database connections
centrally instead of applying a common setting for every database connection of a specific
database type.

The following summarize the organization of properties:

• Tool Properties (Database)
These changes will be applied to all database connections of the actual database
type.

• Connection Properties
These changes apply for a specific database connection only.

- "Okay, so there are two places to change the value of a property. Which shall I use?"

This depends on whether the change should be applied to all database connections for a
specific database type or just a single one. If the majority of your database connections
should use the new property then it is recommended to set it in Tool Properties.
Any overridden properties in the Connection Properties tab are indicated with an icon in the
Properties tab label.

Figure: Connection Properties

The connection properties tab is organized in the same was as the tool properties window.
The difference is that the list only includes the categories that are applicable for a database
connection. The categories are briefly:

• Database Profile
• Driver Properties
• MySQL (The current Database Type)

• Authentication
• Delimited Identifiers

• Qualifiers
• Transaction
• SQL Statements
• Connection Hooks
• Objects Tree
• SQL Editor

The Database Profile and Driver Properties categories are only available in the
Connection Properties tab and not in Tool Properties. The next section explains the
Database Profile and Driver Properties categories while the other categories are described in
the Tool Properties document.

Additional categories may appear in the connection properties depending on the type of
database. An example is the settings for Explain Plan for Oracle, DB2 and SQL Server.

Database Profile

Please read in the Database Objects Explorer document for detailed information about
database profiles.

The Database Profile category is used to select whether a profile should be automatically
detected and loaded by DbVisualizer or if a specific one should be used for the database
connection. The default strategy is to Auto Detect a database profile.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseExplorer/databaseExplorer.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId753863

Figure: Database Profile category for a database connection

Note: The way DbVisualizer auto detects a profile is based on mappings in the DBVIS-
HOME/resources/database- mappings.xml file.

If you manually choose a database profile then this choice will be saved between
invocations of DbVisualizer.

Driver Properties

The Driver Properties category is used to fine tune a driver or Initial Context before the
database connection is established.

Driver Properties for JDBC Driver

Some JDBC drivers support driver specific properties that are not covered in the JDBC
specification.

Figure: Driver Properties for JDBC Driver

The list of parameters, their default values and parameter descriptions are determined by
the actual driver. Not all drivers supports additional driver properties. To change a value
just modify it in the list. The first column in the list indicates whether the property has been
modified or not and so whether DbVisualizer will pass that parameter and value onto the
driver at connect time.
New parameters can be added using the buttons at the bottom of the dialog. Be aware that
additional parameters do not necessarily mean that the driver will do anything with them.

Driver Properties for JNDI Lookup

The Driver Properties category for a JNDI Lookup connection always contain the same
parameters.

Figure: Driver Properties for JNDI lookup

The list of options for JNDI lookup is determined by the constants in the
javax.naming.Context class. To change a value just modify the value of the parameter. The
first column in the list indicates whether the property has been modified or not and so
whether DbVisualizer will pass that parameter and value onto the driver at connect time.
New parameters can be added using the buttons at the bottom of the dialog. Be aware that
additional parameters do not necessarily mean that the InitialContext class will do anything
with them.

Always ask for userid and/or password

Userid and password information is generally information that should be handled with great
care. DbVisualizer saves by default both userid and password (encrypted) for each database
connection. Userid is always saved while password saving can be disabled in the connection
properties.

The Require Userid and Require Password connection properties can be enabled to
control that DbVisualizer automatically should prompt for userid and/or password once a
connection is established. Enabling either one or both of these and leaving the Userid and

Password fields blank for a database connection ensures that DbVisualizer will not keep
this vital information between sessions. The following figure is displayed if requiring both
userid and password.

Figure: Dialog asking for Userid and Password as a result of having Require Userid
and Password settings enabled

Using variables in the Connection details

Variables can be used in any of the fields in the Connection tab. This can be useful instead
of having a lot of similar database connection objects. Several variables can be in a single
field and default values can be set for each variable. The following figure shows an example
of variables that are identified by the dollar characters, $$...$$.

Figure: Connection tab with variables

The following variables appear in the figure:

• $$Alias$$
• $$Database Host||dbhost2||||choices=[dbhost1,dbhost2,dbhost3] $$
• $$Port||1521$$
• $$SID||ORCL$$

• $$Userid||scott$$

All of these variables defines a default value after the "||" delimiter except $$Alias$$ that
have no default value. These default values will appear in the connect dialog once a
connection is requested. The $$Database Host$$ variable includes the choices option.
Here you can specify a comma separated list of choices that will appear in a drop down. The
drop down will be editable so the user is not locked to choose from the list only.

The following figure shows the connect dialog based on the information above.

Note: Using variables in conjunction with the Require Userid and/or Require Password
settings also works.

Figure: Connection tab with variables

Enter the appropriate information in the fields and then press the Connect button to
establish the connection. Once connected will DbVisualizer automatically substitute the
variables in the Connection tab with the values entered in the connect dialog. These will at
disconnect from the database revert back to the original variable definitions.

Connect to the Database

Press Connect when all information has been specified. DbVisualizer will pass all entered
information onto the selected driver and if the connection is established the following will
appear.

Figure: A freshly initiated database connection using JDBC driver

The Connection Message now lists the name and version of the database as well as the
name and version of the JDBC driver. The database connection node in the tree indicates
that it is connected. The connection properties cannot be edited once while a database
connection is established. The Alias can be edited by selecting the database connection
node in the tree and then clicking on the name.

The figure above also shows that the database connection node in the tree has been
expanded to show its child objects.

If the connection is unsuccessful it will be indicated by an error icon in the tree. The error
message as reported by the database or the driver will appear in the Connection Message
area. Use this to track the actual problem. Since these conditions are specific for the
combination of driver and database it is generally recommended to check the driver and
database documentation to find out more. Below are a few common problem situations:

Error Message Explanation

No suitable driver.
There is no driver that can handle a
connection for the specified URL. The
most common reason is that the driver
is not loaded in the Driver Manager.
Also make sure the URL is correct
spelled.

The JDBC support in Java determines what
driver to load based on the database URL.
If the URL is malformed then there might
be no driver that is able to handle the
database connection based on that URL.
This error is produced when this situation
occurs or when the driver is not loaded in
the driver manager. The recommendation
is to check the JDBC driver documentation
for the correct syntax.

java.sql.SQLException: Io exception:
Invalid number format for port number
Io exception: Invalid number format
for port number

The URL templates that are available in
the Database URL list contains the "<" and
">" place holders. These are there to
indicate that the value between them
must be replaced with an appropriate
value. The "<" and ">" characters must
then be removed.

This example error message is produced
by the Oracle driver when using the
following URL:

jdbc:oracle:thin:@<qinda>:<1521>:
<fuji>

Simply remove the "<" and ">" characters
and try again.

Connections Overview

The Connections overview is displayed by selecting the Connections object in the Database
Objects Tree. This overview displays all database connections in a list and is handy to get a
quick overview of all connections. In addition to the URL, driver, etc there are a few symbols
describing the state of each connection. Double clicking on a connection will change the
display to show that specific connection.

Figure: The Connections Overview

Information for each symbol is provided in the description area below the list. The fifth
check symbol is the only editable symbol and is used to set the state of the Connect when
Connect All property i.e whether the database connection should be connected when
selecting the Database- >Connect All menu choice.

Database Objects Explorer

Introduction

The Database Objects Tree is used to explore databases and browse details
about objects. What objects that may be explored and what object actions that exist is
database dependent.

Figure: Database Objects tab

The Database Objects Tree to the left is the place to setup new database connections and
establish connections. Once connected expand the database connection object and explore
the objects available. The right Object View area displays detailed information about the
currently selected object in the tree.

The Filter setup pane below the tree is used to control what objects are displayed in the
tree. It is handy in order to limit the number of objects.

Object actions used to typically create, alter, drop, etc. may exist for the objects in the tree.
This is controlled by what database being connected and what database profile is used.

Check coming sections for more information.

Tip 1: The Database Objects Tree is always visible to the left. If the currently selected main
tab is the SQL Commander then you can double click on an object in the tree to
automatically switch to the Object View tab.
Tip 2: All object names in the tree can be dragged to any editable text fields including
the SQL Commander editor.

Create Database Connection

There are a few objects that always appear in the tree independent of what edition of
DbVisualizer and database profile that is used. The most important object is the Database
Connection which is used to setup and establish a database connection. The other two
objects are Folder and Connections Overview . The following sections describe these
objects in more detail.

Database Connection object

The Database Connection object is the root object for a connection. Before exploring or
accessing a database you need to establish the connection. Create a new database
connection using the Database- >Add Database Connection main menu choice and the
following will appear.

Figure: Add database connection

It is always recommended to use the connection wizard when creating new database
connections as it hides the complexity loading drivers and syntax of database URLs.
(Detailed information on how to establish a connection is provided in the Load JDBC Driver
and Get Connected document).

Tip 1: Once a database connection has been setup properly then you just need to double
click on the object to establish the connection.

Tip 2: The Database- >Connect All main menu choice is used to connect all enabled
database connections with a single click. You make a database connection "Connect All"
- aware in the Database Properties or in the Connections overview.

Alias

The name of the database connection object as it appears in the tree is by default the URL
of the connection. The Connection Alias can be used to override this name to something
more descriptive and shorter. Either enter the new name in the Alias field in the Connection
sub tab or click on the name in the tree and start editing the name.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/getConnected/getConnected.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/getConnected/getConnected.html

Default database and schema

The (Default) indicator after the name of a database or schema in the tree indicates that it
is the default database or schema. This is determined per database at connect.

Figure: The (default) indicator for database and schema objects

Tip: In the Connection Properties you can define that only default database or schema
should be visible in the tree.

Remove and copy database connection objects

To remove a database connection then select the Database- >Remove Database
Connection operation in the main menu. To copy a database connection select Database-
>Duplicate Database Connection .

Database Connection detailed information

The following section briefly explains the tabs in the objects view for a database
connection.

Tab Description

Connection This tab is always enabled and is used to setup the details for a database
connection. This is also the place to control the connection state.

Database Info
When connected, the database info tab shows various information
supplied by the driver. Much of this info is low level even though some
may be useful.

Data Types The data types tab lists all data types supported by the database.

Search

The search tab is used to search among the objects in the tree. Search
operates on the content in the tree based on if there are any filter defined
or if any other setting has been set that effects the content of the tree.
See next section for more information about search.

Search

The Search tab is used to search among the objects in the tree by object name. This result
will depend on if there are any tree filter defined or if any other property has been set that
affects the content of the tree. The search operation is case insensitive.

Figure: The Search tab

Search by specifying the name of the object or part of the name and press the Search
button. The search operation can be stopped using the standard Stop button in the main
tool bar. The Show Object Path check box is used to define whether the complete path for
each found object should be displayed in the result or not. This path is the same as if
navigating to each object manually in the objects tree.

Note: The search may take some time to perform the first time since all objects defined in
the actual database profile are examined.

Tip: Detailed information of a specific object can be examined by double clicking on a row.
This will display all information about the object in a separate window.

Organizing Database Connections in Folders

The folder object is used to organize and group database connections. It allows child folder
objects in an unlimited hierarchy. You can either use the View- >Move Up/Down main
menu choices to organize the folders (and database connections) in the tree, or you can
also use drag and drop to move nodes.

Figure: The database objects tree and the folder object type

Connections overview

The Connections object is the root object in the tree and acts as a holder for all database
connections and folders. The purpose of this is that when selected it displays an overview
of all database connections in the details view. Here you can see the basic settings and
states for your database connections. Read more about it in the Load JDBC Driver and Get
Connected document.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/getConnected/getConnected.html#mozTocId652277
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/getConnected/getConnected.html#mozTocId652277

Figure: Connections object

Database Objects Tree

Standard Actions

The Database Objects tool bar buttons are used to do tree related operations. These are
individually enabled or disabled based on what object is currently selected.

Figure: Objects tree toolbar

Description of the buttons from the left:

Tool bar button Description

Reload
Reloads the currently selected object by asking the JDBC
driver to fetch information for the object from the database.
This is useful if new objects have been created or removed.

Show/Hide Tree Filter Is a toggle button that determines whether the Filter
management pane will be displayed below the tree or not.

Create Database Connection

Adds a new Database Connection object in the tree. The
location of the new object is determined based on the
current selection. If no selection then the new is object
added at the end of the list.

Create Folder Creates a new folder object.

Show in Window Request to display the details view in a separate window for
the selected object.

The right click menu for an object and the Database main menu lists object specific
actions. The following actions are always available for all objects:

Figure: Standard right click menu actions for all objects

Object Actions

An object in the objects tree may have object specific actions attached to it. These actions
are accessible via any of:

• Right click menu in the objects tree
• Via the Database- >Selected Object main menu
• Via the Actions menu button in the object view

Here is an example of the actions menu launched via the Actions menu button:

Figure: Object actions menu

Common Object Actions

There are a few actions that appear for some object types in all database profiles. These are
most often valid for plain table object types and offers related functionality. Read the
following sections for more information.

Create Table

The create table action shows the Create Table assistant dialog. it is used to setup the
columns their characteristics and primary keys for a new table. The final SQL that the
assistant produce is then executed in the SQL Commander. Read more about this feature in
Create Table and Index Assistants.

Create Index

The create index action shows the Create Index assistant dialog. it is used to setup columns
for new table indexes. The final SQL that the assistant produce is then executed in the SQL
Commander. Read more about this feature in Create Table and Index Assistants.

Import Table Data

Import Table Data shows a dialog used to import a CSV file into the actual table. Various
configurations how the source file is organized and data mapping are offered. Read more in
Export, Import and Print .

Script Object to SQL Editor

Use this action to create pre- defined SQL statements based on the source table and its

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/exportPrint/exportPrint.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/tableDesigner/tableDesigner.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/tableDesigner/tableDesigner.html

columns. The created statement is copied to the current SQL editor in the SQL Commander.
Here are a couple of examples:

Script Object to SQL Editor - > Select

SELECT
COUNTRY_ID,
COUNTRY_NAME,
REGION_ID
FROM
HR.COUNTRIES

Script Object to SQL Editor - > Insert

INSERT
INTO
 HR.COUNTRIES
 (
 COUNTRY_ID,
 COUNTRY_NAME,
 REGION_ID
)
 VALUES
 (
 '',
 '',
 0
)

The Script Object to SQL Editor is also used to generate the DDL for Table and View
objects. (This is only supported in the database specific profiles).

Script Object to New SQL Editor

This is the same as Script Object to SQL Editor with the difference that the SQL is copied
to a new SQL editor instead of current.

Objects Tree Filtering

The Filtering setup is activated via the Database- >Show/Hide Tree Filter menu choice
and the filter pane appear below the objects tree. Filtering is useful to limit the number of
objects that will appear in the tree.

Tree filters are managed per database connection object. What can be filtered is defined per
database profile. The generic database profile supports filtering of database (catalog),
schema, table and procedure names.

The unfiltered schema objects The same objects but now Filter defined as all names that

for an Oracle connection. filtered based on all schema
names starting with "O" or "S".

do not start with "O" and "S".

Figure: Examples of tree filter settings

An active filter for a database connection is represented by the funnel icon just before the
database connection name. The active state for a filter is defined using the Active box in
the name filter pane. A filter can only be activated if there are any filters defined.

Up to 15 filters can be defined per object type.

Tip: It is often desired to list only the default schema or catalog (database) in the database
objects tree. This can be accomplished using the filtering functionality but the
recommended place to do this is in the properties tab for the database connection. Please
read more about the Show only default Database or Schema in Tool Properties
document.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId391015

Show Table Row Count

The Show Table Row Count setting below the database objects tree defines whether the
number of rows for table objects will be listed after the name of the table.

Note: Enabling this property results in a performance degradation.

Database Profiles

A Database Profile is the foundation in DbVisualizer used to express database specific
support. A database profile is briefly a definition of what information should be presented
in the database objects tree and in the various object views. In addition it define actions for
the object types defined in the profile. DbVisualizer loads the matching database profile at
connect. If no matching profile is found or if running DbVisualizer Free a Generic profile is
loaded with rudimentary database support.

Database Specific Support

DbVisualizer Personal currently offer database specific support (database profiles) for the
following databases (click links for details):

• Oracle
• DB2
• Sybase ASE
• SQL Server
• MySQL
• PostgreSQL
• Informix
• Mimer
• JavaDB/Derby

Since each of the specialized database profiles handles different object types will the
database objects tree look different. The structure and organization of a database profile is
also something that may impact the layout of the tree even though the provided ones are
similar in their structure. There are two root nodes in the majority of profiles:

• User objects
• DBA objects

User objects are for example, tables, views, triggers, functions, etc. while DBA objects most
probably requires certain privileges in the database in order to access them. DbVisualizer
organizes all DBA objects in the DBA Views tree object. If privileges are not sufficient to
access a DBA object may this result in an error. This is an example of the DBA sub tree.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/derby.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/mimer.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/informix.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/postgresql.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/mysql.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/sqlserver.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/sybase-ase.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/db2.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

Figure: The DBA Views tree object

Note: Database profiles are defined in XML and it is quite easy to extend and modify them.
Read more in the Plug- in Framework document.

Generic profile

DbVisualizer supports a wide range of databases and since the nature of these and what
they support is different from vendor to vendor so will the appearance and the structure of
the tree below the database connection objects look different. The generic database profile
and DbVisualizer Free display objects based on what JDBC offers in terms of database
objects (aka meta data information). DbVisualizer does this simply by asking the actual
JDBC driver for all schemas, databases, tables and procedures. It then builds the tree based
on what it gets.

The advantage of using JDBC to get meta data about the database is that it's the
responsibility of the driver to perform the operations in order to get the requested
information. The drawback of letting the driver do this is that JDBC doesn't offer that much
support for getting meta data information about all objects in a database i.e. the object
types that are presented in the tree are sufficient for most database while there are obvious
objects that are missing for some databases. The solution is simply to upgrade to the
DbVisualizer Personal edition.

The generic database profile when used for an Oracle connection look as follows:

Figure: The generic database profile when applied to an Oracle database connection

The appearance of the generic database profile may include schema objects and/or
catalog objects depending on whether the actual database supports these objects or not.
The Procedures object always appear in the tree independent on whether the database
connection supports procedures or not.

Database (Catalog) object

The Catalog object is the generic JDBC term for a Database in for example Sybase,

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseProfile/databaseProfile.html

PostgreSQL, SQL Server and MySQL. It groups all objects for a logical database. The object
view for a catalog is a pane with two tabs, Tables and References. The tables tab lists all
the tables that are located in the catalog while references shows the exact same list of
tables but instead as a referential integrity graph.

Figure: The view for Catalog objects

The child objects shown for a catalog depends on the capabilities of the JDBC driver.
Normally you will see a list of the supported table types that groups the tables of these
types. The number within parentheses is the number of tables. The example shows a
MySQL database. The driver reports that it can handle the table types, TABLE and LOCAL
TEMPORARY. (These table types are the same as those listed in the Table Types tab when
selecting a database connection object.

Tip 1: You can double click on a catalog object to display the detail view in a separate
window.

Tip 2: Select one or several rows (cells) in the tables grid and then choose Database-
>Build Select Script to create a select script for the selected tables.

Schema object

The Schema object is organized in the same way as the Catalog objects. There is in fact no

difference except that the schema objects are in another level in the tree and represented
by another icon.

The following screen shot shows the information for the selected schema with the
Reference tab selected.

Figure: The view for Schema objects

Table Type object

The Table Type object has been briefly explained earlier. The name and the number of
table type objects are determined by the driver as DbVisualizer asks for the supported table
types. When DbVisualizer retrieves all tables it checks each table's type and puts them into
the matching table type object. The reason is simply to make the tree easier to browse.

Figure: Example of table type objects for PostgreSQL

Note: Even though the figure above lists objects as INDEX, SEQUENCE, VIEW, etc are all
treated as tables by DbVisualizer.

Table object

The Table object is probably the most frequently accessed object in the tree as when
selected it shows not only a lot of information about the table but also the data in it. This is
also the place where data edits are performed.

Figure: The view for Table objects

The detailed view for table objects displays

Tab Description

Info Brief information about the table object

Columns This tab lists type information about all columns in
the table

Data Read more in Data tab

Row Count Lists the table row count

Primary Key Shows the primary key

Indexes Lists all indexes for the table

Table Displays any privileges for the table

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/master/databaseExplorer.html#mozTocId888712

Privileges

Row Id Displays the optimal set of columns that uniquely
identifies a row

References Read more in References tab

Data tab

Read more about the Data tab in the Table Data section.

References tab

Read more about the References tab in the References section.

Procedure object

The procedure object is probably the simplest since it shows the name of the procedure or
function in the tree, and in the object view lists the parameters that are used when calling
it.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/master/databaseExplorer.html#mozTocId809328
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/master/databaseExplorer.html#mozTocId580731
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/master/databaseExplorer.html#mozTocId486972

Figure: The procedure object

The object view shows a list of column names for the selected procedure.

Object Views

The object views in the right area of the Database Objects tab shows detailed information
about the selected tree object. The object view may contain several object view tabs
depending on the current database profile. There are also several representations of a view
to better illustrate the information. The following sections explains each of these visual
presentation forms.

Grid

The grid view is the most common one as it displays the data in a standard grid style.

Figure: The Grid view

Form

The form view extends the grid view by a form below the grid. Click on a row in the grid
and the information is displayed in the form.

Figure: The Form view

If there is only one row in the result will no grid appear but only the form.

Source

The source view is typically used to show the source for functions, procedures, triggers,
etc. It is based on a read only editor with SQL syntax coloring. The sub tool bar buttons
from the left:

• Export data to file
• Wrap long lines
• Copy the data to SQL Commander

Figure: The Source view

Table Row Count

The row count view is really simple as it only shows the number of rows in the selected
object.

Figure: The Row Count view

Table Data

The Data tab is used to browse the data in the table and to do various data related

operations. This view is based on the generic grid but adds a few more visual components
to limit the max number of rows, the width of text columns and the collection of data tab
specific operations in the right click menu. In addition it is also possible to set a filter that
will ensure that only the rows that match the filter will be displayed. The data tab is the
place to do edits in DbVisualizer Personal.

Figure: The Data tab for Table objects

Right click menu

The right click menu in the data tab grid menu adds some operations into the standard
right click menu. These are primarily used to create SQL statements based on the current
selection. Choosing any of these will create the appropriate SQL and then switch the view to
the SQL Commander tab. These operations are used to edit table data in the DbVisualizer
Free edition since the inline and form based editors are specifically for DbVisualizer
Personal. (Information about the standard right click menu operations are available in the
Getting Started and General Overview document).

The generated SQL can contain either static values as they appear in the grid or
DbVisualizer variables . A variable is essentially used as a place holder for a value in an SQL
statement. Once the statement is executed DbVisualizer will locate all variables and present
them in a dialog. The values for the variables can then be entered or modified and
DbVisualizer will in the final SQL replace the variable place holders with the new values.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/editData/editData.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Variables can be used in any SQL statement and DbVisualizer relies heavily on them. (Read
more about variables in the SQL Commander document).

The use of variables in the SQL statements generated by the SQL operations in the right
click menu depends on the Table Data- >Include Variables in SQL setting in Tool
Properties . This setting is by default true (include variables) and will result in variables
being used in the statement. Disabling the property will result in static SQL in the generated
statement.

Here follows an example with the Include Variables in SQL setting enabled and then
disabled. The SQL is generated when the select * where operation is selected based on the
selection in the previous figure.

Include Variables in SQL is enabled

select *
from SCOTT.EMP
where ENAME = $$ENAME (where)||WARD||String||where ds=10 dt=VARCHAR
nullable $$
and JOB = $$JOB (where)||SALESMAN||String||where ds=9 dt=VARCHAR
nullable $$

Include Variables in SQL is disabled

select *
from SCOTT.EMP
where ENAME = 'WARD'
and JOB = 'SALESMAN'

The following lists the generated SQL for each of the operations based on the selection of
ENAME = WARD and JOB = SALESMAN.

Operation SQL Example

Set Filter for Selection
ENAME = 'WARD' and
JOB = 'SALESMAN'

Script: SELECT ALL
select *
from SCOTT.EMP

Script: SELECT WHERE

select *
from SCOTT.EMP
where ENAME = 'WARD'
and JOB = 'SALESMAN'

Script: INSERT INTO TABLE
insert into SCOTT.EMP
(EMPNO, ENAME, JOB, MGR, HIREDATE, SAL,
COMM, DEPTNO)

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html

values (,'','',,'',,,)

Script: INSERT COPY INTO TABLE

insert into SCOTT.EMP
(EMPNO, ENAME, JOB, MGR, HIREDATE, SAL,
COMM, DEPTNO)
values (7521, 'WARD', 'SALESMAN', 7698,
'1981-02-22 00:00:00.0', 1250, 500, 30)

Script: UPDATE WHERE

update SCOTT.EMP
set EMPNO = 7521,
 ENAME = 'WARD',
 JOB = 'SALESMAN',
 MGR = 7698,
 HIREDATE = '1981-02-22 00:00:00.0',
 SAL = 1250,
 COMM = 500,
 DEPTNO = 30
where ENAME = 'WARD'
and JOB = 'SALESMAN'

Script: DELETE WHERE
delete from SCOTT.EMP
where ENAME = 'WARD'
and JOB = 'SALESMAN'

Script: DROP TABLE drop table SCOTT.EMP

Where Filter

The filter capability in the Data tab is used to form the where clause that will limit the
number of rows in the grid.

Figure: The Data tab filter

The filter area is composed of two parts. The upper one is used to define the where clause
for a single column. The available columns and operators are selected from two lists. The
value of the column is specified in a text field. You can use Ctrl- Enter while editing the
value to force a reload of the grid based on that single filter. The lower part displays the
complete filter and the buttons are used to control whether the newly entered filter will be
AND 'ed or OR'ed with the complete filter. The buttons change appearance based on
whether there is any filter or not. While in the complete filter you can use Ctrl- Enter to
force a reload based on the complete filter. The right click menu lists the last 20 filters that
have been applied to the grid.

Figure: The filter history right click menu

To reset the use of the filter select the Reload operation in the data tab tool bar.

(The visible state of the filter pane is controlled using the Filter toggle button in the data
tab tool bar).

Quick Filter

The quick filter acts on the data that is already in the grid as opposed of a where filter
which is used to limit the number of rows fetched from the database. Quick filter is
convenient as it is used to quickly list only those rows that match the entered search string.

The following figure shows data that matches the search string "d". Matching cells are
highlighted.

Figure: The filter history right click menu

Entering successive characters will narrow the result even further as in the following figure.

Figure: The filter history right click menu

When the Instant Filtering control is enabled then is the grid filtered while entering new
characters. Having a lot of rows in the grid may slow down the search if having Instant
Filtering enabled. If it is disabled then you must press the Filter button in order to apply
the filter.

Monitor row count

Read more about the Monitor Row Count and Monitor Row Count Difference in Monitor
and Charts.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/useCharts/useCharts.html#mozTocId618240
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/useCharts/useCharts.html#mozTocId618240

Editing

Read about data editing in Edit Table Data

DDL Viewer

DDL Viewer tabs appear only for Table and View objects and for databases that have
specialized database profiles.

Figure: The DDL viewer for a table

References

The references tab is used to visualize the references from the table and what tables
reference it. Use the sub tabs at the bottom of the display to show either view. The
following shows the references from the table.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/editData/editData.html

Figure: The references graph showing imported keys for a table

Procedure Editor

The procedure editor is used to browse, edit and compile procedures, functions,
packages and package bodies. The procedure contains the source editor and options to
display parameter info and compilation error list. If error(s) occur during compilation
then click the error and the related row in the source editor will be highlighted.

More information is can be read in the Procedure Editor document.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/procEditor/procEditor.html

Figure: The procedure editor for functions, procedures, packages and package
bodies

SQL Commander

Introduction

The SQL Commander is used to edit, format and execute SQL statements or SQL
scripts. Multiple editors may be open at the same time each controlling its own SQL log and
result sets. Result sets can be displayed in grid, text or chart formats.

The SQL Commander supports the following features:

• Syntax coloring
• Auto completion
• Multiple SQL editors
• Multiple result sets
• SQL editors displayed as tabs or windows
• Result sets displayed as tabs or windows
• Support for stored procedures producing multiple result sets
• SQL formatter with extensive customization options
• Execution control (stop on error/warning)
• View result sets as grid, text or chart
• Editable result sets with the inline or form editors
• Support for BLOB, CLOB and binary data
• View BMP, TIFF, PNG, GIF and JPEG images
• View XML data in tree or text format
• Export result sets as CSV, HTML, Excel, XML or text
• Batch execution enabling export of unlimited sized result sets
• SQL history saved between sessions
• Bookmark management (save favorite SQL's)
• Sort, quick filter and basic calculations of result sets
• Parameterized queries
• Drop objects dragged from the Objects Tree
• Full key binding support with pre- defined key maps for for Windows, Mac OS X,

Linux- UNIX, SQL Query Analyzer and TOAD users

Database specific support:

• Oracle , DB2 and SQL Server: Explain Plan queries presented either in tree or graph
format

• Oracle : support for TIMESTAMPLTZ, TIMESTAMPTZ and XML data types
• Oracle : support for DBMS Output

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/sqlserver.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/db2.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/databaseSpecific/oracle.html

Figure: SQL Commander overview

The figure shows the editing area and controls above and the output view in the lower part
of the screen. The following sections give a detailed explanation of all features and controls
in the SQL Commander.

Editor

The SQL Commander always have at least one editor, it is called the primary editor and
cannot be removed. To create additional editors use the File- >Create SQL Editor menu
choice or the appropriate key binding. To close an editor use the right click menu on the
editor tab or the close operations in the File menu.

Figure: Editor tab menu

The SQL editor in DbVisualizer is based on the NetBeans editor module and supports all
standard editing features. The right click menu have the following operations:

Figure: The SQL editor right click menu

The SQL editor is also used in the Bookmark Editor and when editing CLOB's in the form
editor.

Database Connection, Catalog and Schema

The Database Connection and Database (or Catalog) lists above the editor specify which
connection and database the SQL in the editor will be executed by. The list of connections
shows all connections as they are ordered in the Database Objects tree with the exception
that all currently active connections are listed first.

http://www.netbeans.org/

Figure: Database Connection, Database and Schema lists

The Sticky box above the Database Connection list specifies when enabled that the current
connection selection will not change automatically when passing SQL statements from other
parts of DbVisualizer. One example is passing an SQL bookmark from the Bookmark Editor.
Consider an SQL bookmark defined for database connection "ProdDB". If the Sticky setting
is disabled the database connection will automatically be changed to ProdDB. If however the
Sticky setting is enabled then the current setting of database connection will be unchanged.
The Sticky setting is per SQL editor instance.

The Database list (or Catalog) is used to set what catalog in the connection will be the
target for the execution. In the event of catalogs not being supported by the database
connection the header will indicate this with No Catalogs for the Database Connection .

The Schema list is used only to help the auto completion feature to limit what tables to show
in the completion pop up. It does not define that the actual SQL should be executed in the
selected schema.

Limiting Result Set size (Max Rows/Chars)

The Max Rows field is used to control how many rows that DbVisualizer will fetch for each
result set. if there are more rows available then presented in the result set you will see a
warning indicator in the grid status bar.

Note: Setting Max Rows technically means that it is the JDBC driver limiting the rows. This
may for some databases also affect non result set operations such as DELETE. MS SQL
Server is one example.

Figure: Max Rows exceeded warning

Click on the icon below the grid shows more information about the warning.

Setting Max Chars limits the number of characters that are presented for text data.
Columns that contain more characters then the specified Max Chars shows with red
background color to highlight that it is truncated.

Figure: Max Chars exceeded warning

Click on the icon below the grid shows more information about the warning.

Load from and save to file

The SQL editor supports loading from file and saving to file. Use the standard file
operations, Load, Save and Save As in the File main menu to accomplish this. Loading a
file always loads into the currently selected editor.

Figure: Loading a file into the SQL Commander

The name of the loaded file is listed in the status bar of the editor. The editor tracks any
modifications and indicates changes with an asterisk (*) after the filename.

DbVisualizer will ask at exit if there are any pending edits that need to be saved.

Load Recent

The File- >Load Recent sub menu lists the recently loaded files. You may choose an entry
and that file will be current in the file chooser. The file chooser allows setting what target
SQL editor the file should be loaded in:

Figure: File Chooser

Editor Preferences

The Editor preferences pane is activated via the SQL- >Show/Hide Editor Controls menu
option. It keeps settings that control the appearance of the SQL editor, result sets and the
log.

Figure: Editor preferences pane

All settings made in the editor preferences pane are saved between invocations.

Tip: The Result Set Naming Scheme may include HTML code typically used to change the
style of the elements.
Example: <html>${index}: ${sql} (${rows})</html>

Multiple editors

Multiple SQL editors can be created with the File- >Create SQL Editor main menu
operation. Editors can be organized as tabs or internal windows using the View buttons.
There is always one default editor named Main Editor . This editor is used when passing
SQL bookmarks from the Bookmarks Editor or when issuing requests from other parts of
DbVisualizer that activate the SQL Commander. To remove all but the Main Editor select the
File- >Close all SQL Editors menu operation.

The following figures show 3 editors organized in the tabs style and the windows style

Tabs style

The SQL editors in the figure below show the Main: test.sql, 1: informix.sql and 2: Untitled.
A file has been loaded into Editor 1 and the label shows the file name and indicates with an
asterisk if the content in the editor has been modified. Remove an editor by choosing the
Close operation in the right click menu while over the tab header.

Figure: Multiple SQL editors in the Tabs view

Windows style

The following figure shows the same editors but in the Windows view.

Figure: Multiple SQL editors in the Windows view

Remove an SQL editor window by selecting the close (red cross) button in the window
header. Windows can be automatically organized using the Tile and Cascade operations in
the Window main menu.

Permissions

All SQL commands executed in the SQL Commanded are checked with the DbVisualizer
Permission verifier before being executed by the database server. The permission verifier
use various rules to determine if a specific SQL is allowed, denied or need confirmation

before being executed. Specify in Tool Properties- >Permissions the rules for the verifier.
The default behavior is that all SQL's are allowed withouyt delete operations must be
confirmed while insert and update need no confirmation.

Charsets and Fonts

The SQL editor supports changing font which is useful and necessary in order to display
characters for languages like Chinese, Japanese, etc.

Figure: SQL Editor with another font

Open Tool Properties and select the Font category in order to set the font for the SQL
Editor. (It is advisable to set the same font for both the SQL editor and the grid
components).

Note: Displaying data correctly is not just a matter of setting the font. The reason is that
the character encoding on the client side (in which DbVisualizer runs) and the database
server may not be compatible. There is experimental support to set encodings to
accomplish proper conversation between different encodings. Please see the Getting Started
and General Overview document for more information.

Key Bindings

The editor shortcuts or key bindings can be re- defined in the Tool Properties- >Key
Bindings category. Select the Editor Commands folder to browse all editor actions.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId632432
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId632432
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498

Figure: The Key Bindings editor in Tool Properties

Read more about configuring key bindings in the Tool Properties document.

Client side Comments

Comments in the SQL editor are identified by the comment identifiers in Tool Properties.
These are client side comments and are removed by DbVisualizer before execution. Oracle
for example uses the block comment identifier to express "hints" for the database. These
must be passed to the database for processing. To enable this simply change the delimiters
for the block comment to something that doesn't interfere with the /*+ ... * / notation that
Oracle use.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html

Figure: The Comments category in Tool Properties

Auto Completion

Auto completion is a convenient feature used to assist in the editing of SQL statements. The
auto completion support in DbVisualizer currently supports completing table and columns
names for the following DML commands:

• SELECT
• INSERT
• UPDATE
• DELETE

To display the completion pop up then use the key binding Ctrl- SPACE. An entry is selected
in the pop up via one of mouse double click, ENTER key or TAB key. To cancel the pop up
press the ESC key.

Tip: The SPACE key can be configured to select entries in the pop up. Do this in Tool
Properties- >General- >Key Bindings category. Select the Editor Commands key bindings
and add the SPACE key for the Insert Newline editor action.

Note 1: If there are several SQL statements in the editor then make sure to separate them
using the statement delimiter character (default to ";").
Note 2: In order for the column name completion pop up to appear then you must first
make sure there are table names in the statement.
Note 3: All table names that has been listed in the completion pop up are cached by
DbVisualizer to make sure subsequent displays of the pop up is performed quickly without

asking the database. The cache is cleared only when doing a Refresh in the database
objects tree or reconnecting the database connection.
Note 4: The Schema list above the editor is used only to assist the auto completion feature
to limit what tables to list in the pop up.

General display settings for the auto completion feature is managed in Tool Properties.

The following shows the completion pop up with table names.

Figure: Auto completion pop up showing table names

Here is another completion pop up showing column names.

Figure: Auto completion pop up showing column names

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId327467

Here follows a couple of examples. The <AC> symbol indicates the position where the auto
completion pop up is requested. The currently selected catalog is empty and the selected
schema is HR. (These examples are when accessing an Oracle database).

select * from <AC> Shows all tables in the HR schema (since HR
is the selected schema)

select * from SYS.<AC>
The pop up will display all tables in the SYS
schema independent of the schema list
selection

select * from SYS.a<AC> Lists all tables in the SYS schema beginning
with the A character

select <AC> from SYS.all_objects Lists all column in the SYS.all_objects table

select <AC> from SYS.all_objects
all, EMPLOYEES

Lists all columns in the SYS.all_objects and
EMPLOYEES table (in the HR schema)

select emp.<AC> from EMPLOYEES emp Lists all columns in the EMPLOYEES table
here identified by the alias emp

select emp.N<AC> from EMPLOYEES emp
Lists all columns in the EMPLOYEES table
identified by alias emp starting with the N
character

insert into EMPLOYEES (<AC>

Lists all columns in the EMPLOYEES table.
Selecting the - All Columns- in the pop up
will result in that all columns will be added.
Each table is comma separated.

It is possible to fine tune how auto completion shall work in the connection properties. The
following settings can be used to adjust if table and column names should be qualified.

Figure: Properties controlling auto completion qualifiers

Qualify disabled (for both table names and columns):

select Name, Address from EMPLOYEE where Id > 240

Qualify enabled:

select EMPLOYEE.Name, EMPLOYEE.Address from HR.EMPLOYEE where
EMPLOYEE.Id > 240

(The setting of Qualify Columns is ignored if having table name aliases in the SQL).

These settings defines whether delimited identifiers should be part of the completed SQL.

Figure: Properties controlling delimited identifiers for auto completion

Delimited Identifiers disabled:

select Name, Address from HR.EMPLOYEE where Id > 240

Delimited Identifiers enabled:

select "Name", "Address" from HR."EMPLOYEE" where "Id" > 240

SQL Formatter

The SQL- >Format SQL feature is used to format the editor buffer according to the settings
defined in Tool Properties- >SQL Editor- >SQL Formatting . If the default settings for the
SQL formatter is not sufficient then edit the settings in Tool Properties, press Apply and
format again to see the result. The formatter source SQL may be enclosed by quotes (as
copied from a program or similar), it supports formatting the final SQL in a number of
language formats such as Java, C#, PHP, VB, etc.

Example of the SQL before formatting:

select CompanyName, ContactName, Address,
City, Country, PostalCode from
Northwind.dbo.Customers OuterC
where CustomerID in (select top 2 InnerC.CustomerId
from Northwind.dbo.[Order Details] OD

join Northwind.dbo.Orders O on OD.OrderId = O.OrderID
join Northwind.dbo.Customers InnerC
on O.CustomerID = InnerC.CustomerId
Where Region = OuterC.Region
group by Region, InnerC.CustomerId
order by sum(UnitPrice * Quantity * (1-Discount)) desc)
order by Region

And after formatting has been applied:

SELECT CompanyName,
ContactName,
Address,
City,
Country,
PostalCode
FROM Northwind.dbo.Customers OuterC
WHERE CustomerID in
(SELECT top 2 InnerC.CustomerId
FROM Northwind.dbo.[
ORDER Details] OD
JOIN Northwind.dbo.Orders O
ON OD.OrderId = O.OrderID
JOIN Northwind.dbo.Customers InnerC
ON O.CustomerID = InnerC.CustomerId
WHERE Region = OuterC.Region
GROUP BY Region,
InnerC.CustomerId
ORDER BY sum(UnitPrice * Quantity * (1-Discount)) desc
)
ORDER BY Region

SQL History

The History operations available in the View main menu are used to walk forward and
backward through the history of executed SQL statements. These operations are performed
in the currently selected editor and simply insert the next or previously executed SQL with
accompanying settings for Database Connection and Catalog (if Sticky is disabled).

The history entries are in fact SQL Bookmarks and managed by the History root folder in the
Bookmark Editor .

SQL Bookmarks

SQL Bookmarks are used to manage favorite SQL statements between invocations of
DbVisualizer. These are handled by the Bookmark Editor but the execution is performed in
the SQL Commander. Please refer to the SQL Bookmarks document for how to use the
Bookmarks main menu operations in the SQL Commander.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/bookmarks/bookmarks.html

Execution

The execution of multiple SQL statements can be controlled using the Stop Execution On
controls. These define whether the execution of the following SQL statements will be
stopped based on two states:

• Errors
Stop the execution if the SQL resulted in an error

• Warnings
Stop the execution if the SQL executed successfully but no rows were affected

Note: The Stop Execution On controls are only effective when executing multiple SQL
statements

Execute Selected Block

Selection Executes is useful when a batch of SQL statements are in the SQL editor and you
just want to execute one or a few of the statement(s).

Figure: Selection execute

The above figure will result in only the highlighted statement being executed.

SQL- >Execute

The SQL- >Execute main menu operation is used to execute the SQL in the current
(selected) SQL editor. The SQL Commander does this by analyzing the content in the editor
to determine the SQL statements. It will then execute the statement(s) and indicate the
progress. All statements in one editor are executed by the Database Connection that has
been selected. The SQL Commander does not support executing SQL's for multiple
database connections in one batch.

The result of the execution is displayed in the output view based on what result(s) are
returned. If there are several results and an error occurred in one of them the Log view will
automatically be displayed to indicate the error.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/master/sqlCommander.html#mozTocId942744

SQL- >Execute Current

The Execute Current operation is useful when having a script of several SQL statements.
Use it to execute the statement at the cursor position without first needing to select the
SQL statement. The default key binding for execute current is Ctrl- PERIOD (Ctrl- .).

Note: Execute Current determines the actual statement by parsing the editor buffer using
the standard statement delimiters.

Tip: If you are unsure what the boundaries are for the current statement then use Edit-
>Select Current Statement . This will highlight the current statement without executing it.

SQL- >Execute Buffer

Execute Buffer sends the complete editor buffer for execution as one statement. No
comments are removed or parsing of individual statements based on any delimiters is
made. This operation is useful when executing anonymous SQL blocks or SQLs used to
create procedure, functions, etc.

SQL- >Execute Explain Plan (Oracle, SQL Server and DB2)

Explain Plan is supported for Oracle, DB2 and SQL Server. Explain Plan executes your query
and records the plan that the database devises to execute it. By examining this plan, you
can find out if the database is picking the right indexes and joining your tables in the most
efficient manner. The explain plan feature works much the same as executing SQLs to
present result sets, you may highlight statements, run a script or load from file. The explain
plan results can easily be compared by using the pin feature in combination with window
style presentation.

DbVisualizer presents the plan either in a tree style format or in a graph. What information
is shown depends on what database it is. In the tree view put the mouse pointer on the
column header for a tool tip description what that column represents. The following screen
shows the SQL in the editor at top and the resulting explain plan as result.

Figure: Explain Plan presented as a tree

The Graph View shows the plan in a graph. The graph can be exported to an image file or
printed. Use the File menu choices to export and print.

Figure: Explain Plan presented as a graph

Each of the supported databases use different techniques to manage their explain plan
support. To control this either click the Preferences toolbar button or goto Connection
Properties- >[database]- >Explain Plan.

Figure: Explain Plan configuration

The configuration options for each of the supported database are different.

Commit and Rollback

The commit and rollback SQL commands and the accompanying operations in the
Database main menu are enabled only if the setting of Auto Commit is off for the
database connection. The default setting for auto commit is on which means that the
driver/database automatically commits each SQL that is executed. If auto commit is
disabled then it is very important to manually issue the commit or rollback operations when
appropriate.

SQL Scripts

An SQL script is composed of several SQL statements and can be executed in a batch. Each
SQL statement is separated by a single character, a sequence of characters or the go word
on a single line. The default settings for the separator characters are defined in Tool
Properties and can be modified to match your needs.

Figure: Statement Delimiters

The following SQL script illustrates some uses of the SQL statement delimiters based on the
settings in the previous figure:

select * from MyTable; /* Stmt 1 */

insert into table MyTable
(Id, Name) /* This is a comment */ values (1, 'Arnold')
go

/* Stmt 2 */

update MyTable set Name = 'George' where Id = 1; /* Stmt 3 */

select * from
MyTable; // This is a comment

/* Stmt 4 */

Anonymous SQL blocks

An anonymous SQL block is a block of code which contains not only standard SQL but also
proprietary code for a specific database. The anonymous SQL block support in the SQL
Commander uses another technique in the JDBC driver to execute these blocks. The way to
let the SQL Commander know that a SQL block is to be executed is to insert a begin
identifier just before the block and an end identifier after the block. The figure in the
previous section shows these settings and the default values:

Begin
Identifier:

--/

End
Identifier:

/

Here follows an example of an anonymous SQL block for Oracle:

--/ script to disable foreign keys

declare cursor tabs is select table_name, constraint_name
from user_constraints where constraint_type = 'R' and owner = user;

begin
for j in tabs loop
execute immediate ('alter table '||j.table_name||' disable constraint
'||j.constraint_name);
end loop;
end;
/

If you want to execute the complete editor buffer as an anonymous SQL block then use the
SQLl- >Execute Buffer operation. Doing this requires no begin or end identifiers.

Stored Procedures

Executing stored procedures is not officially supported by DbVisualizer even though it
works for some databases. The best way to figure it out is to test.

Our internal tests show that the Sybase ASE and SQL Server procedure calls work ok in the
SQL Commander. DbVisualizer also presents multiple result sets from a single procedure
call as of version 4.0 for these databases.

Client Side Commands

The SQL Commander supports a number of DbVisualizer specific editor commands. An
editor command begins with the at sign, "@". The following sections describe what
commands are available.

@run - run SQL script from file

@cd <directory> - change directory

@<file> - run SQL script from file

Use the following commands to locate and execute SQL scripts directly from file without
first loading the script into the SQL editor. This is useful if you are using an external editor
or a development environment to edit the SQL and then use DbVisualizer to execute it.

• @run <file>
Request to execute the file specified as parameter

• @cd <directory>
Change the working directory for the following @run or @<file> commands

• @<file>
Same as @run <file>

Example of a script utilizing the file referencing commands:

select * from MyTable; -- Selects data from MyTable

@run createDB.sql;

-- Execute the content in the
-- createDB.sql file. The location
-- of this file is the same as the working
-- directory for DbVisualizer.

@cd /home/mupp; -- Request to change directory to /home/mupp

@loadBackup.sql;
-- Execute the content in the
-- loadBackup.sql file. This file will now
-- be loaded from the /home/mupp directory.

@export - export result sets to file

The @export commands are used to control that any result sets from the SQL statements
that follows will be written to file instead of being presented in the DbVisualizer tool. This
is really useful since it enables dumping very large tables to file for later processing or to
perform for example backups. The following commands are used to control the export:

• @export on
Defines that the SQL statements that follows will be exported rather then being
presented in DbVisualizer

• @export set parm1="value1" parm2="value2"
The set command is used to customize the export process. Check the table below for
the complete set of parameters.

• @export off
Defines that SQL statements that follows will be handled the normal way and that any

result sets are presented in the DbVisualizer tool

These are all supported parameters and their values:

Parameter Default Value Valid Values

AppendFile false true, false, clear

BinaryFormat Don't Export Don't Export, Value, Hex, Base64

CsvColumnDelimiter \t (TAB)

CsvIncludeColumnHeader true true, false

CsvIncludeSQLCommand false true, false

CsvRowCommentIdentifier

CsvRowDelimiter \n \n (UNIX/Linux/Mac OS X), \r \n
(Windows)

DateFormat yyyy- MM- dd
See valid formats in Tool Properties
document

DecimalNumberFormat Unformatted See valid formats in Tool Properties
document

Destination File File

Encoding UTF-8

Filename REQUIRED

Format CSV CSV, HTML, XML, SQL

HtmlIncludeSQLCommand false true, false

HtmlIntroText

HtmlTitle
DbVisualizer export
output

NumberFormat Unformatted See valid formats in Tool Properties
document

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566

QuoteTextData None (ANSI if
Format="SQL")

None, Single, Double, ANSI

SettingsFile

ShowNullAs (null)

SqlIncludeSQLCommand false true, false

SqlRowCommentIdentifier - -

SqlSeparator ;

TimeFormat HH:mm:ss
See valid formats in Tool Properties
document

TimeStampFormat yyyy- MM- dd
HH:mm:ss.SSSSSS

See valid formats in Tool Properties
document

XmlIncludeSQLCommand false true, false

XmlIntroText

Example 1: @export with minimum setup

The following example shows the minimum commands to export a result set.
The result set produced by the select * from Orders will be exported using default
settings to the C:\Backups\Orders.csv file.

@export on;
@export set filename="c:\Backups\Orders.csv";

select * from Orders;

Example 2: @export with automatic table name to file name mapping

This example shows that the file name will be the same as the table name in the select
statement. The example also shows several select statements, each will be exported in the
SQL format. Since the file name is defined to be automatically set this means that there will
be one file per result set and each file is named by the name of its table.

Note: There must be only one table name in a select statement in order to automatically set
the filename i.e if the select joins from several tables or pseudo tables are used then you
must explicitly name the file.

@export on;

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId707566

@export set filename="c:\Backups\${table}" format="sql";

select * from Orders;
select * from Products;
select * from Transactions;

Example 3: @export all result sets into a single file

This example shows how all result sets can be exported to a single file. The AppendFile
parameter supports the following values.

• true
 The following result sets will all be exported to a single file

• false
 Turn off the append processing

• clear
 Same as the true value but this will in addition clear the file before the first result
set is exported

@export on;
@export set filename="c:\Backups\alltables.sql" appendfile="clear" format="sql";

select * from Orders;
select * from Products;
select * from Transactions;

Example 4: @export using pre- defined settings

The export grid wizard supports saving export settings to a file for later use in the export
wizard. A export settings file can in addition be referenced in the @export set command.

@export on;
@export set settingsfile="c:\exportsettings\htmlsettings.xml" filename="c:\Backups\${table}";

select * from Orders;
select * from Products;
select * from Transactions;

The example shows that all settings will be read from the c:\exportsettings\html.xml file.

@exit [nocheck] - Exit DbVisualizer

The @exit command is the same as selecting the File- >Exit operation. This is useful if
starting DbVisualizer using the - invisible , - sql and - execute program arguments. Having
@exit last in the loaded SQL file will force DbVisualizer to exit once the script has been
executed. The nocheck argument defines that no confirmation dialogs should be displayed
during exit.

@window iconify - Iconify the main window

This command results in the main window being lowered (iconified).

@window restore - Raise the main window

This command results in the main window being raised (if iconified).

@desc table - Describe the columns in table

Use the @desc command to show column information for a table. For tables that are not in
the current database or schema you need to prefix the table name accordingly.

@desc table;
@desc database.table;
@desc schema.table;

@spool log - Save log to file

The @spool log command is used to save the log to file. (The log is not cleared after being
saved).

@spool log mylog.txt

@stop on error - Stop execution if any error occur

@stop on warning - Stop execution if any warning occur

The @stop on error and warning can be used to control that the script processing should
stop if any error or warning occur. The corresponding @continue on xxx is used to ignore
any any error or warning conditions.

@stop on error;
@stop on warning;

@continue on error;
@continue on warning;

@spool log - Save log to file

The @spool log command is used to save the log to file. (The log is not cleared after being
saved).

@spool log mylog.txt

Parameterized queries (variables)

Variables can be used to build parameterized SQL statements. The SQL Commander will at
execution check for variables and prompt for replacement values of the variables. Variables
are also used internally in DbVisualizer. The SQL templates that are listed in the Tool
Properties- >SQL- >SQL Statements category are used inside DbVisualizer in various
situations. The difference with these is that DbVisualizer automatically substitutes the pre-
defined variable names with correct values once the templates are used instead of
prompting for values as the SQL Commander does.

A variable has the following format in its simplest use:

$$FullName$$

A variable must begin and end with the character(s) identified by the Variable Identifier
property in the Tool Properties- >SQL category (default is $$ as in the example above).
During execution the SQL Commander will search for variables and display a window with
the name of each variable and an input (value) field. Enter the value for each variable and
then press Execute . This will replace the original variable with the value and finally let the
database execute the statement.

Tip: Use the Ctrl - >Enter key binding as a shortcut for Execute .

Figure: The substitute variables window

The above example is the simplest case as it only contains the variable name. In this case it
is also necessary to place the text value within quotes since the substitution window cannot
determine from the variable itself if it is a number or text variable.

The final substituted SQL statement that results from the initial SQL and variable value is:
update Friends set LastName = 'Svensson' where Id = 100; Variable Syntax

The variable format supports setting a default value, data type and a few options as in the
following example:

$$FullName||Swansons||String||where pk $$

The full format of the variable syntax is:

$$variableName [|| defaultValue [|| type [|| options]]]

• variableName
Required. This is the name that will appear in the substitution dialog. If several
variables have the same name then the substitution dialog will show only one and the
entered value will be applied to all variables of that name.

• defaultValue
The default value that will appear in the substitution dialog

• type
The type of variable - String, Integer, BinaryData, etc. This is used to determine if the
value will be enclosed by quotes or not. If no type is specified then it is treated as an
Integer (no quotes).

• options
The options part is used to express various things. Most interesting are the pk and
where keywords.
(Note: There must be a whitespace character following a keyword).

• pk
Defines whether an icon will appear before the variable name in the
substitution dialog to indicate that it is a primary key field.

• where
Defines that the variable is part of the where clause and so will appear last in the list
of variables.

Output View

The Output View in the lower area of the SQL Commander is used to display the result of
the SQL's being executed. How the results are presented is based on what type of result it
is. A log entry is always produced in the Log view for each SQL statement that is executed.
This entry shows at a minimum the execution time and how many rows were affected by
the SQL. There may also be a result set if the SQL returned one. These result sets are
presented either as tabs or windows based on your choice.

Figure: The output view

If an error occurs during execution the SQL Commander will automatically switch to the Log
view so that you can further analyze the problem.

Log

The log keeps an entry for each SQL statement that has been executed. It keeps generic
information such as how many rows were affected and the execution time. The important
piece of information is the execution message which shows how the execution of that
specific statement ended. If an error occurred then the complete log entry will be in red
indicating that something went wrong.

Figure: The Log with one failed statement

The detail level in an error message is dependent on the driver and database that is being
used. Some databases are very good at telling what went wrong and why while others are
very quiet. The icon to the left of each log entry is used to pass the SQL for the entry into
the current SQL editor when clicked.

Log controls

The Show controls below the log are used to define what information will appear in the log.
The Filter controls are used to specify what entries will be displayed.

Auto clear log

The Auto Clear Log control can be enabled to let the SQL Commander automatically clear
the log between executions.

Result Set

A result set grid is created for every SQL that returns one or more result sets. These grids
can be displayed in a tab or window style view similar to how the SQL editors are displayed.
Each grid shares the common layout and features as described in the Getting Started and
General Overview document. The format of the result can be one:

• Grid
The result is presented in a grid.

• Text
The result is presented in a tabular format.

• Chart
Read more in Monitor and Charts.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/useCharts/useCharts.html
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId837818

Figure: The windows output view

This figure shows the Windows output view with three result set grids. The Max Rows and
Max Chars fields at the bottom of the figure are used to set the maximum number of rows
and columns (for text data) that will be fetched and presented in new result set grids. The
labels for the number of rows and columns in the grid will be displayed in red if either of
these exceed their respective maximum settings. A result set grid can be closed using the
red cross in the window frame header.

If the output view is Tabs then use the Close right click menu choice when the mouse
pointer is in the tab header:

Figure: The right click menu for tabs

Result set menu

The result set menu is available by right clicking on a tab or on the result set desktop
(window style). It contains options to control the current result set and all result sets. The
following actions are available:

Menu Choice Description

Load SQL into Editor Loads the SQL for the selected result set tab or window into the
current editor.

Insert SQL into Editor Inserts the SQL for the selected result set tab or window into the
current editor at the cursor position.

Close Current Close the current result set

Close All Closes all result sets

Close All But Current Closes all but the current result set

Close All Empty Closes all result sets that are empty (no data)

Pin Current Pin the current result set (prevent it from being removed at next
execution).

Unpin Current Unpin the current result set

Pin All Pins all result sets. Pinning a result set will prevent it from being
removed at the next execution.

Unpin All Unpins any pinned result sets making them candidates for
removal during the next execution.

Close All Pinned Removes all pinned result sets directly.

Close All Unpinned Removes all unpinned result sets directly.

Show Grids Changes the display mode to show the grid tab for all result sets

Show Texts Changes the display mode to show the text tab for all result sets

Show Charts Changes the display mode to show the chart tab for all result
sets

Editing

A result set grid may be enabled for editing based on the following criteria:

1. The result really is a result set
2. The SQL is a SELECT command
3. Only one table is referenced in the FROM clause
4. All columns in the result set exist in the table with exactly matching names

If all the above is true then the standard editing tool bar will appear just above the grid.
Read more about editing in the Edit Table Data document.

If any of the above fail to comply will the editing tool bar not appear.

Multiple result sets produced by a single SQL statement

Some SQL statements may produce multiple result sets. Examples of this are stored
procedures in Sybase ASE and SQL Server. The SQL Commander will simply check the
results as returned by the JDBC driver and add grids to the output view accordingly. The
following shows the sp_help Emps command which returns several result sets with various

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/editData/editData.html

information about the Emps table.

Figure: Multiple result set grids produced by a single SQL statement

The result set grids above all share the same label, sp_help Emps. The number after the
label represents the order number for the actual result. A stored procedure can return
different results, not all being result sets. The number helps to identify in the log which
entry matches what result set grid. Here is the Log output view for the previous example.

Figure: The Log after executing an SQL statement that returns multiple results

All entries with the log message "Result set fetched" are represented in the previous
figure.

Text

The Text format for a result set presents the data in a tabular style. The column widths are
calculated based on the length of each value and the length of the column label.

Note: The columns widths may vary between executions of the SQL.

Figure: The Text result set format

Chart

A result set can be charted using the Chart view in a grid. Please read more about it in the
Monitor and Charts document.

DBMS Output (Oracle)

The DBMS Output tab for Oracle is used to enable and disable capturing of messages
produced by stored procedures, packages, and triggers. These messages are typically
inserted in the code for debugging purposes. For SQL*Plus users the corresponding feature
is enabled via the set serveroutput on command. To enable display of DBMS messages in
DbVisualizer select the DBMS Output tab and press the Enable button.

Once DBMS output is enabled the icon in the tab header is changed. Invoking a stored
procedure in the SQL editor will result in the following being displayed in the output tab.
(Each block of output is separated with a timestamp).

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/useCharts/useCharts.html

Figure: DBMS Output tab

Query Builder

Introduction

The Query Builder provides and easy way to develop database queries. The query builder
uses a point and click interface and does not require in- depth knowledge about the SQL
syntax.

The query builder is part of the SQL Commander, alongside the SQL editor. When you are
ready to test a query built with the query builder, you just copy it to the SQL Editor for
execution. To open the query builder make sure the SQL Commander tab is selected and
then either choose the SQL- >Show Query Builder menu choice or click the vertical Query
Builder button to the right of the SQL editor.

Note: This document talks only about Tables even though the query builder supports both
table and view objects.

Figure: The query builder

Current Limitations

These are the current limitations in the query builder:

• It is not possible to generate a query builder definition from on an existing SQL
statement (reverse engineer)

• Unions and sub selects are not supported.
• Not all join types are supported when joins are expressed as WHERE clause

conditions. The Inner join type is supported for all databases, but the Left and Right
types are only supported for databases with proprietary syntax to express these
types, e.g., Oracle, SQL Server and Sybase. The Full type is not supported for any
database. If a join type is not supported, the setting in the Join Properties dialog is
ignored.

Creating a Query

To create a query, make sure the SQL Commander tab is current and open the query builder
using the SQL- >Show Query Builder menu choice or Query Builder button as described
earlier.

Figure: The initial appearance of the query builder

The easiest way to jump between the query builder and the SQL editor is by clicking the
vertical control buttons to the right of the editor. Clicking these buttons changes the
display, but does not copy the query from one display to the other. To copy the current

query from the query builder to the SQL editor, use the query builder toolbar buttons at the
top of the query builder:

Figure: Query builder toolbar

1. The first button (from left) replaces the content of the SQL editor with the query SQL
2. The second button adds the query last in the SQL editor
3. The third button copies the query to the system clipboard
4. The fourth button opens the editor properties

The two first buttons automatically change the display to the SQL Editor.

Adding Tables

To add tables, make sure the database objects tree and the actual table and/or view objects
are visible. Then select and drag nodes from the tree into the diagram area.

Figure: Adding tables to the query builder

To add a table, drag it from the object tree to the diagram area of the query builder. When
the table is dropped in the diagram area, it is shown as a window with the table name as
the window title.

Below the title is a text field where an optional table alias can be entered. If a table alias is
specified, it is used in the query builder and the generated SQL statement to refer this
table.

Under the table alias field is a list of all table columns. A check box in front of each name is
used to select whether the column should be included in the query result set. Columns
selected for the query result set also appear in the Columns and Sorting details tabs.

Joining Tables

To join two tables, select the column in the source table window with the mouse, drag it to
the target table column, and drop it.

Figure: Joining two tables

The two columns now represents a join condition, represented by a link between the
columns. If more than one join condition is needed, link additional columns in the two
tables by dragging and dropping the columns in the same way as for the first join
condition. The default join type is an Inner join and the default condition is "equal to" (=),
represented as an icon with overlapping circles with the shared area shaded and an equal
sign below them.

Join Properties

The join characteristics can be modified by either double- clicking the icon or selecting Join
Properties from the right click menu. The join properties window shows the source and

target table columns and the conditional operator.

The join type defines how the records from the tables should be combined:

• Inner
This is the most common join type as it finds the results in the intersection between
the tables.

• Left
This join type limits the results to those in the left table leaving 0 matching records
in the right table as NULL.

• Right
This is the same as left join but reversed

• Full
A full join combines the results of both left and right joins.

Figure: Join Properties window

You can change the join type and the conditional operator in the Join Properties dialog.

Note: If you have multiple join conditions (linked columns) between two tables, you can
specify different conditional operators for each join condition, but the join type is shared
between all join conditions; if you change it for one join condition, it is changed for all the
other join conditions linking the two tables. This is not a restriction in the query builder but
rather how SQL is defined.

Here is the sample SQL generated from the previous join definition:

SELECT *
FROM HR.EMPLOYEES
INNER JOIN HR.DEPARTMENTS
ON (HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID)

Remove Tables and Joins

A table window is removed by clicking the close icon in the window header. A join is
removed by selecting Remove Join in the right click menu while the mouse pointer is over
the join icon.

Figure: Diagram right click menu

All tables and joins may be removed via Remove All Joins and Remove All Tables .

Query Details

The Details tabs below the diagram area are used to define the various parts of the query.
The tabs briefly represents the following parts of the final SQL:

 SELECT <Columns>
 FROM <tables>
 WHERE <Conditions>
GROUP BY <Columns>
 HAVING <Grouping>
ORDER BY <Sorting>

(The <tables> clause is defined in the diagram).

Columns

Use the Columns tab to specify characteristics of the columns that are included in the
query. The list is initially empty until a column is checked in a table window or if manually
adding a column expression. Columns will appear in the list in the same order as they are
checked but may be manually moved at any time with the up and down buttons. To include
all columns from a table, right click in the column list in the table window and choose
Select All.

Figure: The columns tab

The previous screenshot shows a total of 5 checked columns in the two tables. These are
presented in the columns list by their full column identifier (not by any table alias). To
remove a column from the list then uncheck the corresponding column in the table window.

The alias field is used to specify an optional alias identifier for the column. The alias will be
the identifier for the column in the final query and will also appear as the column name in
the result set produced by the query. Check the documentation for the actual database
whether the alias must be quoted since the query builder does not do this for you.

The Aggregate and Group by fields are used in combination:

• The Aggregate field lists the available aggregation functions (AVG, COUNT, MAX,
MIN, SUM) that may be used for columns

• The Group by field specifies whether the column should be included in the group for
which aggregate columns are summarized

If an aggregate is selected then all non- aggregate columns must be Group By enabled.

A custom expression may be added by entering data in the empty row last in the list, e.g.,
"col1 + col2" or "TO_CHAR(ts_col, 'DD- MON- YYYY HH24:MI:SSxFF')". Once entered,
press enter to insert a new empty row. You can remove a custom expression by selecting it
and clicking the Remove button.

Conditions

This Conditions tab is used to manage the WHERE statement for the query. A where
statement may consist of several where conditions each connected by AND or OR. The
evaluation order for each where condition is defined by indention in the condition list. Each
level in the list will be enclosed by brackets in the final SQL.

Here is an example from the Conditions tab.

Figure: Condition settings

To create a new where condition press the indexed button in the list. In the menu that is
displayed you may choose to create a new condition on the same level, a compound
condition or delete current.
For compound conditions you may choose whether All (AND), Any (OR), None (NOT OR) or
Not All (NOT AND) conditions must be met for its sub conditions. The SQL for the previous
conditions is:

WHERE emp.SALARY > 4000
AND (
 dept.DEPARTMENT_NAME = 'Human
Resources'
 OR dept.DEPARTMENT_NAME = 'IT'
)

Next to the input field for each condition, there is a drop down button. When pressed it
shows all columns that are available in the tables currently being in the query builder. Pick
columns from the list instead of typing these manually.

Figure: List of columns in the conditions tab

The values specified in the input fields will be used in the query exactly as specified. You
need to manually quote text data.

Grouping

The grouping tab is used to define the conditions for the HAVING statement. The
capabilities for this statement are the same as for WHERE statements except that grouping
process the result set after any summary functions has been applied. Please read the
Conditions section for more information.

Sorting

The sorting tab is used to specify how the final result set will be sorted. The listed columns
are the same as in the Columns tab.

Figure: The sorting tab

All columns listed in the Columns tab are initially listed in the Available Columns table.
Select the ones you want to use in the sorting criteria and click the Move Left button to
move them to the Sorted Columns table.

In the Sorted Columns table, you can change the default sort order (ascending) by clicking
the check box in the Descending Order column. You can remove columns from the sorting
criteria by selecting them in the Sorted Columns table and clicking the Move Right button.

SQL Preview

The SQL Preview tab at the bottom of the query builder is used to show a preview of the
final SQL. This is a read- only view and cannot be modified.

Testing the Query

To test the query, simply press the appropriate toolbar buttons in the query builder to copy
the SQL to the SQL editor. Then execute the SQL as usual in the SQL editor.

Figure: Testing the SQL

To further refine the SQL press the Query Builder button and apply the neccessary changes.

Properties controlling Query Builder

There are a few properties that control how the query builder works and the SQL it
generates. Check the following sections for details.

Express joins as JOIN clause or WHERE condition

This property is available via Connection Properties- >[Database Type]- >SQL Editor-
>Generate JOIN Clause in SQL Builder.
Joins can be expressed either via the standardized SQL notation or by database specific
syntax. The database specific syntax is somewhat different between the supported
databases and the Full outer join type is generally not supported. The default setting of
this property is by JOIN clause.

A simple inner join expressed as a JOIN clause:

FROM HR.EMPLOYEES
INNER JOIN HR.DEPARTMENTS

ON (HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

Here is the same join expressed as a WHERE condition:

FROM HR.EMPLOYEES, HR.DEPARTMENTS
WHERE HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

The syntax for expressing Inner and Outer joins in WHERE conditions is different between
databases. Oracle, for example, uses the "(+)" sequence to the left or right of the
conditional operator to express left or right joins. SQL Server and Sybase use "*=" or "=*"
for the same purpose.

DbVisualizer automatically sets the correct join notation when generating joins as WHERE
conditions for databases that support left and right joins using WHERE conditions.

Table and Column Name qualifiers

Qualifying table names with the schema or database name and qualifying column names
with table name are defined in Connection Properties- >[Database Type]- >Qualifiers.

Delimited Identifiers

Identifiers that contain mixed case characters or include special characters need to be
delimited. Define this in Connection Properties- >[Database Type]- >Delimited
Identifiers .

Drag style and Diagram Size

In the editor properties it is possible to set what style the windows in the query builder
diagram should have when moving them. It is also possible to set the default size for newly
added table windows.

Monitor and Charts

Introduction

The monitor feature is used to show the results of one or many SQL statements in the
Monitor window. These monitors can be updated manually or automatically based on an
update period. A monitored SQL statement is an SQL Bookmark and the definition and
management of which SQL Bookmarks are monitored is controlled in the Bookmark Editor.
Any SQL Bookmark that produces a result set (data in a grid) can be monitored. The
monitor feature supports monitoring SQL Bookmarks for different database connections
concurrently.

The monitoring feature in conjunction with the charting capability in DbVisualizer Personal
is really powerful since it delivers real time charts of many result sets simultaneously.
Typical scenarios when monitoring is useful are to see live trends in a production database,
surveillance, statistics, database metrics and so on. It is just a matter of imagination and
the level of SQL expertise that sets the limit. We (Minq Software) as an example have a
dedicated workstation that automatically presents live chart information from our internet
servers and customer database.

Charts can be exported to JPEG and PNG files.

Note: Charts cannot be printed directly. You must first export and then use another tool to
print.
Note: The chart customization covered in this document is also applicable in the SQL
Commander (DbVisualizer Personal).

The Monitor window with four monitored SQL
Bookmarks. The results can be viewed as
windows or tabs. This example shows the grid
data as returned from each SQL statement.

The same monitored SQL Bookmarks as in the
left figure but here presented as charts.
(DbVisualizer Personal)

Monitor an SQL statement

An SQL statement to be monitored must be defined as an SQL Bookmark in DbVisualizer. A
bookmark is briefly an SQL statement with associated information about the target
database connection and an optional catalog (generic JDBC denomination which translates
to a database in for example Sybase, MySQL, SQL Server, etc). The Bookmark Editor
supports organizing SQL bookmarks in a tree structured folder view and the complete
structure and all SQL Bookmarks are saved in the XML file between invocations of
DbVisualizer. It is the Bookmark Editor that is used to enable what SQL Bookmarks should
be visible in the monitor feature.

Figure: Bookmark Editor

The figure shows the Computers Sold per Month bookmark and the SQL that is associated
with it. The Monitor field in the tree is used to determine whether the SQL Bookmark is a

monitor or not. Just click on the check mark and the SQL Bookmark will appear in the
Monitor window. Uncheck it to remove the monitor.

The following is an example of what the above SQL Bookmark produces:

Figure: Monitor showing the result in Grid format

The interesting columns in the result are the Month and Count . The Year and MonthNum
are there just to get the correct ascending order of the result.

There are alternative operations to simplify creation of monitored SQL Bookmarks. Read the
following sections to find out how this is done.

Monitor table row count

The Monitor Table Row Count operation is activated in the Data tab for a table (left button
below):

Figure: Data tab tool bar buttons that are used to create monitors

It is used to create a monitor that displays in a single row the current time stamp for when
the monitor is executed and the total number of rows (count(*)) in the table. Each execution
of the monitor will result in one row being added to the grid. The monitoring feature in this
example keeps a pre defined number of rows until the oldest rows are removed.

Example:

Computers: Row Count

PollTime RowCount

2003- 01- 23 12:19:10 43123

2003- 01- 23 12:11:40 43139

2003- 01- 23 12:21:10 43143

2003- 01- 23 12:22:40 43184

... ...

Figure: Example of the result from a Table Row Count monitor

The SQL for this monitor introduces two variables, DbVis- Date and DbVis- Time . These
variables are substituted with the current date and time formatted according to the formats
in Tool Properties. The reason these variables are used instead of using appropriate SQL
functions to retrieve them is simply because it is almost impossible to get the values of
these in a database independent way. Another reason is that we want to set the time of the
client machine rather than the database. The SQL can of course be modified to contain
whatever SQL that is appropriate as long as the PollTime and RowCount labels are not
changed.

Figure: Sample of the SQL for the Table Row Count monitor

The above does not introduce any big news for an SQL hacker.

The magic of this monitor is that it keeps a pre defined number of rows in the grid. This is
managed by the Allowed Row Count property in the Bookmark Editor. This property is
automatically set when creating a row count monitor. The default value is to keep the 100
latest rows added to the grid (one per execution).

Figure: Allowed Row Count property pane

The above setting can be modified to limit or extend the number of rows that the
monitored grid will keep. Setting it to 0 or a negative number tells DbVisualizer to always
clear the grid between executions of monitors.

Monitor table row count difference

The Monitor Table Row Count Difference operation is activated in the Data tab for a table
buttons (right button below):

Figure: Data tab tool bar buttons that are used to create monitors

Its purpose is similar to Monitor Table Row Count except that this monitor reports the
difference between the two latest executions in the result grid:

Computers: Row Count Change

PollTime RowCount RowCountChange

2003- 01- 23 12:19:10 43123 0

2003- 01- 23 12:11:40 43139 16

2003- 01- 23 12:21:10 43143 4

2003- 01- 23 12:22:40 43184 41

...

Figure: Example of the result from a Table Row Count Difference monitor

The SQL for this monitor adds a third field which is the RowCountChange . It is rather
simple since the current count(*) in the table is used when subtracting the RowCount in the

previous execution round or count(*) if there are no previous rows in the grid. This gives
the difference. The trick here is that DbVisualizer always keeps all values of the last row
that was added in the grid. Any of its fields can be referenced in the succeeding execution
of the monitor.

Figure: Sample of the SQL for the Table Row Count Difference monitor

Monitor window

The Monitor feature launched via the Tools- >Monitor menu option is used to browse the
active monitors. The monitors can be organized either as tabs or internal windows. In
DbVisualizer Free the monitor results can be viewed as grids while DbVisualizer Personal
adds the capability to view them as charts. The following figure is a screen shot of the
Monitor window:

Figure: The Monitor window with all monitors organized as tabs

The screen shot is from DbVisualizer Personal as the selected monitor has the View
buttons at the top which are not there in DbVisualizer Free. The Auto Reload feature at the
bottom of the main window is used to control whether auto update of all monitors is
enabled or not. The Seconds field specifies how many seconds the Monitor feature should
wait before doing an auto reload. If auto reloading is enabled then the monitor toolbar icon
in the main window is displayed to indicate its state. The Edit Bookmark button is used to
open the Bookmark Editor for the currently selected monitor. The Bookmark Editor will
automatically locate the actual SQL Bookmark for the monitor.

Note: The specified number of seconds may be increased automatically by DbVisualizer if
the total execution time for all monitors is longer.

The Window menu contains choices to control the appearance in the Monitor:

Figure: Window menu operations

The Show Grids, Show Texts and Show Charts toggles the monitors to display the
monitors in the selected view. Cascade and Tile are used to automatically arrange the
windows in the Windows view.

Charts

This section is only applicable for DbVisualizer Personal.

Charts in conjunction with the Monitor feature is really powerful since monitored data is
very often a good candidate to be charted. The charting capability in DbVisualizer Personal
is also available in the SQL Commander feature even though this document does not cover
it.

The basic setup of a chart is really easy since it is just a matter of selecting one or more
columns that should appear as series in the chart. The basic requirement is that the
monitor has been executed so that there are columns to choose the series from. The
appearance of the charts can be thoroughly customized using the advanced customization
editor.

The chart view is controlled by sub toolbar for each monitor:

Figure: Chart control buttons

The controls are from the left:

1. Show/Hide chart controls pane
2. Reset any zoom

The following sections explain the features and how to setup the chart.

Chart Controls

The chart controls are used to customize the Data that shall be displayed in the chart,
optional axis labels, titles, etc. It is also used to control the Layout of the chart in terms of
chart type, legend type, etc.

Data

Specify in the Data customization which data shall appear in the chart.

Figure: Data customizer

Select at least one Series from the list of columns and the chart is ready! Selecting several
series will show them accordingly in the chart. The Label field can be used to specify an
optional label for the series as it will appear in a legend. The name of the column is used if
no label is specified.

The X- Axis Label box is used to specify the column in the result that should be used to
render the labels of the X-axis. Chart Title specifies the main title of the chart. This is the
same title as the SQL Bookmark in the Bookmark Editor. X- Axis Title and Y- Axis Title
specifies the titles for the X and Y axis. The Rotation settings are used to set the rotation
of the X and Y axis.

Layout

The layout tab is used to configure the appearance of the chart and primarily what type of
chart that will be displayed. Note that all settings are per monitor. The following screen
shots show some of the most commonly used chart types.

Figure: Chart type examples

The advanced layout editor can be used to customize every aspect of the layout. The basic
layout settings however are the following:

Figure: Layout customizer

Show symbols specifies whether each value in a line chart will be represented by a symbol.
Show Inverted defines whether the X and Y axis will be switched. 3D specifies if a bar
chart will be displayed in 3D. The Chart Type lists all the available chart types. Fill Pattern
defines how a bar, area and pie chart shall be filled. Legend Type specifies whether a
legend will be displayed or not.

The Advanced Settings editor is used to customize all the bits and pieces of the chart.
This document does not explain all the configurations that can be done using this editor
since that would result in a 100 page book.

Note: Settings that are made in the Advanced Editor are not saved between invocations of
DbVisualizer.

Chart View

Zooming

Charts support zooming by selecting a rectangle in the chart area. Selecting another
rectangle in that zoomed area will zoom the chart even further and so on. To reset the
zoom then just press the Reset Zoom button or the "r" keyboard button while the mouse
pointer is in the chart area.

Rotating

All 3D chart types support rotating and changing the depth of the chart. Use the following
to change the appearance:

• Shift+Left Mouse button
Changes the depth of the chart

• Ctrl+Left Mouse button
Changes the rotation of the chart

Examples:

Figure: Example of 3D charts

The above screen shots are just a few examples of the 3D chart types and how depth and
rotation settings are used to change the appearance.

Export

The export operation is context sensitive and works on the currently selected chart, graph
or grid. The controls in the export dialog also adapt to the currently selected object. If a
chart is the current object the following export dialog will appear:

Figure: Export dialog for charts

The default size of the image that is about to be exported is the same as it appears on the
screen. To change the size then either select a pre- defined paper size in the Size list or
enter a size in pixels.

Edit Table Data

Introduction

The editing support in DbVisualizer Personal is used to insert, update or remove single
rows in a database table. Editing is performed using two different editors:

• Inline Editor
• Form Editor

The Inline Editor is convenient in situations when fast edits of single columns need to be
made. The Form Editor presents all columns in a form and some users prefer it since it is
easier to get an overview of the data.

The following figure shows what buttons in the Data tab and in a result set grid that are
used specifically for editing.

Figure: The buttons in the Data tab used to control the inline and form editors

Permissions

All of the insert, update and delete requests performed by the inline and form data editors
may be confirmed before being executed by the database server. Specify in Tool
Properties- >Permissions the confirmation state. The default behavior is that delete
operations must be confirmed while insert and update need no confirmation.

Features that support editing

Editing of table data can be performed in the Database Objects- >Data tab or in the
results from an SQL statement in the SQL Commander .

There are a few rules that must be fulfilled in order to enable editing in the SQL

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/toolProps/toolProps.html#mozTocId98498

Commander:

1. It is a result set
2. The SQL is a SELECT command
3. Only one table is referenced in the FROM clause
4. All current columns exist by name (case sensitive) in the identified table

The editing tool bar is hidden if these rules are not met.

Edits might be denied

The editing features in DbVisualizer ensure that only one row in the table will be affected
by update and delete requests. This prevents the user from doing changes in one row that
might also silently affect the data in other rows. DbVisualizer uses the following strategies
to determine the uniqueness of the edited row:

1. Primary Key
2. Unique Index
3. Selected Columns
4. All Previous Values

The Primary Key concept is widely used in databases to uniquely identify the key columns
in tables. If the table has a primary key then DbVisualizer will use it. There are situations
when primary keys are not supported by a database or when primary keys are supported
but not used. If no primary key is defined then DbVisualizer will check if there is a unique
index. If there are several unique indices then DbVisualizer will pick one of them. So why
not only try to identify the row by all its previous values? The reason Selected Columns is
searched before checking All Previous Values is because not all data types are allowed to
be used in a where clause. Typical examples are BLOB and CLOB data types. The Selected
Columns check simply uses the selected columns in the inline editor or checked columns
in the form editor to find out if the values identify a unique row. If that check fails then All
Previous Values is searched.

The following dialog appears when none of these strategies can uniquely identify the row.

Figure: Warning dialog when a unique row could not be identified

Commit

DbVisualizer issues an implicit database commit after each successful edit operation (the
value of the Auto Commit property in Tool Properties is bypassed during editing). The
commit request is per database connection and it commits all pending updates even those
that have been executed in the SQL Commander.

The following example explains the effect of the implicit commit:

1. The Auto Commit property is disabled in Tool Properties.
2. An SQL statement that deletes some rows is executed in the SQL Commander but it is

not explicitly committed.
3. We now go to the Data tab for a table and edit the value of a column.
4. Once the update in the grid is performed the update is committed. This commit will

also commit the delete statement that was executed earlier in the SQL Commander.
The reason is that all commits are performed per Database Connection.

Error Log

If the insert, update or delete request is successfully executed by the database then the row
in the grid will be updated accordingly. There are however situations when errors occur
during the database execution phase. These messages are presented in the execution log.

Figure: Error Log view

The log keeps information of all edits that have been executed in both the inline and form
editors. It presents not just failed operations (red color) but also all successful edits. All
error messages that appear in the log are produced by either the JDBC driver or the
database. Refer to the driver or database documentation for explanation of the error
messages.

Binary data/BLOB and CLOB

Binary data/BLOB and CLOB data can only be edited in the form editor. Read more about it
in Editing Binary/BLOB data and CLOB.

Inline Editor

The inline editor is handy when fast edits need to be made. The editor is simple to use
since it is activated by typing characters in the cell (column in a row) that is to be modified.
The inline editor is data type aware and checks that the entered values are valid for each
column's data type. Any errors are reported in the error log. Only those cells that have been
modified (indicated by a yellow color) during the editing session will be propagated to the
database.

The inline editor keeps all edits that have been made in a single row until the edit is
implicitly committed by selecting another row in the grid or by using the update tool bar
button (see below). All other operations such as selecting another table in the Database
Objects tree will silently revert any edit.

The following tool bar buttons are used to control the inline editor:

Figure: Tool bar buttons to control the inline editor

Description of the buttons (from left):

• Insert row
• Duplicate row
• Delete row
• Perform the current edit
• Revert the currently edited row

A row is edited by typing characters in a cell. All cells that have been edited are indicated by
a yellow background color. Only these columns will be updated once the final SQL is
executed to perform the change. All cells irrespective of whether they have been edited or
not are highlighted with a yellow border to indicate which row is being edited.

It is not possible to edit binary data, BLOB and CLOB values in the inline editor. Use the
form editor to manipulate values for these data types.

Insert a new row

To insert a new row just press the Insert row tool bar button. All columns in the table that
don't allow nulls are by default switched to the yellow background color. Now just start
typing in the cells to set the values of the new row.

Figure: Initial view of the inline editor when a new row is about to be edited

If a value is entered that is not valid for a cell then an error dialog is displayed. The color of
the invalid cell is at the same time switched to red.

Figure: Error dialog when the data type is invalid for a column

Follow the instructions in the dialog to either correct the value to match the data type of the
column or revert to its original value.

If the newly added row is the only row in the table then there is no other row to select in
order to perform the insertion. You must in this situation explicitly press the Perform the
current edit button in the tool bar.

Update an existing row

To update the value of a cell then just select the cell and start typing. The same checks as
when inserting a new row are done here as well. To perform the edit just press the Perform
the current edit button in the tool bar or select a cell in another row.

DbVisualizer use three different strategies to determine the row that will be updated. In
order to let DbVisualizer use Selected Columns then first edit the cells that should be
updated. Now select each cell that should be part of the selected columns list. Press the
Perform the current edit button in the tool bar to let DbVisualizer use the selected
columns in the final where clause.

Delete a row

To delete a row then select at least one cell in the row to be removed. DbVisualizer will use
one of the strategies in order to determine the row that will be deleted. Selecting one or
several cells in the row will form the where clause that optionally will be used if the
Selected Columns strategy is used to identify the row.

The default behavior when deleting a row is that it has to be confirmed. You may modify
whether the confirmation dialog should appear or not in the Permission category in Tool
Properties .

Figure: Confirmation dialog when deleting a row

Cell pop up menu

The cell pop up menu is active while editing a cell value and it is displayed using the right
mouse button.

Figure: Cell pop up menu

The list of operations in the cell pop up menu is different depending on what data type the
column is. Common for all data types are the Set to Null and Uncheck Column operations.

The Uncheck Column is used to remove the editing state of the cell which means that it will
not be included in the update of the row (the yellow background color is removed).

Remember that the format of time stamp, date or time values must match the format
settings in Tool Properties.

Insert current Timestamp (can also be Insert current Time and Insert current Date)
menu choice is valid only for the appropriate data types and simply inserts the current time
stamp. The format of these values matches the format settings in Tool Properties.

Form Editor

The Form Editor enables editing of data in a form based dialog. This editor is useful when
inserting new rows and when it is important to get a more balanced overview of all the
data. The form editor and the inline editor are based on the same set of rules and the visual
appearance is similar.

The following tool bar buttons are used to start the form editor:

Figure: Tool bar buttons to control the form editor

Description of the buttons (from left):

• Insert row
• Edit row (update, delete or insert copy)

An alternative way to start the form editor in edit mode is to double click on the row
header.

Form editor controls

The following explains how the form editor is organized and what controls are available.

Figure: The form editor

The form editor is composed of two main views (at the bottom of the dialog), they are the
Edit and Log views. The edit view is as its name implies the place where the actual edits
take place. The log view maintains a list of log messages for all edits that have been
performed. The log view is displayed automatically if an error occurs during the database
operation.

The tool bar buttons are used to Insert ,Update and Delete the current row. (Only the
insert button is enabled if the form editor has been launched to insert a new row).

The Wrap Lines check box is used to control whether long values should be wrapped
automatically.

The Reload Data Grid check box determines whether the Data tab grid should be
automatically re- loaded once the form editor is closed. If this box is disabled then make
sure to reload the data tab grid manually to reflect the changes that have been made in the
form editor.

Row Values

The Row Values section in the form editor lists all columns and values (fields) as they
appeared in the data tab grid when the form editor was launched (i.e if a column was
manually removed from the grid then it wont show in the form editor). Each field is

composed of a label which is the column name and the value. Any primary key columns are
indicated with a key- like icon to the left of the label.

The check box between the label and the value indicates whether the column will be part of
the SQL that is finally executed to perform the edit. The checked state is automatically
enabled if the field of the value is being edited and the color of the value field is
automatically switched to yellow to indicate what fields will be part of the database request.

Additional information about a column is listed below the list of fields. This information is
updated when the pointer is in a value field.

All text fields allow data to be entered in multiple lines (press the enter keyboard button).
Boolean and Bit fields are managed by toggle buttons. The state of these fields can be
either true, false or null. All fields except boolean fields have a pop up menu associated
with them similar to the one in the inline editor. For all fields it contains the Set to Null
operation. For time stamp, date and time columns it also contains Insert current
Timestamp , Insert current Time or Insert current Date . The formats of time stamp, date
and time are the same as specified in Tool Properties.

Remember to use the same format for time stamp, date and time fields as specified in the
formats section in Tool Properties.

Each of the fields limits the amount of data that can be entered. Entering more characters
than allowed will be denied. Some JDBC drivers report invalid column lengths such as 0 or a
negative size. The form editor tries to figure out if the length is invalid and adjust the width
accordingly.

Insert a row

The following dialog is displayed when choosing to insert a new row using the Form Editor.

Figure: The form editor as it appears when a new row is about to be edited

The form editor automatically enables the checked state for all columns that do not accept
nulls. All other fields are unchecked with the value of (null) (or whatever the text
representation of null has been set to in Tool Properties). Now specify the values
accordingly and press the Insert button to perform the insertion. The form editor is closed
if the execution was successful.

The Data- >Insert (Keep Window) is an alternate insert operation that is used to insert the
new row. The difference is that the form editor dialog is kept. This is useful if successive
inserts need to be made.

Edit a row (update, delete or insert copy)

Do the following in the Data tab grid to edit a row using the form editor:

1. Double click on the row header for the row that is to be edited
2. Select one or more cells in the row and press the Edit row in a form tool bar button

The first choice is useful if the table has primary keys or if the database table accepts an
update request based on all current values for the row. The second choice is useful when
the table has primary keys or when one must be able to select the columns (cells) that will
form the Selected Columns where clause. See Edits might be denied for more information.

Figure: The form editor as it appears when edit of an existing row has been
requested

Update the row

All fields are automatically unchecked when the form editor appears in edit mode. Change
the desired values and press the Update button to perform the update request.

The form editor is closed if the update operation is successful.

Delete the row

To delete the current row in the form editor just press the Delete tool bar button. A
confirmation dialog might be displayed (the appearance of this dialog can be specified in
Tool Properties) in which the deletion must be confirmed.

Figure: Confirmation dialog when deleting a row

The form editor will be closed if the delete operation is successful.

Insert a copy of a row

The form editor allows a new row to be inserted based on the values that are currently in
the editor. Make sure to set each fields check state or use the Edit- >Check All Values
menu choice to enable the checked state for all fields. Use the Insert tool bar button or
Data- >Insert (Keep Window) menu operation to perform the insertion.

Import from File

The File- >Import From File operation can be used to load any file into the currently
selected field. Importing from file is exactly the same as manually entering the data i.e the
max field sizes are considered and it might not be possible to load a file for which content
does not fit into the actual field.

Imported binary data with a recognized binary viewer will be displayed accordingly.

Export from File

The File- >Export To File is used to export the content of any field including binary data to
a file.

Editing Binary data/BLOB and CLOB

There are a few constraints specifically for editing of BLOB and CLOB data types in
DbVisualizer:

• They can only be edited in the form editor
• A primary key is recommended to successfully update these data types
• Note: A primary key is required for update of BLOB and CLOB in Oracle

Binary data in DbVisualizer is the generic term for several common binary database types:

• LONGVARBINARY
• BINARY
• VARBINARY
• BLOB

Read the following sections about CLOB and Binary/BLOB data for specific information

CLOB

CLOB data appears (apart from other data types) in a multi line text field in the form editor.
Data can be entered manually or imported using the File- >Import From File operation.

Figure: The CLOB text editor

Binary data/BLOB

Binary data can by its nature not be manually edited in DbVisualizer, it can only be
imported from a file.

The form editor recognizes some common formats and presents them in an appropriate
viewer.

GIF, JPEG and PNG viewer

Figure: Binary data viewer for common image formats

Serialized Java objects viewer

Figure: Binary data viewer for serialized Java objects

Hex/Ascii viewer

The generic hex/ascii viewer is used if the data format is not recognized.

Figure: Hex/Ascii viewer for unrecognized binary data

Create Table and Index Assistants

Introduction

The Create Table and Index Assistants are used to create new tables and indexes. The
assistants are quite simple to use since they examine various meta data in the database
(depending on what assistant is used) and then let the user point and click to define the
actual table or index. Both assistants finally generate the appropriate SQL and pass it over
to the SQL Commander which is used to execute it.

These utilities are launched from the Database main menu or in the Database Objects
tree right click menu. The menu choices are enabled only if a table or index can be created
for the selected node in the Database Objects tree.

Note: Remember to manually select the Reload right click menu choice in the Database
Objects tree once a new table has been created.

Create Table

Start the table creation assistant by choosing the Create Table action in the objects tree
right click menu or from the Actions menu. Make sure you have located and selected the
appropriate object in the Database Objects tree as this selection is used to define which
database, schema, etc. the table will be created in.

Figure: The right click menu in the Database Objects tree

The Create Table assistant is organized in three areas from the top:

• Table Info
Specifies the owning database connection, database and/or schema. These are
picked up from the selection in the tree when the assistant is started. Table name is
empty and must be specified.

• Columns

The list is used to organize the columns that will be in the final create statement. The
Data Type column is a list of supported data types for the actual database. Columns
can be re- ordered using the main controls.

• SQL Preview
The SQL previewer instantly shows the SQL that is used to create the table.

Figure: The table assistant

Columns

Add columns by using the Edit- >Insert menu choice and Edit- >Delete to remove the
currently selected row. They can be re- organized using the Edit- >Move Up and Edit-
>Move Down menu operations.

The assistant is based on generic JDBC and it is the responsibility of the user to enter the
required fields i.e. specifying size for text data types, ignore size for some BLOB types,
enter scale for decimal types, etc.

The Data Type field for a column when selected contains a list of valid data types for the
actual database connection.

Figure: Data Type list (for MySQL)

The Size and Scale fields are used either in conjunction or else the size field on its own.
Size is often used to set the max length of text columns. It is also used in combination with
the Scale field when defining decimal boundaries.

Figure: Size and scale for a DECIMAL data type

The above example will allow a total length (including the decimal places) of 7. Examples:

 1.02
 9871.1
 8172.0
 18291.22
 12.112 <- Error
1921211.11 <- Error

SQL Preview

The SQL Preview area is updated automatically to match the edits made in the assistant.
The preview is read only.

Figure: The SQL Preview for a table

Execute

When you are satisfied with the table then choose File- >Pass SQL to SQL Commander
menu choice. The SQL is then inserted into the SQL Commander. Now select Database-
>Execute main menu choice to execute it as per any regular SQL. If any errors appear
during the execution then go back to the Table Assistant and make the necessary changes.

Note: If you want to refine the setup of a table then just select the already visible Table
Assistant window. Do not choose the Create Table menu choice again since it will then clear
the assistant from its current setup.

Create Index

The Create Index Assistant is much the same as the Create Table Assistant. It is launched
from the same menus and the overall layout and controls are the same. The only difference
is the Columns list which now lists the columns that will be part of the index. The Column
field when selected lists the current columns in the table.

Figure: The Index creation assistant

The example shows that a new unique index, UniqueName will be created for the
MyFirstTable . It will index the Name column in Ascending order.

Please read the previous sections on how to use the Table assistant to edit and create the
actual index.

Procedure Editor

Introduction

Many databases offers the capability to store programs in the database. These programs
may be of two types, functions and procedures. The difference is that functions return a
value while procedures don't. Some databases do in addition offer the package concept
which means that a collection of functions and/or procedure are grouped together in one
unit. A package is the interface describing the functions and procedures while the package
body contains the implementation. The related functionality to create and drop these
procedural object types in DbVisualizer are activated via the object actions menu. The
procedure editor is used to browse, edit and compile these object types.

The examples throughout this document refer to the procedure object type while all
described features can also be applied to function, package and package body objects.

Create Procedure

To create a new procedure simply select the Procedures node in the objects tree and
choose Create Procedure from its action menu.

Figure: The actions menu for the Procedures node

Next a dialog will be displayed in which parameters for the new procedure are entered. This
data forms the interface for the procedure. You can leave the parameters and edit them
later. The source for the procedure is edited in a later step.

Figure: The create procedure dialog

Use the buttons to the right of the parameter list to insert, remove and move the entries.
For every parameter you must supply its Name , leaving Data Type results in the VARCHAR
datatype and the Direction is by default set to IN.

Now press Ok in the dialog to create the new procedure.

Figure: The newly created procedure

Selecting the newly created procedure in the tree will show the source for it in the
procedure editor.

Edit and Compile

Note: This editor is currently supported only for Oracle databases!
The editor have a small toolbar with various actions to start compilation, save and load
to/from file, show parameter information and common editing operations. The Status
indicator shows whether the procedure is valid or invalid based on last compilation.

To start editing then just edit the content. Compile the procedure using the compile toolbar
button.

Figure: Compiling procedure with errors

If error(s) occur during compilation then the error list will appear below the editor. It lists
the row number in the source editor where the error is and an error message. Click the
error in the list and it will highlight the corresponding row in the editor. The Status
indicator is switched to INVALID if errors are in the procedure. The same applies for the
object icon in the tree which shows a little red cross for invalid procedures.

Correcting the error yields correct results as in the next figure.

Figure: Compiling procedure with successful result

The status indicator now shows that the procedure is VALID .

Running in SQL Commander

You can now test the procedure in the SQL Commander as in the next screen shot

Figure: Running the procedure in SQL Commander

The figure shows the invocation of the moveorder procedure with parameters meaning
that all IDs in the ORDERS table between 1 and 3 should be set to Pre- Closed. The second
statement selects from the updated table.

SQL Bookmarks

Introduction

The purpose with the bookmark management is to offer a way to save SQL statements
between invocations of DbVisualizer and make it easy to execute them. Another important
requirement is to organize SQL statements in folders for structural and grouping purposes.
The core of the bookmark management is the Bookmark Editor. It is here the bookmarks
are organized.

The bookmark editor depends heavily on the SQL Commander since when requesting to
execute an SQL Bookmark the bookmark editor will pass the actual SQL along with the
connection data to the SQL Commander. It is then the SQL commander that is used to edit
and test the SQL until it is complete.

What's a bookmark in DbVisualizer?

An SQL Bookmark is generally an SQL statement that is saved between invocations of
DbVisualizer. In addition it also keeps related information needed to execute the SQL and
present the result accordingly once it is requested.

• SQL statement
• Bookmark name
• Database Connection
• Catalog (aka Database)
• Chart settings (optional)

The bookmark management is primarily used to save SQL statements that are used often or
for whatever reason there might be. There are different types of bookmarks and
DbVisualizer automatically creates bookmarks in the following function areas:

• Each SQL that is executed in the SQL Commander is saved as an SQL bookmark in the
History folder

• Each monitored SQL statement in the Monitor feature is an SQL bookmark and is
added to the New folder

(Read more about this in the following sections).

The Bookmarks Main Menu

The bookmarks main menu in the DbVisualizer window contains the following choices:

Figure: The Bookmark main menu

All except the Bookmark Editor choice are disabled if you are not in the SQL Commander
tab.

Menu Choice Description

Bookmark Editor Requests to display the Bookmark Editor .

Add Bookmark to Folder

This is composed of a sub menu in which all folders are
displayed. This list displays the paths for all folders (i.e the
folder hierarchy from the root). The root folders are
Personal , New or History (read more about these in the
sections below). Once a folder has been selected the
following dialog is displayed. Here you can change the
default name and add an optional note.

Replace Bookmark

This option is used to replace the chosen SQL bookmark
with the SQL and connection data that is in the current SQL
Commander editor. The replace bookmark menu consists
of the root folders and last in the menu possibly the name
of the last SQL bookmark that was passed from the
bookmarks editor. If you want to replace the data for that
SQL Bookmark just select its name in the menu.

Get Bookmark Get Bookmark shows the same menu hierarchy as Replace
Bookmark except that it is used to fetch the chosen SQL
Bookmark and insert it into the current SQL Commander

editor.

Execute Bookmark Same as Get Bookmark but this one also executes the SQL
statement(s)

Bookmark Editor

The bookmark editor is the core of the bookmark management and is used to organize SQL
bookmarks in folders and to do various adjustments.

Bookmark list

The editor is based on a tree list with the same structure as the tree that appears in the
Bookmarks main menu options. The tree has three root folders that cannot be changed,
moved or removed. There is basically no difference between these root folders except that
they are used in different contexts in DbVisualizer.

• Personal
This root folder is supposed to hold the structure of favorite SQL bookmarks. By
putting SQL bookmarks in folders you get a better organization and overview of your
bookmarks. All nodes in the root folder are manually maintained.

• New
Creating Row Count Monitors in the Database Objects- >Data tab will add these
monitors (as SQL Bookmarks) to the New root folder.

• History
All SQL statements or scripts that are executed in the SQL Commander are
automatically added in the History root folder. The latest executed statement appear
first in the list.

(The number after the root folder names indicates the number of SQL bookmarks that are in
that root folder).

Figure: The Bookmark Editor

You cannot create folders or SQL bookmarks in the New or History root folders. The way to
work with these folders is to copy the SQL bookmarks you want from them into the
appropriate location in the Personal root folder.

The tree of folders and SQL bookmarks is contains the following information:

Column in list Description

Name
The name of the node (folder or SQL bookmark). Modify the
name by selecting the column and click once to get into editor
mode. The Edit- >Change Name menu choice can be used for
the same purpose. If a SQL bookmark was created by some

other function in DbVisualizer then the name will be the first
40 characters of the SQL statement.

Database Connection

The database connection column when clicked displays a list of
all defined database connections. The list indicates whether a
connection is established or closed. It is here you specify using
another database connection for an SQL bookmark.

Catalog

This column lists the Catalog (aka Database) that was current
when the bookmark was created. You can change the Catalog
by clicking in it. A list of accessible catalogs is then displayed.

Note: The list of catalogs is empty if the Database Connection
is not established.

Monitor

Check this box to enable the SQL bookmark to become a
monitor and thereby appear in the Monitor main tab. SQL's that
returns results are the most obvious candidates for being
monitored.

Contain Variables
This column is read only and indicates whether the SQL
statement includes any DbVisualizer variables. (I.e $$variable
name$$)

Multi SQL

This column is also read only and indicates whether the SQL
statement is composed of several SQL statements (aka script).
This is determined by looking for statement delimiters in the
SQL.

New and History root folders

The number of SQL bookmarks that may be added by DbVisualizer to the New and History
root folders are specified in the Tool Properties- >Bookmarks category. Bookmarks in
these folders can be removed one by one or each folder can be cleared using the File-
>Clear all New entries or File- >Clear all History entries.

SQL Editor

Monitor information

The monitor sub tab controls the total number of rows that will be kept in the result grid
until rows are automatically removed. This feature is specific to the monitor feature. Please
see Charts and Monitors for more information.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/useCharts/useCharts.html#mozTocId488412

The Note field

The note field can be used to write a short note about the SQL Bookmark. This note will
appear as a tool tip in the Bookmarks main menu.

Executing an SQL bookmark or folder of SQL bookmarks

The SQL editor in the bookmark editor can be used to modify the SQL but it is not the place
to execute SQL statements. Instead it is the SQL Commander that is used to execute SQL's.
Select the Edit- >Copy to SQL Commander or Edit- >Execute Bookmark menu operation
to copy the selected SQL bookmark into the SQL Commander. The SQL Commander is then
used to execute and edit the SQL. Once you are satisfied with it then select the last entry in
the Bookmarks menu:

Figure: The Bookmark- >Replace sub menu

If the last entry displays "No current bookmark" then it indicates that the currently edited
SQL was not passed from the Bookmark Editor. You can use the other menu choices to
locate the actual bookmark that will be replaced.

The Copy to SQL Commander and Execute Bookmark operations can also operate on a
folder. Doing this will result in a script of all direct child SQL bookmarks that are located in
that folder. Each of the SQL statements will be delimited by the delimiter as specified in
Tool Properties.

Figure: Selecting a folder for execution

Choosing the Copy to SQL Commander for a folder of bookmarks will result in the

following being produced in the SQL Commander:

Figure: The SQL Commander editor

Note that the Database Connection and Catalog lists are empty. You need to select these
from the lists when a script of SQL bookmarks is passed from the Bookmark Editor.

Tool Properties

Customizing DbVisualizer

DbVisualizer is highly customizable, you can control formatting, layout and the way
DbVisualizer interacts with databases. The default settings are good enough for the normal
user but sometimes it is necessary to modify these properties. This chapter guides you
through all the properties.

Properties are divided into two groups:

• General Settings
These settings controls DbVisualizer in general such as fonts, colors, data formats,
etc.

• Database Settings
These settings are per supported database type and defines properties that are used
in database specific operations. Changing a database property in Tool Properties will
then apply for all database connections defined for that database type. In Connection
Properties it is also possible to override database properties specifically for a
database connection.

The user preferences (XML) file

All properties are saved in an XML file. The exact location of this file is platform dependent.
The location on your system is listed in the first, General category. The XML file contains,
in addition to all properties, also the information about drivers, database connections,
bookmarks, etc. The general recommendation is to not edit this file manually even though
it is quite easy to do so.

DbVisualizer automatically creates a backup copy of the XML file when the application is
started. The location of this file is the same as for the standard XML file except that the
.bak suffix is appended to the file name. The standard XML file might get broken for
various reasons. If a warning message that the XML file could not be read is displayed
during launch of DbVisualizer then simply copy the backup file to the standard location and
restart the application. If the XML file is moved from its standard location or if it is removed
then DbVisualizer will automatically create a new one.

Tip: the - up command line argument is used to identify the file name (and path) to an
alternate XML file.

General Settings

The General settings tab collects all categories that are used to control the general aspects
of DbVisualizer.

The buttons at the bottom of the window control whether the changed properties should be

applied using the Ok (this also closes the window) and Apply button, if changes should be
reverted using the Cancel button or if the factory defaults should be applied using the
Defaults button.

Changes are tracked on a per category basis. If any changes has been made then a question
will be displayed whether the changes should be applied or not. Defaults can be initiated
either to revert all properties (both General and Database properties) to their default
settings or just the current category.

This is a screenshot of the General category tree.

Figure: The Tool Properties window showing the tree with General categories

Appearance

Property Description

Look and
Feel

Controls which look and feel will be used.
Note 1: You must restart DbVisualizer in order to use a new look
and feel.
Note 2: Some look and feels are platform specific and do not appear
on all OS'es

Metal (Ocean)

Motif

Windows

Alloy

Icon Sizes The Menus , Main Tool Bars, Sub Tool Bars settings are used to control
the size of the icons.

Show Tab
Icons

Specifies whether an icon will appear in the header of all object view
tabs.

Fonts

Individual fonts can be defined for SQL editors , Grids and Text output data. The
Application Font Size settings is used to control the size of the font for all other
components in the user interface. Increasing the application font size is useful at demos or
presentations.

Key Bindings

The key binding function is used to define key bindings for almost all operations and editor
commands in DbVisualizer. Key bindings are grouped in Key Maps . DbVisualizer includes a
set of pre- defined key maps targeted for the supported operating systems. These key maps
cannot be deleted or modified. To customize key bindings, then copy an existing key map
and make your changes.

Figure: The key binding editor

All user defined key maps are stored in your $HOME/.dbvis/config/keymaps directory. A
key map file contain only the differences between the copied key map and the current.

To create a new key map select the map you want to copy and press the Make Copy
button. Set a name on the new key map and activate it with the Set Active button. The
newly created key map will now have the exact same key bindings as the parent key map.

Note: Key maps must be uniquely named.

Figure: User defined key map

The action list is organized in folders. The Editor Commands folder lists all actions
available in the SQL Commander editor and their current key bindings. The Main Menu
folder contain sub folders each representing the main window menu actions. The other
folders group feature specific actions such as actions to control the references graph, form
editor, etc.

To modify the key bindings for an action then select the action from the action list. The
current key bindings are listed in the Key Bindings list.

Figure: User defined key map

To add an additional key binding press Add Key Binding or press Edit Key Binding to edit
the selection.

Figure: Key stroke dialog

The key stroke dialog controls whether a key binding is already assigned somewhere else.
In the conflict box you'll see the names of the actions that are conflicting. The modifier
keys Shift, Alt, Ctrl and Command can be used to form the final key binding.

Note: It is not recommended to assign several key bindings for different actions. The
reason is that you may get different results between invocations of such key bindings.

Note: Menu items and tool tips shows the first defined key binding in the list.

Database Connection

Property Description

Run "Connect All" at
Startup

Defines whether a database connection will be connected
when the Connect All operation is selected in the main
window menu bar.

Confirm "Disconnect All"
Checking this property will force a dialog to be displayed
before disconnecting all current database connections
using the Disconnect All operation.

Connection Timeout

Specify number of seconds that the driver will wait until
terminating ongoing connection request.
Note: This property is handled by JDBC drivers and might
not be supported.

Permissions

The Permission functionality is a security mechanism preventing from running certain
database operations unconfirmed. Permissions are configured per connection mode and are
categorized into the following feature areas.

Note: The permission feature is part of DbVisualizer and should not be mixed with any
authorization system in the actual database.

SQL Commander Permissions

For the SQL Commander we define via a drop down the permission type for each SQL
command:

• Allow
This type will run the actual SQL without any confirmation

• Deny
This type will simply ignore running the actual SQL command

• Ask
When executing the SQL statement or script of statements the SQL Commander will
first ask the user whether the actual SQL command(s) should be executed or not.

Figure: SQL Commander Permissions

Inline and Form Editor Permissions

The permissions for inline and form editors are:

• Confirm
A confirmation window will be displayed in which the user must accept the operation
or cancel it

• No Confirm
The SQL operation is performed without any confirmation being displayed

Figure: Inline and Form Editor Permissions

Data Formats

Property Description

Date Format
Select the date format that will be used throughout the
application (i.e grids, forms and during editing). More
information below.

Time Format
Select the time format that will be used throughout the
application (i.e grids, forms and during editing). More
information below.

Timestamp Format Select the timestamp format that will be used
throughout the application (i.e grids, forms and during
editing). More information below.

Numbers Format Specifies how numbers will be formatted.

Decimal Number Format Specifies how decimal numbers will be formatted.

Null String
This is the string representation of the null value. This
string is the readable form of null and appears in grids,
forms, exports and during editing.

Date, Time and Timestamp formats

The lists for date, time and timestamp format contains a collection of standard formats. If
these formats are not suitable then you can enter your own format in the appropriate field.
The tokens used to define the format is listed in the right click menu while the field has
focus.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/master/toolProps.html#mozTocId854888

Figure: The date and time right click menu

The complete documentation for these tokens are listed in the following web page
SimpleDateFormat .

Table Data

Property Description

Show Table Row Count

Specifies if the number of rows in a table will be
displayed in the header of the table when in the
Database Objects- >Data tab. Enabling this property
will cause an extra round trip to the database (i.e
minor performance penalty)

Highlight Primary Key Columns

Specifies if Primary Key columns will be indicated in
the Database Objects- >Data tab, Variable
Substitution dialog, SQL Commander Result grids
and in the References Graph.

Include Variables in SQL Specifies if the right click menu operations in the
Data tab will create appropriate SQL statements that
include DbVisualizer variables or if the generated
statements are plain SQL. Letting DbVisualizer
generating statements with variables results in the
variable substitution dialog being displayed when
these statements are executed in the SQL

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

Commander.

Max Rows at First Display Set the number of rows that will be fetched for a
table in the Data tab when a table is first displayed.

Inline/Form Editors

Property Description

Reload Grid after Edit Check this to enable auto reloading of the grid after
a successful edit in the inline editor.

Image Max Size in Form Editor The default size for images displayed in the form
editor.

Variables

Variables can be used in the SQL executed in the SQL Commander and in Connection
details. Before executing an SQL statement or connecting a database connection a window
is display asking for replacement values.

These settings define what character sequence identifies a variable.

Property Description

Variable Identifier The identifier for a variable. A variable starts and ends with this
identifier. Default is "$$".

Variable Delimiter The delimiter used to identify the parts of a variable. Default is
"||".

Transaction

Property Description

Pending Transactions at Disconnect
Defines what DbVisualizer will do on exit from
the application when the auto commit setting
is disabled.

Bookmarks

Property Description

Number of Bookmarks Limit
Specifies the number of SQL bookmarks that the New
and History bookmark object may keep until the lists
are truncated.

Monitor

Property Description

Start Monitors Automatically Check to enable start of monitors automatically when
database connections are established.

Grid

Property Description

Fit Grid Column Widths
Enable to let DbVisualizer automatically fit the
content in each grid column based on the widest
cell value.

Max Column Separator Width
This setting is used only when Fit Grid Column
Widths is enabled and is used to set a maximum
visual column width for grids.

Meaning of setting Max Chars The Max Chars property in the Database Objects
Data tab and in the SQL Commander is used to
control the max number of characters that text
values can hold. If the number of characters for a
text column is wider then this setting then the
column is colored in a light red color.

The meaning of setting this property can be one of
the following:

• Truncate Values
Will truncate the original value to be less
then the setting of Max Chars.
Note: this will affect any subsequent edits
and SQL operations that use the value since
it's truncated. This setting is only useful to
save memory if viewing very large text

columns.
• Truncate Values Visually

Will truncate the visible value only and leave
the original value intact. This is the preferred
setting since it will not harm the original
value. The disadvantage is that more
memory is needed if dealing with large text
columns.

Copy

The copy category groups properties that are used to control the result of using Copy
Selection and Copy Selection (With Column Header) via the grid right click menu.

Property Description

Column Delimiter Specifies the delimiter between columns in a multi
column copy

End of Line Delimiter Specifies the new line control characters for multi
row copy requests

Colors

The Colors category defines how odd and even numbered rows in grids should be
presented.

Binary/BLOB and CLOB Data

Property Description

BLOB
Specifies how BLOB and binary data values will be represented in grids.
Setting this property to By Value will result in performance penalties
and the memory consumption will increase dramatically.

CLOB
Specifies how BLOB and binary data values will be represented in grids.
Setting this property to By Value will result in performance penalties
and the memory consumption will increase dramatically.

SQL Editor

The editor category controls various settings specific for the SQL Commander editor.

Property Description

Tabs This is used to define settings for the tab
keyboard key.

Recent Files Limit Specifies the max number of files listed in the
File- >Load Recent sub menu.

Confirm Close of Unsaved Editors
Enable this and DbVisualizer will ask for unsaved
editors (and not only editors loaded from file)
whether to save to file or not.

Set "Sticky" for SQL Editor(s)

When this is enabled new SQL Editors
automatically will be defined as Sticky meaning
that the database connection details only can be
changed manually.

Statement Delimiters

Statement delimiters define how a script should be divided into specific SQL statements in
the pre- processing phase.

Property Description

SQL Statement Delimiter 1 Defines the character(s) used to delimit one SQL
statement from another in a SQL script

SQL Statement Delimiter 2

Defines the additional character(s) used to delimit one
SQL statement from another in a SQL script. If there is
no need for more then one SQL statement delimiter
then set this one to the same as delimiter 1.

Allow "go" as Delimiter Specifies whether go as the first word on a single line
will be interpreted as a statement delimiter.

Begin Identifier Defines the character(s) that identifies the start of an
anonymous SQL block

End Identifier Defines the character(s) that identifies the end of an
anonymous SQL block

SQL Formatting

The SQL formatting category groups properties to control the SQL formatting feature in the
SQL Commander. To see the effect of each property, modify it, press Apply and format the
SQL in the SQL Commander to see the result.

Auto Completion

These category is used to define the visual appearance of the auto completion popup in
SQL Editors.

Property Description

Sort Tables List Enable this to always present tables sorted in the auto
completion popup

Sort Columns List Enable this to always present column names sorted in the
auto completion popup

Display Automatically Enable this and the auto completion popup is automatically
displayed whenever possible

Instant Substitution Enable this and the auto completion popup is only displayed
when needed

Display Delay Specifies the time in milliseconds until the auto completion
popup is displayed automatically

Comments

Property Description

Single Line Identifier 1 Defines the character(s) that identifies the
beginning of a one line comment

Single Line Identifier 2 Defines the additional character(s) that identifies
the beginning of a one line comment

Block Comment Begin Identifier Specifies the character(s) that identifies the start of
a multi line comment block

End Specifies the character(s) that identifies the end of
a multi line comment block

Debug

The debug category is used to control the amount of output that is produced when setting
various debug modes. Normally only error messages are displayed in the default debug
destination which is the Tools- >Debug Window . The support team often refer to the
debug properties when we want more information in a problem situation.

Property Description

Debug Output Destination

Specifies the destination to which all debug messages will
be written to. It is not advisable to set this to Off since
then also error messages will then also be ignored.
Standard Out is only useful if the debug mode of the
DbVisualizer launcher is enabled.

Debug DbVisualizer

Defines the amount of logging that will be produced. Full
output is when Log Level is set to Debug and lowest
output is Error . Setting Detail Level to Full produces the
most detail and also consume more resources.

Debug JDBC Drivers
This property enables any debug output produced by a
JDBC driver. The amount of output depends on the actual
drivers.

Read more about Problem Resolution .

Database Settings

Database settings extends the General settings with properties that are defined per
supported database type. The selection of what database type is current for a database
connection choose the appropriate type in the Database Type list in the Connection tab. If
there is no matching entry use the Generic database type.

Having database type specific properties is useful as settings can be defined for all
database connections instead of per individual database connections. It is also possible to
override these properties in the Connection Properties tab.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId896585

Figure: The Tool Properties window showing the tree with Database categories

The following properties are displayed when selecting a database type in the tree.

Property Description

Connection Mode

Specify here what mode the database
connection is. Permissions are based on
connection mode as well as a visual border
around critical features in DbVisualizer.

Show only default Database or Schema
Enable this if you only want the default
database or schema listed in the database
objects tree.

Connect when "Connect All" The Connect All feature is used with a

single click to connect all database
connections that have this setting enabled.

Authentication

Property Description

Save Password
Enable this and DbVisualizer will save the password
for the database connection between invocations.
(The password is saved encrypted)

Clear Password at Disconnect Enable this and the password will be cleared at
disconnect

Require Userid Ask the user to enter userid whenever the database
connection is established

Require Password Ask the user to enter password whenever the
database connection is established

Delimited Identifiers

Delimited identifiers are identifiers which do not need to follow the rules of regular
identifiers. Such identifiers can include sequence of printable characters excluding those
which are not allowed to use in delimited identifiers in the actual database. Usually
delimited identifiers are used when you need to use SQL reserved word, spaces and mixed
case sequences as an identifier.

Property Description

Begin Identifier Defines the start character for a delimited
identifier. Normally this is a double quote (")

End Identifier Defines the end character for a delimited identifier.
Normally this is a double quote (")

Scripting Enable this to use delimited identifiers in the
Scripting features

Auto Completion/Query Builder Enable this to use delimited identifiers in the auto
completion and query builder features

Qualifiers

Use these settings to control whether column names should be qualified with the table
name.
Note: Using table name aliases will override the setting of prepend column names.

Property Description

Qualify with Schema/Database:
Scripting

Enable this to qualify object names with
schema/database in the Scripting features

Qualify with Schema/Database: Auto
Completion/Query Builder

Enable this to qualify object names with
schema/database in the auto completion and
query builder features

Qualify Columns: Auto
Completion/Query Builder

Enable this to qualify column names with the
table name in the auto completion and query
builder features

Transaction

Property Description

Auto Commit

Defines if each executed SQL statement will be auto
committed or not. This setting applies for all SQL's that are
executed in the SQL Commander. The inline and form editors
in DbVisualizer Personal handles the commit and rollback
management independently of the setting of Auto Commit.

Transaction Isolation

Attempts to change the transaction isolation level for all
database connections.
Note: If this property is changed during a transaction, the
result is JDBC driver specific.

SQL Statements

This category controls the SQL templates that DbVisualizer uses internally throughout the
application. Each SQL template is composed of the standard SQL and variables. Variables
are identified with $$...$$. DbVisualizer relies on a list of pre- defined variable names that
are accessed in the SQL Templates right click menu:

Figure: All pre- defined variables

A specific pre- defined variable can be used in on or more of the SQL templates. Using a
variable in a SQL statement that is not valid will result in the variable appearing as is once
the statement is executed.

There is normally no reason to modify the SQL templates nor the variable identifier or
delimiter settings. There might however be circumstances when edits are needed:

• To put quotes or brackets around table names
• To change the variable identifier or variable delimiter since the default settings may

interfere with object names in the database
• To modify the appearance of the where clause or the list of columns

Property Name Description

SQL
Templates

SELECT ALL Command used when selecting all rows for a
table

SELECT ALL WHERE Command used when selecting some rows for a
table

SELECT COUNT Command used to get the number of rows in a
table

INSERT INTO Command used to insert a new row into a table

UPDATE WHERE Command used to update an existing row in a

table

DELETE WHERE Command used to delete a specific row in a
table

DROP TABLE Command used to drop a specific table

CREATE TABLE Command used to create a new table with an
optional primary key

CREATE INDEX Command used to create an index for a specific
table

Monitor Row Count Command used to get the number of rows in a
table and the current time stamp

Monitor Row Count
Change

Command used to get the row count difference
in a table compared to the previous execution.
The calculated row count and the current time
stamp is returned

Connection Hooks

Connection hooks defines optional SQL commands that are sent to the database at connect
and just before disconnect. They are typically used to initialize the database session with
custom settings and at disconnect clean up various resources.

Property Description

Run SQL at Connect Defines the SQL that will be executed just after the
connection has been established

Run SQL at Disconnect Defines the SQL that will be executed just before the
connection will be disconnected

Objects Tree

Property Description

Custom Object Tree Labels Here you can define custom tree labels that will appear
in the database objects tree. The Object Type must
match the corresponding type in the actual database

profile.

SQL Editor

Property Description

Remove New Line
Characters

Specifies whether any new line characters should be removed
from any SQL statement executed in the SQL Commander and in
the implicit SQL execution functionality in DbVisualizer. Some
drivers/databases such as DB2 requires that no new line
characters are part of any executed SQL.

Generate JOIN
clauses in Query
Builder

Specifies whether the Query Builder will generate JOINs as JOIN
clauses or WHERE conditions.

JOIN clause:

SELECT *
FROM HR.EMPLOYEES emp
INNER JOIN HR.DEPARTMENTS dept
ON (emp.DEPARTMENT_ID = dept.DEPARTMENT_ID)

WHERE condition:

SELECT *
FROM HR.EMPLOYEES emp,
 HR.DEPARTMENTS dept
WHERE (emp.DEPARTMENT_ID = dept.DEPARTMENT_ID)

Database Specific settings

Some databases are supported more in DbVisualizer then others and so requires extended
configuration capabilities.

Data Types (Oracle)

In Oracle it is sometimes desired to treat DATE data types as TIMESTAMP. Enable Handle
DATE as TIMESTAMP and DbVisualizer will automatically convert DATE's.

Explain Plan (Oracle, SQL Server and DB2)

The explain plan feature supported for Oracle, SQL Server and DB2 can be configured to
highlight certain threshold levels.

Property Description

Color Critical Nodes Enable this and critical nodes in the explain plan feature
will be highlighted.

Critical Threshold The threshold for when a node should be handled as
critical

Warning Threshold The threshold for when a node should be handled as a
warning

Explain Plan (Oracle)

The explain plan feature for Oracle can be configured to define the management of the
underlying plan table in which the explain plan result is stored.

Explain Plan (DB2)

The explain plan feature for DB2 can be configured to define the management of the
underlying plan tables in which the explain plan result is stored.

System Tables (Oracle)

Select here whether the database profile for Oracle should retrieve database information
from the DBA or ALL system tables.
Note: If choosing DBA make sure the appropriate privileges are granted for the user you are
connecting as.

Export, Import and Print

Introduction

The export feature is used to export data that has been fetched and presented in
DbVisualizer. The export wizard dialog looks different depending on whether a grid , graph
or chart data is going to be exported. The following sections describe the settings that can
be made in each of these contexts. There are major differences between DbVisualizer Free
and Personal when exporting grid data. This document explains the complete functionality
in the Personal edition even though it implicitly covers the export functionality in
DbVisualizer Free.

The import feature is used to import data stored in CSV (Character Separated Values)
format from files.

The printing feature can be used to print grid and graph data to printer or file.

Exporting very large result sets using the standard export feature may fail with memory
problems since all data must first be presented in DbVisualizer. Using the @export client
side command in the SQL Commander solves this problem since the data is exported on the
fly while it is fetched from the database.

Export Grid data

The Export wizard is primarily initiated using the File- >Export main menu choice. This
operation examines the current context and displays the appropriate wizard. The File-
>Export Selection main menu choice is specifically for Grid contexts and is used to export
the current selection instead of all data in the grid. It is only enabled if the current context
is a grid and if there are any selected cells in it. In addition all grids throughout
DbVisualizer offer the right click menu choice for Export Selection. It is a shortcut for the
File- >Export Selection main menu operation.

Settings page

There are a number of options to configure how the data should be exported. The settings
page contain general properties that control how the exported data should be formatted.
All settings in the settings page can be saved to a file for later use in the export wizard or
in the SQL Commander when exporting result sets using the @export editor command.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515
file:///Users/rogge/work/pureit/apps/dbvis/doc/out/gettingStarted/gettingStarted.html#mozTocId581515

Figure: The grid export wizard

Read the sections below for detailed information on each field and what settings that can
be made.

Output Format

Grid data can be exported in the following formats.

Format Description

CSV

The CSV format (Character Separated Values) is used to export the grid of
data to a file in which each column is separated with a character or several. It
is even possible to specify the row delimiter (aka newline sequence of
characters).

5,Hepp,59248
15,Hopp,41993
16,Hupp,44115

The above example use a "," as the column delimiter and a "\n" sequence as
the row delimiter (invisible above).

HTML The data is exported in HTML format using the <TABLE> and associated
tags.

SQL

The SQL format simply creates an SQL INSERT statement for each row in the
grid. It also uses the column names from the grid to define the column list in
the SQL statement.

insert into table1 (Column1, Column2, Column3) values (5,
'Hepp', 59248);
insert into table1 (Column1, Column2, Column3) values (15,
'Hopp', 41993);
insert into table1 (Column1, Column2, Column3) values (16,
'Hupp', 44115);

XML The XML format is handy when importing or using the exported data in an
XML enabled application. The structure of the XML format is:

<ROWSET>
 <ROW>
 <Column1>5</Column1>
 <Column2>Hepp</Column2>
 <Column3>59248</Column3>
 </ROW>
 <ROW>
 <Column1>15</Column1>
 <Column2>Hopp</Column2>
 <Column3>41993</Column3>
 </ROW>
 <ROW>
 <Column1>15</Column1>

 <Column2>Hupp</Column2>
 <Column3>44115</Column3>
 </ROW>
</ROWSET>

Encoding

The encoding choice controls what encoding the data will be exported in. This will also set
the encoding in the HTML and XML headers. The default choice is based on your systems
default encoding.

Data Format

The data format settings defines how the data for each of the data types will be formatted.

Quote Text Data

Defines if text data should appear between quotes or not. Selecting the ANSI choice will
automatically prefix any single quotes with an additional one.

Options

The options section is used to define settings that are specific for the selected output
format.

CSV

Figure: CSV specific export options

HTML

Figure: HTML specific export options

SQL

Figure: SQL specific export options

XML

Figure: XML specific export options

Settings

The Settings button lists when pressed a menu with options to save and load settings to

and from a file.

• Use Default Settings
Press this button to initiate the settings with default values. Some of the settings will
be fetched from the general tool properties dialog.

• Load
Press this button to open the file choose in which you can select a settings file

• Save As
Use this choice to save the settings to a file

• Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted
into the SQL Commander to define the settings for @export editor commands.

Data page

The columns list is used to control what columns will be exported and the format of their
data. The list is exactly the same as the column headers in the original grid i.e. if a column
was manually removed from the grid before launching export then it will not appear in this
list.

Figure: The grid export wizard

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/sqlCommander/sqlCommander.html#mozTocId448386

The Table Rows fields tells how many rows that are available and the choice to optionally
specify the number of rows to export. This setting along with the Add Row button is
especially useful if using the test data generation feature described in the next section.

Here follows information about the columns in the list.

Field Description

Export Defines whether the column will be exported or not. Uncheck it to ignore the
column in the exported output.

Name The name of the column. This is only used if exporting in HTML, XML or SQL
format. Column headers are optional in the CSV output format.

Type
The internal DbVisualizer type for the column. This type is used to determine
if the column is a text column (i.e if the data will be surrounded in quotes or
not).

Text Specifies if the column is considered to be a text column (this is determined
based on the type) and so if the value will be enclosed in quotes.

Value
The default "$$value$$" variable will simply be substituted by the actual
value in the exported output. You can enter additional static text in the value
field. This is also the place where any test data generators are defined.

Generate Test Data

The test data generator is useful when you need to add random column data to the
exported output. The actual value of the data that is going to be in the exported output is
referenced by the $$value$$ variable in the Value field. This variable is simply replaced by
the real value during the export process. Additional static data can be added before and
after the $$value$$ field and will be exported as entered. The value field is also the place
to setup any test data generators. While in the editing mode of the value field there is a
right click menu with the supported generator functions.

Figure: Right click menu with the test data generator functions

Function Name Function Call Example

Generate random
number

$$var||randomnumber(1,
2147483647)$$

Generates a random number
between 1 and 2147483647

Generate random
string of random
size

$$var||randomtext(1, 10)$$
Generates random text with a
length between 1 an 10
characters

Generate random
value from a list of
values

$$var||randomenum(v1, v2,
v3, v4, v5)$$

Picks one of the listed values
in random order

Generate sequential
number

$$var||number(1,
2147483647, 1)$$

Generates a sequential
number starting from 1. The
generator re- starts at 1 when
2147483647 is reached. The
number is increased with 1
every time a new value is

generated.

Test data generator example

Here follows an example that utilizes the test data generators. Consider this data:

Figure: Sample of grid data

The Data page will look like this based on exporting the previous grid.

Figure: The export window

The JOB column should not appear in the output and the new JOB_FUNCTION should
contain abbreviated job functions. To accomplish this we simply uncheck the Export field
for JOB entry. The Value for the JOB_FUNCTION is set to use the Generate random value
from a list of values function.

Figure: Customized columns list with a generator function

Previewing the data (or exporting it) in CSV format results in this:

EMPNO, ENAME, JOB_FUNCTION, MGR, HIREDATE, SAL, COMM, DEPTNO
7369, SMITH, adm, 7902, 2005-01-24 12:11:08, 800, (null), 20
7499, ALLEN, adm, 7698, 2005-01-24 12:11:08, 1600, 300, 30
7521, WARD, eng, 7698, 2005-01-24 12:11:08, 1250, 500, 30
7566, JONES, adm, 7839, 2005-01-24 12:11:08, 2975, (null), 20
7654, MARTIN, eng, 7698, 2005-01-24 12:11:08, 1250, 1400, 30
7698, BLAKE, eng, 7839, 2005-01-24 12:11:08, 2850, (null), 30
7782, CLARK, eng, 7839, 2005-01-24 12:11:08, 2450, (null), 10
7788, SCOTT, eng, 7566, 2005-01-24 12:11:08, 3000, (null), 20
7839, KING, eng, (null), 2005-01-24 12:11:08, 5000, (null), 10
7844, TURNER, eng, 7698, 2005-01-24 12:11:08, 1500, 0, 30
7876, ADAMS, fin, 7788, 2005-01-24 12:11:08, 1100, (null), 20
7900, JAMES, eng, 7698, 2005-01-24 12:11:08, 950, (null), 30
7902, FORD, eng, 7566, 2005-01-24 12:11:08, 3000, (null), 20
7934, MILLER, fin, 7782, 2005-01-24 12:11:08, 1300, (null), 10
7939, MILLER, fin, 7782, 2005-01-24 12:11:08, 1300, (null), 10
...

Preview

The preview page shows the first 100 rows of the data as it will appear when it is finally
exported. This is useful to verify the data before performing the export process. If the
previewed data is not what you expected then just use the back button to modify the
settings.

Output Destination

The destination field specifies the target destination for the exported data.

Figure: The output destination and final page for grid export

Destination Description

File This option outputs the data to a named file.

SQL Commander
This destination will transfers the export data to the SQL
Commander editor. It is primarily useful when exporting the SQL
output format.

Clipboard

Export to the (system) clipboard is convenient if you want to use
the exported data in another application without the extra step of
exporting to file first. Data can even be pasted into a spreadsheet
application such as Excel or StarOffice and the cells in the grid will
appear as cells in the spreadsheet. Read more about the CSV
format in the Format section.

Export Text data

The wizard when exporting result sets in Text format is very simple as it is only possible to
specify where the exported output should go.

file:///Users/rogge/work/pureit/apps/dbvis/doc/out/master/exportPrint.html#mozTocId495435

Figure: Export window for text format result sets

Export Graph data

Exporting references graphs will export the graph in the same zoom level as it appears on
the screen. The export window when exporting graphs looks like this:

Figure: Export window for graphs

The export window is quite limited as compared to when exporting grids. The graph can
only be exported to a File in the JPEG or GIF formats.

Export of graphs cannot be previewed or exported to any other destination then file.

Export Chart data

Exporting charts adds the capabilities to set the size and orientation of the exported file.

Figure: Export window for charts

A chart can only be exported to a File in the JPEG and PNG formats. The optional Layout
settings are used to control the size of the image. The initial width and height are the same
as the size of the chart as it appear on the screen. The Size list when clicked shows a list of
well known paper formats. The Width and Height will be changed to match the selected
size. Setting the width and height or selecting a pre- defined size will scale the exported
image accordingly.

Export of charts cannot be previewed or be exported to any other destination then file.

Import Table Data

The import table data feature is used to import files whose data is organized as columns
with separator characters between them. The destination for the imported data can be to a
database table or a grid in DbVisualizer. The grid option is convenient for smaller files as
the grid functionality then can be used to do various things with the data. An example is
that a CSV file rather easily can be converted into an XML file or a HTML document by using
the data import feature to grid and then use the export functionality in the grid to output
the grid in the desired format.

The import wizard is launched via the right click menu for table objects or via the
Actions menu.

Figure: Import Table Data action in the right click menu for table objects

Note 1: The first row in the source file is used to find out the actual columns.
Note 2: The import wizard can not be used to import binary data.

Source File

In the first wizard page select the source file to import.

Figure: The Source File import wizard page

Settings

In the settings page you specify options how the data in the file is organized. The Data

section at the bottom of the page lists a preview of the parsed data in the Grid tab while
the File tab shows the original source file. If a row in the Grid tab is red then it indicates
that the row will be ignored during the import process. This happens if setting any of the
Options that will result in rows not being qualified.

In the Delimiters section define what character that separates the columns in the file. If
enabling the Auto Detect choice then DbVisualizer will try the following characters:

• comma ","
• tab "TAB"
• semicolon ";"
• percent "%"

Use the Options section to further define how the data should be read.

Figure: The Settings wizard page

The following shows the preview grid with some rows red. The reason is that the Skip First
Row(s) and Skip Rows Starting With is set i.e the first two rows and the rows starting with
103 will not be imported.

Figure: The Settings wizard page

Data Formats

The Data Formats page is used to define formats for some data types. The first row in the
preview grid here contains a drop down box which lists the actual data types. Just select the
appropriate type for the column.

Figure: The Settings wizard page

The following is displayed when selecting the drop down box in the preview grid.

Figure: The data type drop down

Import Destination

The import destination page initially shows two options, Grid and Database Table . The
Grid choice is used to import the data into a grid that will be presented in its own window
in DbVisualizer. When the Database Table choice is selected it will show information about
the table in which the data will be imported. The Map Table Columns with File Columns grid
will show what columns are in the selected database table and a column with the columns
in the source file. You can here select what fields in the source file should be imported into
what columns.

DbVisualizer automatically assigns the columns in the source file with the first columns in
the target table. You can then manually assign them. Choose the empty choice in the
columns drop down to ignore the column during import.

Figure: The data type drop down

Import process

The last wizard page is used to start and monitor the import process. Here you can select
whether all rows in the source file should be imported or only a portion. Errors that occur
during the import process will be presented in the log.

Figure: The import process page

Print

The printing support in DbVisualizer supports printing of Grids and Graphs. The print
dialog looks somewhat different depending on what is printed.

Note: Printing of charts is currently not supported. The workaround is simply to export the
chart and then use your favorite printing tool to get it on paper (a standard web browser is
sufficient).

Grid

Printing a grid in DbVisualizer causes the visual grid to be output on paper. This includes
the table headers, sort and primary key indicator, etc. It can be output as a screen shot that
spans several pages depending on the number of rows and columns that are printed. The
other solution to printing grids is to export to HTML and then use a web browser to print it.
The choice of which is more attractive than the other is up to you to decide.

Figure: Standard print dialog

The content and layout of the print dialog is platform specific. The above screen shot is
from Linux/RedHat.

Graph

The graph printing setup dialog adds a step before the standard printing dialog is
displayed.

Figure: Print options when printing graphs

It is possible to specify the number of rows (pages) and columns (pages) that the complete
image will be divided into. It is also possible to select whether the view as it appears on the
screen will be printed or the complete graph.

Print Preview

The File- >Print Preview feature is used to preview a grid or graph before print.

Grid Graph

Figure: Grid and graph print previews

Plug- in Framework

Introduction

Note: The plug- in framework is supported only by the DbVisualizer Personal edition.

This document explains the database profile framework which is the base for how
DbVisualizer presents information in the Database Objects tree and in the Object View .
In addition it is also used to define object actions such as drop, rename, compile, create,
comment, alter, etc.

What features in DbVisualizer relies on the database
profile?

One of the most important and central features in DbVisualizer is the database objects tree
used to navigate databases and the object view showing details about specific objects. The
general problem exploring any database is that they are all different with respect to the
information describing what's in the database (also called system tables or database
meta data). This briefly means that it's rather complex for a product such as DbVisualizer
since each database must be handled specifically. All existing database products do in
addition support different object types apart from the most common ones such as table,
view, index, etc.

The database profile framework is used to simplify the process of defining what
information DbVisualizer will display and operate on for a databases. Technically is a
database profile an XML document keeping all of the logic, structure and actions easily
mapped to the visual components in DbVisualizer. Another great benefit separating the
database specific logic from the implementation of DbVisualizer is that anyone with some
degree of domain knowledge may create a database profile. All that is needed is a text
editor (preferably with XML support) and some ideas of what should be the final result.

A great source for inspiration (except for this document) is all the existing database profiles
that comes with DbVisualizer. All database profiles are (and must be) stored in the DBVIS-
HOME/resources/profiles directory.

The following figure illustrates what features in DbVisualizer that is controlled by the
database profile.

Figure: What the database profile control in DbVisualizer

The red box at the left shows the database objects tree . This tree is used to navigate the
objects in the database. Selecting an object in the tree will show the object view (blue box)
specifically for the selected object type. An object view may have several data views
(green) showing object information. DbVisualizer show these as labeled tabs . The green
box shows in this screen shot the content of the data view labeled Columns . The type of
viewer that is presenting the data in the screenshot is the grid viewer. Read more about all
data viewers in the Viewers section.

Common for both the database objects tree and the object view are the SQL commands
that are used to fetch the information from the database. The associated SQL is executed
by DbVisualizer whenever a node in the tree is expanded (to expose any child objects) or
when a node is selected to fill the object data views.

Right clicking the mouse on an object in the tree or clicking the Actionsbutton in the object
view will show a menu will all valid actions for the selected object. These are defined per
database profile and object type. Read more about the capabilities of actions in

the Definition of user actions section.

How does DbVisualizer know what database profile to use?

DbVisualizer automatically load the appropriate database profile (XML file) based on the
following:

1. The Database Type for the database connection is matched with the information
in the DBVIS- HOME/resources/database- mappings.xml file to find out if there is
a database profile available. If it finds one then it is used.

2. If there is no matching profile then the generic profile will be used. (This is very
basic profile and shows only rudimentary information about the objects in the
database). This is the profile used in the DbVisualizer Free edition.

A specific database profile can be manually set for a database connection. This is defined in
the database connection properties. Manually choosing a profile requires that the profile
supports the actual database. If it doesn't then various errors will be reported once the
database objects tree is explored. (Whenever the profile is changed you must re- connect
the actual database connection).

The name of the loaded profile is listed in the Connection tab status bar when the
connection has been established. Click the profile link and the Database Profile list will be
displayed.

Figure: The status bar in the Connection tab when connected

XML structure

The mapping from the visual components in the user interface described earlier and the
element definitions in the XML file is briefly as follows:

• The database objects tree (green box) is described by the ObjectsTreeDef root
element. (The Database Connections node is mandatory and its appearance cannot be
controlled by the profile).

• The object views (green and blue boxes) are described by the ObjectsViewDef root
element.

• The commands used to execute the SQL in order to get the information
for ObjectsTreeDef , ObjectsViewDef and optionally ObjectsActionDef definitions
are defined by the Commands root element.

• All Actions for an object is defined in the ObjectsActionDef root element. (Actions
are optional).

The XML for a database profile is quite simple but there are a few things that need to be
highlighted. All database connections loads a database profile from an XML file. If there is
no matching database profile then the generic profile is used. This profile uses the

standard JDBC meta data calls in order to obtain information about the structure and
objects in the database. The generic profile is not one XML file as database specific profiles
but instead four files:

• generic- commands.xml
• generic- actions.xml
• generic- tree.xml
• generic- view.xml

All these files a referred in the generic.xml file as include statements i.e. each of the above
files will be included in the generic.xml file when loaded. The reason for this is that these
files can be included and extended in a specialized profile. See later for more information.

The XML structure used to represent the database profile is organized as follows (click on
the link to read more about each specific section):

• Commands
Defines the SQLs for the ObjectsTreeDef , ObjectsViewDef and
optionally ObjectsActionDef .

• ObjectsActionDef (optional)
Defines actions for object types.

• ObjectsTreeDef
Defines the structure and what objects should be visible in the objects tree.

• ObjectsViewDef
Defines the object views for a specific object type.

XML skeleton

The following is a minimal XML file showing its structure.

<?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd" [
 <!ENTITY generic-commands SYSTEM "generic-commands.xml">
 <!ENTITY generic-view SYSTEM "generic-view.xml">
]>

<DatabaseProfile desc="Profile for Sybase ASE"
 version="$Revision: 1.20 $"
 date="$Date: 2006/09/29 12:30:10 $"
 minver="5.0">

<!-- === -->
<!-- Definition of the commands -->
<!-- === -->

 <Commands>
 &generic-commands;
 ...
 </Commands>

<!-- === -->

<!-- Definition of the object actions that are used by the tree -->
<!-- === -->

 <ObjectsActionDef>
 ...
 </ObjectsActionDef>

<!-- === -->
<!-- Definition of the database objects tree structure -->
<!-- === -->

 <ObjectsTreeDef id="sybase-ase">
 ...
 </ObjectsTreeDef>

<!-- === -->
<!-- Definition of the database objects views -->
<!-- === -->

 <!-- Include the generic-view -->
 &generic-view;

 <ObjectsViewDef id="sybase-ase" extends="generic">
 ...
 </ObjectsViewDef>

</DatabaseProfile>

Note: The name of the XML file (sybase- ase) and the values for the name attribute for the
ObjectsTreeDef and ObjectsViewDef elements must be the same.

The first rows in the XML defines external dependencies and their URI's. The DOCTYPE
identifier defines the DTD that is used to verify the XML with. The ENTITY identifiers lists
URI's for external references. In this case they identify the generic- commands.xml and
generic- view.xml files. They can then be referred in the XML as &generic- commands;
and &generic- view; and simply means that the related XML files will be included in the
final document once the profile is loaded.

The root of the database profile is the DatabaseProfile element. Continue to the next
sections for information about the elements forming the database profile.

Tip: If you are using an XML editor to edit the profile then it is very convenient loading the
DTD in the editor as you then will get color and error highlighting.

<DatabaseProfile>

The DatabaseProfile is the root element in the XML file. It is required and have the
following attributes.

<DatabaseProfile desc="Profile for Sybase ASE"

 version="$Revision: 1.20 $"
 date="$Date: 2006/09/29 12:30:10
$"
 minver="5.0">

 ...

</DatabaseProfile>

The attributes specified for the DatabaseProfile element will appear in the Database
Profile list when selecting the connection properties for a database connection:

Figure: The list of available database profiles

<Commands> - The SQLs used to interact with the
database

This element keeps all Command elements with SQL sub element. A Command element is
identified by a unique id attribute which is then referred in ObjectsTreeDef ,
ObjectsViewDef and (optionallty) ObjectsActionDef definitions.

<Commands>
 &generic-commands;

 <Command>
 ...
 </Command>

</Commands>

The first statement in the <Commands> element is:

 &generic-commands;

This means that the generic- commands entity defined at the top of the XML file will be
included in the XML i.e. all its definitions will be accessible from the ObjectsTreeDef ,

ObjectsViewDef and ObjectsActionDef . If you don't plan to use any of the generic
command then simply ignore this include statement.

<Command>

The Command element identifies the SQL associated with the command. The SQL should in
most cases return a result set with 0 or several rows. (The exception is actions which not
necessarily need to return a result set). The following command queries for login
information in Sybase ASE.

<Command id="sybase-ase.getLogins">
 <SQL>
 <![CDATA[
select name, suid, dbname, fullname, language, totcpu,
totio, pwdate from master.dbo.syslogins
]]>
 </SQL>
</Command>

The id for this command is sybase- ase.getLogins . The reason for prefixing the id with the
name of the profile is for maintainability. Since the generic- commands.xml file is included
in most profiles it is easier to set unique prefixes for all commands so that they are not
mixed with the commands in the generic- commands.xml file.

Result set

The result set for the previous query look as follows:

name suid dbname fullname language totcpu totio pwdate

sa 1 master (null) (null) 0 0 2005- 02- 24 23:59:14

probe 2 subsystemdb (null) (null) 0 0 2005- 02- 25 00:01:15

The way DbVisualizer handles the result set depends on whether the command is executed
as a request in the database objects tree (ObjectsTreeDef) or in the object view
(ObjectsViewDef). If executed in the database objects tree then each row in the result set
will be represented by a new node in the tree. If executed in the object view then it's the
actual viewer component that decides how the result will be presented. For more
information how a result set is used in the ObjectsTreeDef or ObjectsViewDef then read
the specific sections.

Another important difference between the database objects tree and object view is that the
tree is a hierarchical structure of objects while object view presents information about a
specific object. An object that is inserted in the database objects tree is a 1..1 mapping with
a row from the actual result set. The end user will see these objects (nodes) by some
descriptive label as defined in the ObjectsTreeDef . However, all data for the row from the

original result set is stored with the object in the tree and may be used in the label,
variables, conditions, etc. This is not the case in the ObjectViewDef .

The following example put some light on this. Consider the previous result set and that it's
used to create objects in the database objects tree. The end user will see the following in
DbVisualizer. The visible name for each row is the name column in the result set.

Figure: Sample of the Logins node having two child nodes

Each of the sa and probe nodes have all their respective data from the result set associated
with the nodes. The data is referenced as commandId.columnName i.e. sybase-
ase.getLogins.name , sybase- ase.getLogins.dbname , etc. All associated data for the sa
node in the example are listed next:

sybase-ase.getLogins.name = sa
sybase-ase.getLogins.suid = 1
sybase-ase.getLogins.dbname = master
sybase-ase.getLogins.fullname = (null)
sybase-ase.getLogins.language = (null)
sybase-ase.getLogins.totcpu = 0
sybase-ase.getLogins.totio = 0
sybase-ase.getLogins.pwdate = 2005-02-24 23:59:14

The DataNode definition presenting sa and probe in the previous screenshot example is as
follows:

label="${sybase-
ase.getLogins.name}"

<Input> - Setting command input

There are two types of Commands, with or without dynamic input. The difference is that
dynamic input Commands accepts input data that is typically used to form the WHERE
clause in SELECT SQLs. The previous example illustrates a static SQL (without dynamic
data).

To allow for dynamic input just add variables at the positions in the statement that should
get dynamic values. The following is an extension to the previous example allowing for
dynamic input.

<Command id="sybase-ase.getLogins">
 <SQL>
 <![CDATA[
select name, suid, dbname, fullname, language, totcpu,
totio, pwdate from master.dbo.syslogins
where name = '${name}' and suid = '${suid}'

]]>
 </SQL>
</Command>

The example above adds two input variables: ${name} and ${suid}. Values for these
variables should then be supplied wherever the command is referred for execution via the
Input element.

The following is an example from the ObjectsTreeDef and its use of the sybase-
ase.getLogins command:

<GroupNode type="Logins" label="Logins">
 <DataNode type="Login" label="${sybase-ase.getLogins.Name}
isLeaf="true">
 <SetVar name="objectname" value="${sybase-ase.getLogins.Name}">
 <Command idref="sybase-ase.getLogins">
 <Input name="name" value="sa">
 <Input name="suid" value="${sybase-ase.getProcesses.suid}">
 </Command>
 </DataNode>
</GroupNode>

(Note that the Command element refers the command via the idref attribute which will be
matched with the corresponding id for the Command).

There is no magic with this definition since the ${name} variable in the final SQL will be
replaced with string "sa".

The value for the ${suid} definition will in this case get the value of the sybase-
ase.getProcesses.suid when the SQL is executed. So where is this variable defined? As
explained in the Result Set section we introduced how all the data for a row in the result set
is associated with the objects in the database objects tree. In addition it is possible to use
all the data kept by the current object and all its parent objects (as presented in the objects
tree) in the input to commands. So the variable ${sybase- ase.getProcesses.suid} means
that DbVisualizer will first look if the variable is found in the current object. If it doesn't
exist it will continue looking through the parent objects until it reaches the root which is
the Connections object in the objects tree. If the variable is not found it will be set to the
string representation for null which is (null) by default. Whenever a matching variable is
found DbVisualizer will use the value of it and stop searching.

<Output> - Redefine command output

As mentioned earlier is a specific column value in a result set row referenced by the name
of the column prefixed by the command id. Sometimes this is not desirable and the Output
definition can be used to change this behavior. The following identifies a column in the
result set by its index number starting from 1 and then force its name to be set to the value
of the id attribute.

<Output>

 <Column id="sybase-ase.getLogins.Name" index="1">
 <Column id="sybase-ase.getLogins.suid" index="2">
</Output>

Another option using the Output element is to alter the structure of columns in the result
set by either adding, renaming or removing columns.

<Output>
 <Column modelaction="add" index="THIS_IS_A_NEW_COLUMN" value="Rattle
and Hum">
 <Column modelaction="rename" index="ADDR" name="ADDRESS">
 <Column modelaction="rename" index="2" name="PHONE">
 <Column modelaction="drop" index="MOBILE_PHONE">
 <Column modelaction="drop" index="4">
</Output>

(The rename and drop actions accepts either the name of the column or index number
starting from left at index 1).

• The add operation is used to add a new column to all rows. The value attribute
accepts variables using the ${...} syntax.

• The rename operation simply renames a column.
• The drop operation drops the specified column.

The rename operation is primarily used when building a custom command that is
supposed to be used by a viewer that requires pre- defined input by specific column names.
Read more in the ObjectsViewDef section.

<ObjectsTreeDef> - Definition of the Database Objects
Tree

The ObjectsTreeDef element section controls how the database objects tree will be
presented and what commands should be executed to form its content (nodes). The
mapping between the graphical representation in DbVisualizer and its ObejctsTreeDef
XML is as straight forward it can be:

<ObjectsTreeDef id="sybase-ase">
 <GroupNode type="Databases">
 <DataNode type="Catalog">
 <GroupNode type="Tables">
 <DataNode type="Table"/>
 </GroupNode>
 <GroupNode type="SystemTables">
 <DataNode type="SystemTable"/>
 </GroupNode>
 <GroupNode type="Views">
 <DataNode type="View"/>
 </GroupNode>

 <GroupNode type="Users"/>
 <GroupNode type="Groups">
 <DataNode type="Group"/>
 </GroupNode>
 <GroupNode type="Types"/>
 <GroupNode type="Triggers">
 <DataNode type="Trigger"/>
 </GroupNode>
 <GroupNode type="Procedures">
 <DataNode type="Procedure"/>
 </GroupNode>
 </DataNode>
 </GroupNode>

 <GroupNode type="DBA">
 <GroupNode type="ServerInfo"/>
 <GroupNode type="Logins">
 <DataNode type="Login"/>
 </GroupNode>
 <GroupNode type="Devices">
 <DataNode type="Device"/>
 </GroupNode>
 <GroupNode type="RemoteServers"/>
 <GroupNode type="Processes"/>
 <GroupNode type="ServerRoles">
 <DataNode type="ServerRole"/>
 </GroupNode>
 <GroupNode type="Transactions"/>
 <GroupNode type="Locks"/>
 </GroupNode>
</ObjectsTreeDef>

Figure: The visual database objects tree and its XML definition

The screenshot shows all nodes representing the GroupNode definitions in the
ObjectsTreeDef . One exception is the Logins object that has been expanded (sa and
probe child objects) to illustrate how DataNode objects look. The ObjectsTreeDef in the
example has been simplified to show only the type attribute. (The label of the nodes as
they appear in the visual tree is not listed in the ObjectsTreeDef example). The type
attribute is primarily used internally in the profile as an identifier between the
ObjectsTreeDef and the ObjectsViewDef . The type is also visible in the DbVisualizer GUI
when either the tool tip for a tree node is displayed and in the object view header. The type
is also used to identify what icon will be used to represent the object type.

There are no limitation on the number of levels in the ObjectsTreeDef . A good rule is
however to keep it simple, clean and intuitive.

The DataNode definitions are the most important objects in the ObjectTreeDef . These
also defines what object tree filters are available for each object type, if overlay'ed icons
should appear (and the criteria), etc. Read the next sections for details.

<GroupNode> - Static objects used for grouping

The GroupNode element is used to represent a static object in the tree. These don't have
any associated SQL and appear only once where they are defined. A GroupNode is primarily
used for structural and grouping purposes. The GroupNode element have the following
attributes.

<GroupNode type="SystemTables" label="System Tables" isLeaf="false">
 ...
</GroupNode>

The isLeaf attribute is optional and controls whether the GroupNode may have any child
objects or not. It can always be set to true but the effect in the visual database objects tree
is then that the expand icon to the left of the group node icon will always be displayed even
though it can never have any child objects. The default setting for isLeaf is false.

Note: If isLeaf is set to false and there are child Group and/or Data - nodes then these will
not appear. The result may be some frustration during the design...

<DataNode> - Dynamic objects created via SQL

The DataNode element feeds the tree with nodes produced by a Command . The example
in the Command section querying for all logins in Sybase ASE look as follow in the
ObjectsTreeDef :

<GroupNode type="Logins" label="Logins">
 <DataNode type="Login" label="${sybase-ase.getLogins.Name}"
isLeaf="true">
 <Command idref="sybase-ase.getLogins"/>
 </DataNode>
</GroupNode>

First there is a GroupNode element with the purpose to group all child objects in a Logins
node.
The DataNode have in this example the same attributes as the GroupNode , the type is
however "Login" instead of "Logins" as for the GroupNode . This difference is important
once the user click on either of the objects since the the Object View will show the
appropriate views based on object type. The DataNode definition can be seen as a
template as the associated command will fetch rows of data from the database and
DbVisualizer will use the DataNode definition to create one node per row in the result set.

The label attribute for the data node is somewhat different as it introduces the use of a
variable (or several). The real value for the label will in this example be the value in the
Name column produced by the sybase- ase.getLogins command as you can see in
the Command definition (variable names are automatically prefixed with the command id).

The Command element defines by the idref attribute what command should be executed.
The command in this case and in the Result set section produced a result set with 2 rows
and 8 columns. The result will be two nodes each with the label of the Name column in the

result set.

Figure: Sample of the Logins node having two child nodes

The label can be changed by setting it to any other valid variable or a composition of
several variables. (It's even possible to specify static text in the label):

label="${sybase-ase.getLogins.Name} (${sybase-ase.getLogins.dbname})"

Will result in following being displayed:

sa (system)
probe (subsystemdb)

The complete set of attributes for the DataNode element is:

 type="value" - The type of node (required)
 actiontype="value" - Object type used for object
actions (optional)
 label="value" - The visual label (required)
 isLeaf="true/false" - Specifies if the node can have
child objects (default true)
 sort="col1,col2" - A comma separated list of
names/variables used for sorting
drop-label-not-equal="value" - Do not add the node if the
label is not equal to this value
 or variable
 warnstate="condition" - If condition is true then show
an overlay icon for the node
 errorstate="condition" - If condition is true then show
an overlay icon for the node
stop-label-hot-equal="value" - The node will be a leaf if
label don't match this value
 or variable
 is-empty-output="continue/stop" - If result set is empty then use
this to control whether child
 GroupNode/DataNodes should be
added anyway or ignored

The Command definition in this example is basic since it doesn't use any variables in the
SQL. Continue reading the next section for details about passing input data to commands.

<Command>

Commands are referenced in the DataNode definition by the idref attribute. Sometimes its
is required that a specific DataNode must supply input to a command. This is done by
adding Input elements as children to the Command .

<DataNode type="Login" label="${sybase-ase.getLogins.Name}"
isLeaf="true">
 <Command idref="sybase-ase.getLogins">
 <Input name="name" value="sa">
 <Input name="suid" value="${sybase-ase.getProcesses.suid}">
 </Command>
</DataNode>

The value for variable(s) specified in the Input elements will be searched based on the same
strategy outlined in the Result set section.

<Filter>

The Filter element is specific for Command elements that appear in the ObjectsTreeDef
section. A filter define what data for a DataNode that are allowed to use in filters. This
filter functionality is commonly refered as the Database Objects Tree Filtering in
DbVisualizer. The filtering setup appears below the database objects tree and the following
example shows that filtering may be specified for these object types:

• Catalog
• Table
• System Table
• View

For each of the Filter definitions are one or several columns that can be used to filter on.

Figure: Screen shot showing the filter pane

<DataNode type="Views" label="${sybase-ase.getViews.Name}"
isLeaf="true">
 <Command idref="sybase-ase.getViews">
 <Filter type="View" name="View Table">
 <Column index="TABLE_NAME" name="Name"/>
 </Filter>
 </Command>
</DataNode>

The previous filter definition specifies a filter for the View object type. The name
specifies the name for the filter as it will appear in the object type drop down box.
The Column element then define the index which should be either a column name in the
result set or an index number representing the actual column. The name attribute specifies
the name of the column as it will appear in the filter pane.

Several Column elements may be specified for a Filter element.

<SetVar>

The SetVar element is needed in the ObjectsTreeDef for DataNode 's. DbVisualizer relies
on some object types as these have special meaning. Two examples are the Catalog and
Schema object types. For DataNode objects that you now will represent these types there
must a SetVar identifying them. The name attribute should then be set to "catalog" and
"schema".

<DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}"
isLeaf="false">
 <SetVar name="catalog" value="${getCatalogs.TABLE_CAT}">
</DataNode>

All non Catalog or Schema DataNode 's must use SetVar to set the "objectname" variable:

<DataNode type="Views" label="${sybase-ase.getViews.Name}"
isLeaf="true">
 <SetVar name="objectname" value="${sybase-ase.getViews.Name}">
 <SetVar name="rowcount" value="true/false">
</DataNode>

The objectname variable is used to identify the object so that it can be uniformly
referenced in object views and object actions. Its value should be the identifier for the
object as it is identified in the database.

The rowcount setting is optional and control whether the object supports getting row
count via the select count(*) SQL statement. This setting is also used to identify if the
object is allowed for use in the Query Builder .

<ObjectsViewDef> - Definition of the Object Views

The ObjectsViewDef element defines all views for the object types in the objects tree.
These views are displayed in the Object View for the selected object. What views should
appear when selecting a node in the tree is based on the object type for the tree node and
the corresponding object view definition.

When an object is selected in the tree (sa in the screenshot below) its complete information
is passed to the object view handler (right in the sample). This handler determines based on
the object type what object view will present the information. When the object view is found
all data views are created as tabs in the user interface. The selected object and its
information is passed to each of the data views for processing and presentation. The
following shows how the Object View look in DbVisualizer and its
accompanying ObjectView definitions.

<ObjectView
type="Logins">
 <DataView
type="Logins"
label="Logins"

viewer="grid">
 <Command
idref="sybase-
ase.getLogins"/>
 </DataView>
</ObjectView>

<ObjectView
type="Login">
 <DataView type="Info"
label="Info"

 viewer="node-form"/>
 <DataView
type="Databases"
label="Databases"

viewer="grid">
 <Command
idref="sybase-
ase.getLoginDatabases"/
>
 </DataView>
 <DataView
type="Roles"
label="Roles"

viewer="grid">
 <Command
idref="sybase-
ase.getLoginRoles"/>
 </DataView>
</ObjectView>

Figure: The visual database objects tree, object view and the XML definition

The screenshot shows both the Logins node and its child nodes, sa and probe . What is not
obvious in the screenshot is the object types for these objects. The Logins node is of type
Logins while the sub nodes are Login types.

The ObjectView XML definitions shows the views for two types, Logins and Login. Clicking
on the node labeled Logins in the tree will show the object view for the <ObjectView
type="Logins"> definition while clicking on the node labeled sa or probe will show the
object view for the <ObjectView type="Login"> .

The example shows sa being selected. Its DataView definitions are (by label):

• Info
• Databases
• Roles

These views are presented in DbVisualizer as tabs. The label of each tab is the label defined
in the DataView and the icons are defined by the respective object type.

The ObjectsViewDef root element have the following attributes

<!-- Include the generic-view -->
&generic-view;

<ObjectsViewDef id="Views" extends="generic" >
 ...
</ObjectsViewDef>

The first statement for the ObjectsViewDef elements is:

 &generic-view;

This simply means that the generic- view entity defined at the top of the XML file will be
included in the XML i.e. all its definitions will be accessible as is. An example is
the ObjectView definition in the generic- view.xml file for the Table object type. It contains
a lot of DataView elements that identifies all viewers for the Table . If you now want to use
the generic Table DataView 's but add a new Abbreviations data view then simply extend
the generic Table DataView . This is briefly done by adding for example a
extends="generic" attribute in the ObjectsViewDef element. Then by using the exact
same object type in the extended ObjectView you will get this behavior. Read more about
extending ObjectView 's in the Extending ObjectView section.

<ObjectView>

The ObjectView element is identified by an object type and groups all DataView elements
that appear when the object type is selected in the database objects tree. Here follows
the ObjectView definition for the Login object type.

<ObjectView type="Login">
 ...
</ObjectView>

This element is simple as its only attribute is the type attribute. The type is used when a
node is clicked in the database objects tree to map the object of the type clicked and
its ObjectView .

<DataView>

The DataView element is as important as the DataNode is in the ObjectsTreeDef . It
defines how the viewer should be labeled in DbVisualizer, what viewer (presentation form) it

should use, commands and other things. The following is the DataView definitions for the
Login object type. (The ObjectView element is part of the sample just for clarification).

<ObjectView type="Login">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Databases" label="Databases" viewer="grid">
 <Command idref="sybase-ase.getLoginDatabases"/>
 </DataView>
 <DataView type="Roles" label="Roles" viewer="grid">
 <Command idref="sybase-ase.getLoginRoles"/>
 </DataView>
</ObjectView>

This definition will be presented in DbVisualizer as described in the introduction of the
ObjectsViewDef section. These three data view elements have the viewer attribute. It
identifies how the data in the view will be presented. See next section for a list of viewers.

Viewers

The viewer attribute for a DataView specifies how the data for the view should be
presented. The following sections walk through the supported viewers.

The following sample illustrates the viewer attribute.

<ObjectView type="Login">
 <DataView type="Info" label="Info" viewer="node-form"/>
</ObjectView>

DataView definitions may be nested and the viewers are then presented with the nested
DataView being presented in the lower part of the screen.

grid

The grid viewer presents a result set in a grid with standard grid features such as search,
copy, fit, export, etc. The result set is presented exactly as it is produced by the Command
and any optional Output processing.

Here is a sample XML for the grid viewer:

<DataView type="Columns" label="Columns" viewer="grid">
 <Command idref="oracle.getColumns">
 <Input name="owner" value="${schema}"/>
 <Input name="table" value="${objectname}"/>
 </Command>
</DataView>

Screenshot of the previous definition.

Figure: The grid viewer

The nesting capability for grid viewers is really powerful as it can be used to create a drill
down view of the data. Consider the scenario with a grid viewer showing all Trigger
objects. Wouldn't it be nice offering the capability to display the trigger source when
selecting a row in the list? This is easily accomplished with the following:

<DataView type="Trigger" label="Triggers" viewer="grid">
 <Command idref="oracle.getTriggers">
 <Input name="owner" value="${schema}"/>
 <Input name="table" value="${objectname}"/>
 </Command>
 <DataView type="Source" label="Source" viewer="text">
 <Input name="dataColumn" value="text"/>
 <Input name="formatSQL" value="true"/>
 <Command idref="oracle.getTriggerSource">
 <Input name="owner" value="${OWNER}"/>
 <Input name="name" value="${TRIGGER_NAME}"/>
 </Command>
 </DataView>
 <DataView type="Info" label="Info" viewer="node-form"/>
</DataView>

• The first DataView definition defines the top grid viewer and the command to get the
result set for it.

• The next DataView is the nested text viewer specifying various input parameter for
the viewer along with the command to get the source for the trigger. The difference

here is that the input parameters for this command reference column names in the
top grid. Since this viewer is nested it will automatically be notified whenever an entry
in the top grid is selected.

• The third nested DataView will be presented as a tab next to the Source viewer and
presents info about the selected trigger.

The following screenshot illustrates the above sample:

Figure: Example use of nested DataViews

Adding custom menu items in the grid

The menuItem parameter specifies entries that will appear in the right click menu in the
grid. The value for the menuItem is the label for the item while the child Input specifies the
SQL command that will be produced for all selected rows when the menu item is selected.
The result of a custom menu item is that the grid viewer will create a statement that it
copies to the SQL Commander, it will never execute the produced SQL in the scope of the
viewer.

The following is an example with two menu items:

• Script: SELECT ALL
• Script: DROP TABLE

The variables in the SQL statement should identify column names in the result set. The user
may select any columns in the visual grid and choose a custom menu item. It is only the
actual rows that are picked from the selection as the columns are pre- defined by the

menuItem declaration. The variables specified in these examples starts with ${schema=...}
and ${object=...}. These defines that the first variable represents a schema variable while
the second defines it to be an object . This is needed for DbVisualizer to determine
whether delimited identifiers should be used and if identifiers should be qualified as
defined in connection properties for the actual database.

<Input name="menuItem" value="Script: SELECT ALL">
 <Input name="command" value="select * from
${schema=OWNER}${object=TABLE_NAME}"/>
</Input>

<Input name="menuItem" value="Script: DROP TABLE">
 <Input name="command" value="drop table
${schema=OWNER}${object=TABLE_NAME}"/>
</Input>

Here is a sample:

Figure: Custom menu items in grid viewer

Note: The result of selecting a menu item defined as a menuItem input parameter is that
the specified command will be copied to the current SQL editor.

Setting initial max column width

Some result sets may contain columns with very wide data. The following parameter sets an
initial maximum column width for all columns in the grid.

<Input name="columnWidth" value="<pixels>"/>

text

The text viewer presents data from one column in a result set in a text browser (read only
editor). This viewer is typically used to present large chunks of data such as source code,
SQL statements, etc. If the result set contains several rows then this viewer will fetch the
data in the actual column for each row and present the combined data in the text viewer.

Here is a sample XML for the text viewer:

<DataView type="Source" label="Source" viewer="text">
 <Input name="dataColumn" value="text"/>
 <Input name="formatSQL" value="true"/>
 <Command idref="oracle.getTriggerSource">
 <Input name="owner" value="${schema}"/>
 <Input name="name" value="${objectname}"/>
 </Command>
</DataView>

Screenshot of the previous definition.

Figure: The text viewer

Specify what column to browse

The text viewer automatically picks the data in first column. This behaviour can be
controlled by using the dataColumn input parameter. Simply specify the name of the
column in the result set or its index (starting at 1 from left).

<Input name="dataColumn" value="<column-name>"/>

Enable SQL formatting of the data

The text viewer includes the SQL Formatting toolbar button which when pressed will
format the content in the viewer. The formatSQL input parameter is used to control
whether formatting should be enabled by default. If formatSQL is not specified no initial
formatting is made.

<Input name="formatSQL" value="<true/false>"/>

form

Presents row(s) from a result set in a form. If several rows are in the result then these are
presented in a list. Selecting one row from the list will present all columns and data for that
row in a form.

Here is a sample XML for the form viewer:

<DataView type="Info" label="Info" viewer="form">
 <Command idref="oracle.getTable">
 <Input name="owner" value="${schema}"/>
 <Input name="table" value="${objectname}"/>
 </Command>
</DataView>

Screenshot of the previous definition.

Figure: The form viewer

node- form

Presents all data associated with the selected object (variables).

Here is a sample XML for the node- form viewer:

<DataView type="Constraint" label="Constraint" viewer="node-form"/>

Screenshot of the previous definition.

Figure: The node- form viewer

table- refs

Shows the references graph for the current object (this must be an object supporting
referential integrity constraints such as a Table),

Here is a sample XML for the table- refs viewer:

<DataView type="References" label="References" viewer="table-refs"/>

Screenshot of the previous definition.

Figure: The table- refs viewer

tables- refs

Shows the references graph for several tables in the result set (the result set must contain
objects supporting referential integrity constraints such as a Table).

Here is a sample XML for the tables- refs viewer:

<DataView type="References" label="References" viewer="tables-refs">
 <Command idref="getTables">
 <Input name="catalog" value="${catalog}"/>
 <Input name="schema" value="${schema}"/>
 <Input name="table" value="${objectname}"/>
 <Input name="type" value="${tableType}"/>
 </Command>
</DataView>

Screenshot of the previous definition.

Figure: The tables- refs viewer

table- data

Shows the data for a table in a grid with editing features.

Note: information presented in the grid is obtained automatically by the viewer via a
traditional SELECT * FROM <schema>.table statement i.e. the object type having this
viewer defined must be able to support getting a result set via this SQL statement.

Here is a sample XML for the table- data viewer:

<DataView type="Data" label="Data" viewer="table-data"/>

Screenshot of the previous definition.

Figure: The table- data viewer

table- rowcount

This viewer shows the row count for a (table) object.

Note: The row count is obtained automatically by the viewer via a traditional SELECT
COUNT(*) FROM <schema>.table statement i.e. the object type having this viewer
defined must be able to support getting a result set via this SQL statement.

Here is a sample XML for the table- rowcount viewer:

<DataView type="RowCount" label="Row Count" viewer="table-rowcount"/>

Screenshot of the previous definition.

Figure: The table- rowcount viewer

<Command>

Please read the Command section earlier as the capabilities here are the same.

<Message>

The Messageelement is very simple as it defines a message that will appear at the top of
the viewer. The Message element is used to explain what is presented in the viewer. The
text in the message may contain common HTML tags such as (bold), <i> (italic),

(line break), etc.

Here is a sample XML using the Message element in a grid viewer:

<ObjectView type="RecycleBin">
 <DataView type="RecycleBin" label="Recycle Bin" viewer="grid">
 <Command idref="oracle.getRecycleBin">
 <Input name="schema" value="${schema}"/>
 <Input name="login_schema" value="${dbvis-
defaultCatalogOrSchema}"/>
 </Command>
 <Message>
 <![CDATA[

<html>
These are the tables currently in the recycle bin for this schema.
Right click on a bin
table in objects tree to restore or permanently purge it.

Note: The recycle bin is always empty if not looking at the bin for
your
login schema (default).
</html>
]]>
 </Message>
 </DataView>
</ObjectView>

Screenshot of the previous definition.

Figure: The appearance of a Message in a viewer

Extending ObjectView

An existing ObjectView definition made in for example the generic- view.xml file can be
extended in a database profile by using a few action attributes for each of the DataView
elements. To accomplish extensions the object type specified in the ObjectView type
attribute must match the type in the parent profile. Now you have the following options:

• Adding a DataView
Simply add the DataView definition and it will be added to the current list of
DataView definitions

• Dropping an existing DataView
Add the <DataView type="xxx" action="drop"> to drop the dataview type named
"xxx"

• Replacing a DataView
Just add the DataView with the exact same type as in the parent DataView. All
the settings of the new DataView will replace the old one

<ObjectsActionDef> - Definition of user actions

The previous sections have clarified how to define what objects should appear in the
objects tree and what views will be displayed when selecting an object in the tree.
The ObjectsActionDef section in the profile defines what operations are available for the
object types defined in the ObjectTreeDef . Object actions are very powerful as they offers
an extensive number of features used to define actions for almost any type of object
operation.

In DbVisualizer is the object type actions menu accessed via the right click menu in the
objects tree or via the Actions button in the object view:

Figure: The Actions menu for the selected object

All of the operations for the selected Table object listed in the previous screenshot are
expressed in the ObjectsActionDef section. The implementation for these actions are
either expressed completely in XML via standard object actions or via specialized action
handlers. (The API for action handlers is not yet documented). The following screenshot
shows the dialog appearing when executing an action via the default action handler:

Figure: The default action handler

The first field in the dialog Database Connection is always present and shows the alias of
the actual database connection. At the bottom there is a Show SQL control that when
enabled will show the final SQL for the action. The bottom right buttons are used to run the
action (the label of the button may be Execute or Script based on the action mode) or
Cancel the action completely.

Variables

Variables are used to reference data for the object for which the action was launched and
data for all its parent objects in the objects tree. Variables are also used to reference input
data specified by the user in the actions dialog. Variables are typically used in the
Command , Confirm , Result and SetVar elements.

Variables are specified in the following format:

${variableName}

Here follows an example for a Rename Table action. It first shows the name of the
database connection (which is always present) along with information about the table being

renamed. The last two input fields should be entered by the user and identify the new name
of the table. The New Database control is a list from which the user should select the
name of the new database. In the second New Table Name field should the new name of
the table be entered.

If the Show SQL control is enabled you will see any edits in the dialog being directly
reflected in the final SQL Preview.

Figure: The default action handler

The complete action definition for the previous Rename Table action follows:

<Action id="mysql-table-rename" label="Rename Table" reload="true"
icon="rename">
 <Input label="Database" style="text" editable="false">
 <Default>${catalog}</Default>
 </Input>

 <Input label="Table" style="text" editable="false">
 <Default>${objectname}</Default>
 </Input>

 <Input label="New Database" name="newCatalog" style="list">
 <Values>
 <Command><SQL><![CDATA[show databases]]></SQL></Command>
 </Values>
 <Default>${catalog}</Default>
 </Input>

 <Input label="New Table Name" name="newTable" style="text"/>

 <Command>
 <SQL>
 <![CDATA[
rename table `${catalog}`.`${objectname}`
to `${newCatalog}`.`${newTable}`
]]>
 </SQL>
 </Command>

 <Confirm>
 <![CDATA[
Confirm rename of ${catalog}.${objectname} to
${newCatalog}.${newTable}?
]]>
 </Confirm>

 <Result>
 <![CDATA[
Table ${catalog}.${objectname} renamed to ${newCatalog}.${newTable}!
]]>
 </Result>
</Action>

First there is the Action element with some attributes specifying the label of the action,
icon and whether the objects tree (and the current object view) in should be reloaded when
the action is executed.

The next block of elements are Input fields defining the data for the action. As you can see
in the sample there is a variable ${catalog} in the Default element for the Database input
and the ${objectname} variable in the Default element for the Table input. The values for
these variables are fetched from the actual object in the objects tree. Briefly are values for
variables retrieved by first checking if the variable is in the scope of the action dialog i.e.
another input field, then the actual object for which the action was launched is checked, if
the variable is not found the action then asks all of the parent objects until it reach the root
object in the tree (Connections node). If a variable is not found its value will be (null) .

In the previous sample XML will the value of ${catalog} be the name of the database in
which the table object is stored. The ${objectname} will present the current name of the
table (these variables are described in the ObjectsTreeDef section).

The New Database input field is a list component and shows a list of databases based on
the result set of the specified SQL command. The Default setting for the database will be
the same as in which the table is currently stored based on the ${catalog} variable.

The New Table Name input field is a simple text field in which the user may enter any text.

Both the New Database and New Table Name fields are editable and should be specified
by the user. This data is then accessible via the variables specified in the name attribute,
i.e. newCatalog and newTable .

The Command element should list the final SQL that will be executed by the action. The
SQL is in this sample combined with static SQL along with variables.

<ActionGroup>

The ActionGroup element is a container and groups ActionGroup , Action and Separator
elements. It is used to define what actions should be present for a particular object type.
It also define in what order the actions will appear in the menu and where any separators
should appear. ActionGroup elements can be nested and will as so appear as sub menu(s).

<ActionGroup type="Table">

The attributes for an ActionGroup are:

• type
this defines what object type the ActionGroup represents. This attribute is valid only
for top level action groups. An example is the object of type Table , the
corresponding ActionGroup will only be displayed when the actual object is a Table .

• label
this attribute is required for nested action groups. This label will be displayed as the
sub menu label for the nested action group. (The label attribute have no effect on top
level action groups).

<Action>

The action element defines the action.

<Action id="oracle-table-drop"
 icon="remove"
 label="Drop Table..."
 reload="true"
 mode="execute"
resultsetaction="ask">

The attributes for an action are:

• id
the id for the action. The recommended syntax for the id is "profileName-
objectType- someGoodActionName "

• icon
specifies an optional icon that will be displayed next to the label in the menu

• label
the label for the action as it will appear in the menu in the action dialog

• reload
specifies if the parent node (in the objects tree) should be reloaded after successful
execution. This is recommended for actions that change the visual appearance of the
object, such as remove, add or name change

• mode attribute can be set to any of these:
• execute

(default) - show the action dialog, process user input and execute the final SQL
within the scope of the action dialog

• script
show the action dialog, process user input and send the final SQL to the SQL
Commander

• script- immediate
will not show the action dialog but instead pass the final SQL directly to the SQL
Commander

• resultsetaction attribute is only valid in combination with mode="execute". It can
be set to any of:

• ask
if the final SQL produced a result set then a query will ask whether the result
set should be displayed in a window or copied as text to the SQL Commander

• show
if the final SQL produced a result set then show it in a window

• script
if the final SQL produced a result set then copy it to the SQL Commander.

• class
used to launch a custom class. The execute attribute is obsolete if class is set

• classargs
optional attribute used to specify arguments to the action hander defined by the class
attribute

<Input>

An Input element specifies the characteristics of a visible field component as it will appear
in the actions dialog. The label attribute is recommended and is presented to the left of
input field. If label is not specified then the input field will occupy the complete width of the
action dialog. All input fields are editable by default and then requires the name attribute.
This should specify the identity of the variable in which the user input will be stored.

A minimal definition of an input field is the following. It will show a read only text field
control labeled Table .

<Input label="Size" editable="false"/>

If changing the input field to be editable we also need to supply the name attribute with
the identifier for the variable name.

<Input label=Size" editable="true" name="theSize"/>

Any input element may contain the tip attribute. It is used to briefly document the purpose
with the input field and is displayed as a tool tip when the user hovers the mouse pointer
over it.

<Input label=Size" editable="true" name="theSize" tip="Please enter

the size of the new xxx"/>

Specifying the default value as a result from an SQL statement is a trivial task:

<Input label=Size" editable="true" name="theSize">
 <Default>
 <Command>
 <SQL>
select size from systables where tablename = '${objectname}'
 </SQL>
 </Command>
 </Default>
</Input>

Since Default here will execute a SQL statement it will automatically pick the value in the
first row's first column and present it as the default. SQL may be specified in the Default
and Values elements (also in Labels element for list and radio styles). An alternative of
embedding the SQL as in the previous example is to refer a command via the standard
idref attribute:

<Input label=Size" editable="true" name="theSize">
 <Default>
 <Command idref="getSize">
 <Input name"objectname" value="${objectname}"/>
 </Command>
 </Default>
</Input>

Instead of having duplicated SQLs in multiple actions consider replacing these with
Command elements referred via the idref attribute.

Referencing commands in actions via the idref attribute is recommended when the same
SQL is used in several actions. Use Input elements to pass parameters to the command.

The following sections presents the supported styles that can be used in the Input
element.

text (single line)

The text style is used to present single line data in a text field.

<Input label="Enter your userid" name="userid" style="text">
 <Default>agneta</Default>
</Input>

• The optional Default element is used to define a default value for the field. Variables
can be used here and Command (SQL) expressions

• A text input is editable by default. To make it read only just specify editable="false"

text- editor (multi line)

A text- editor field is the same as the text style except that it presents a multi line field.

<Input label="Description" name="desc" style="text-editor"
editable="true" args="height=50"/>

• The args="height=50" attribute defines the height (in DLU) for the text- editor. The
deafault height is 30 DLU's.

number

A number style is the same as text except that it only accept number values.

<Input label="Size" name="size" style="number" editable="true"/>

password

A password field is the same as text except that it masks the value as "*** ".
Note that the password in visible in plain text in the SQL Preview.

<Input label="Password" name="pw" style="password" editable="true"/>

list (large number of choices)

The list style displays a list of choices in a drop down component. The list can be editable
meaning that the field showing the selection may be editable by the user. Here is a sample
XML for the list style.

<Input label="Select index type" name="type" style="list">
 <Values>Pizza|Pasta|Burger</Values>
 <Default>Pasta</Default>
</Input>

The Values element should for static entries list all choices separated by a vertical bar (|)
character. A Default value can either list the name of the default choice or the index
number (first choice starts at 0). In the example above setting Default to {2} would set
Burger to the default selection.

It is also possible to use the Labels element. If present then this should list all choices as
they will appear in the actions dialog. Consider these as being the labels shown for the user
while Values in this case should list the choices that will go into the final SQL via the
variable. Here is an example:

<Input label="Select index type" name="type" style="list">
 <Values>Pizza|Pasta|Burger</Values>
 <Labels>Pizza the French style|Pasta Bolognese|Texas Burger</Labels>
 <Default>Pasta</Default>

</Input>

If the users selects Texas Burger then the value for variable type will be Burger .

The following shows how to use SQL to feed the list of values:

<Input label="New Database" name="newCatalog" style="list">
 <Values>
 <Command>
 <SQL>
 <![CDATA[
show databases
]]>
 </SQL>
 </Command>
 </Values>
 <Default>${catalog}</Default>
</Input>

Here a Command element is specified as sub element to Values. The result of the show
databases SQL will be presented in the list component.

To make the list editable then specify the attribute editable="true" .

radio (limited number of choices)

The radio style displays a list of choices organized as button components. The only
difference between the radio and list styles are:

• All choices for a radio style is displayed on the screen (better overview of choices but
suitable only for a limited number of choices)

• The args="vertical" attribute can be specified for radio style and will present the
radio choices vertically

See the list style for complete capabilities of the radio style.

check (true/false, on/off, selected/unselected)

The check style is suitable for yes/no, true/false, here/there types of input. Its enable state
indicates that the Value for the input will be set in the final variable. If the check box is
disabled then the variable is blank

<Input label="Cascade Constraints" name="cascade" style="check">
 <Values>compact</Values>
</Input>

• This will create a check component with the label Cascade Constraints
• Enabling the check box will set the value of the variable identified by name (cascade)

to the value of Value , which is compact .
• If the check box is unchecked then the variable will be blank

separator (visual divider between input controls)

The separator style is not really an input element and is rather used to visually divide the
fields in the in the actions dialog. If the label attribute is specified then it will be presented
to the left of the separator line. If no label is specified only the separator is displayed.

<Input label="Content" style="separator"/>

The separator is a useful substitute for the standard label presented to the left of every
input field. Here is a sample:

Figure: Sample showing separators and wide fields

The previous figure shows the use of separators and two fields that extend to the full width
of the action dialog. The separators for Parameters and Source are here used as an
alternate label for the fields below them.

procedure- params

The procedure- params style is a specialized style used primarily to manage parameters
for procedure and function object types.

<Input name="parameters" style="procedure-params"
 args="procedure,defaultType=VARCHAR(20),parmOrder=direction|name|
type,directions=IN|INOUT|OUT/>

This example doesn't specify the label attribute as we want the field to extend the full width
of the actions dialog. The procedure- params style use the args attribute extensively to
costumize the appearance and function of the field. The following content in the args
attribute is handled by the procedure- params style:

• procedure
Defines what object type being handled. Can be one of procedure or function

• defaultType=VARCHAR(20)
Defines the default data type when the user adds a new row in the list

• parmOrder=direction|name|type|default
Specifies the order of the parameters for each row as they will appear in the final
variable. The identifers above are static but can be ordered to comply with the
wanted order of the parameters

• directions=IN|INOUT|OUT
This lists the available values for the Direction column (if it's present)

The resulting parameter list is created automatically by the control and is available in the
variable name specified in the example to be parameters .

<SetVar>

The SetVar element is very powerful as it is used to do conditional processing and create
new variables based on the content of other variables.

Consider an SQL statement for creating new users in the database:

create user 'user' identified by 'password'

In this case it is quite easy to map the user field to an Input element for the action since it
is a required field. The question arise for password which is optional. The identified by
clause should only be part of the final SQL if the password is entered by the user. The
solution for this scenario is to use the SetVar element. Here is the complete action
definition:

<Action id="mydb-user-create" label="Create User" reload="true"
icon="add">
 <Input label="Userid" name="userid" style="text"/>
 <Input label="Password" name="password" style="password"/>

 <SetVar name="_password" value='#password.equals("") ? "" : "

identified by \"" + #password + "\""'/>

 <Command>
 <SQL>
 <![CDATA[
create user ${userid} ${_password}
]]>
 </SQL>
 </Command>
</Action>

The SetVar element accepts two attributes:

• name
should list the name of the new variable

• value
this should contain the expression that will be evaluated. The expression is based on
the OGNL toolkit provided by www.ognl.org . This is an expression library that mimics
most of what is being supported by Java. Variables are referenced as #variableName .

The expression in the example above checks whether the #password variable is empty. If it
is empty then a blank value is being set in the _password variable. If it is not empty the
value for _password will be set to identified by "theEnteredPassword" .

The SQL in the Command element now refer the new ${_password} variable instead of the
original ${password} .

Note: It is recommended that variables produced via SetVar elements are prefixed with an
underline (_) to highlight were they come from.

<Confirm>

The Confirm element will be displayed for the user when a request to Execute the action is
made. If there are only read only input fields in the action this message is displayed in the
body of the action dialog. The message is displayed in a confirmation dialog if there are
editable fields.

Note that the message text can be composed of HTML tags such as , <i>,
, etc.

<Confirm>Really drop table ${table}?</Confirm>

<Result>

The Result element is optional and if specified it will show a dialog after successful
execution.

NOTE: Result elements are currently not displayed in DbVisualizer. It is however
recommend that you specify these as they will most probably appear in some way or
another in a future version. If you want to test the appearance of Result elements then open

http://www.ogn.org/

the DBVIS- HOME/resources/dbvis- custom.xml file in a text editor and make sure
dbvis.showactionresult is set to true .

<Result>Table ${table} has been dropped!</Result>

• The Result message will be displayed in a dialog after successful execution.
• If the execution fails then a generic error dialog is displayed and the Result is not

displayed.

<Command>

The Command element specifies the SQL code that is executed by the action.

<Command>
 <SQL>
 <![CDATA[
drop table ${table} mode ${mode} including constraints
${includeconstraints}
]]>
 </SQL>
</Command>

Conditional processing

Conditional processing briefly means that a profile can adjust its content based on
conditions. A few examples:

• What version of the database it is
• The format of the database URL
• The client environment i.e Java versions, vendor, etc.
• User properties
• Database connection properties

Conditional processing is especially useful to adopt the profile for different versions of the
database (and/or JDBC driver). Up to DbVisualizer 4.3.3 was a profile tested with a
"minimum" of a database version. Accessing for example an Oracle 8 database using the
Oracle profile supplied with DbVisualizer works most of the time but fails is some
situations since it require at least Oracle 9. Another advantage with the conditional
processing is to replace generic error messages with more user friendly messages.

Programmers familiar with if , else if and else will easily learn the conditional elements.

Depending on which of the two phases the conditions should be processed some
restrictions and rules apply. Please read the following sections for more information.

When are conditional expressions processed?

There are two phases when conditions are processed:

1. Conditional processing when database connection is established
<If>, <ElseIf> and <Else> elements can be specified almost everywhere in the
profile.

2. Conditional processing during command execution
The <OnError> element is used to define a message that will appear in DbVisualizer
if a command fail. To control what message should appear conditions are used.

DbVisualizer determines what If elements should be executed in what phase by the type
attribute. If this attribute has the value type="runtime" then it will be processed in the
second phase. If it is not specified or set to type="load" if will be processed in the first
phase.

Conditional processing when database connection is established

The following example shows the use of conditions that are processed during connect of
the database connection.

<Command id="sybase-ase.getLogins">
 <If test="#DatabaseMetaData.getDatabaseMajorVersion() lte 8">
 <SQL>
 <![CDATA[
select name from master.dbo.syslogins
]]>
 </SQL>
 </If>
 <ElseIf test="#DatabaseMetaData.getDatabaseMajorVersion() eq 9">
 <SQL>
 <![CDATA[
select name, suid from master.dbo.syslogins
]]>
 </SQL>
 </ElseIf>
 <Else>
 <SQL>
 <![CDATA[
select name, suid, dbname from master.dbo.syslogins
]]>
 </SQL>
 </Else>
</Command>

The above briefly means that if the major version of the database being accessed is less
then or equal to 8 the first SQL will be used. If the version is equal to 9 then the second SQL
is used, the last SQL will be used for all other version. The test attribute may contain
conditions that are AND'ed or OR'ed. Conditions can contain multiple evaluations combined
using parenthesis.
The If , ElseIf and Else elements may be placed anywhere in the XML file.

Here is another example that controls whether certain nodes will appear in the database
objects tree or not.

<!-- Getting Table Engines was added in MySQL 4.1 -->
<If test="(#dm.getDatabaseMajorVersion() eq 4 and
#dm.getDatabaseMinorVersion() gte 1)
 or #dm.getDatabaseMajorVersion() gte 5">
 <GroupNode type="TableEngines" label="Table Engines" isLeaf="true"/>

 <!-- "Errors" was added in MySQL 5 -->
 <If test="#dm.getDatabaseMajorVersion() gte 5">
 <GroupNode type="Errors" label="Errors" isLeaf="true"/>
 </If>
</If>

As you can see, this example contains nested uses of If.

Conditional processing during command execution

Using conditional processing to evaluate any errors from a Command may be useful to re-
phrase error messages to be more user friendly.

<Commands>
 <OnError>
 <!-- The ORA-942 error means "the table or view doesn't exist" -->

 <!-- It is catched here since these errors typically indicates -->

 <!-- that the user don't have privileges to access the SYS and/or
-->
 <!-- V$ tables. -->
 <If test="#result.getErrorCode() eq 942" context="runtime">
 <Message>
 <![CDATA[
You don't have the required privileges to view this object.
]]>
 </Message>
 </If>
 <ElseIf test="#result.getErrorCode() eq 17008" context="runtime">
 <Message>
 <![CDATA[
Your connection with the database server has been interrupted!
Please reconnect to re-
establish the connection.
]]>
 </Message>
 </ElseIf>
 </OnError>

 ...

</Commands>

The OnError element can be used in Commands and Command elements. If used
in Commands element its conditions will be processed for all commands. If it is part of a
specific Command it will be processed only for that command.

Current limitations

• The SQL's in the profile must be statements that DbVisualizer can execute with JDBC.
It can not contain any executables, scripts or OS specific calls

• It is not possible to specify conditions or compound commands i.e. all needed to
execute a command must be expressed in a single SQL statement.

	Getting Started and General Overview
	Introduction
	Installing
	Installation structure
	Java Properties

	Install license key for DbVisualizer Personal
	Uninstalling the license key
	Useful Resources
	Starting DbVisualizer
	Command line arguments

	The Main Window and Common Components
	Standard Components in the User Interface
	Grid, Graph and Chart
	Context Sensitive Components
	Tool tips
	Grids
	Right click menu
	Calculate Selection
	Column Visibility

	Problem resolution
	How to satisfy the DbVisualizer support team

	Load JDBC Driver and Get Connected
	Introduction
	What is a JDBC Driver?
	Get the JDBC driver file(s)
	Connection Wizard
	Driver Manager
	Setup a JDBC driver
	JDBC drivers that requires several JAR or ZIP files
	The JDBC-ODBC bridge

	Loading JNDI Initial Contexts
	Errors (why are some paths red?)
	Several versions of the same driver

	Setup a database connection
	Setup using JDBC driver
	Setup using JNDI lookup
	Connection Properties
	Database Profile
	Driver Properties
	Driver Properties for JDBC Driver
	Driver Properties for JNDI Lookup

	Always ask for userid and/or password
	Using variables in the Connection details

	Connect to the Database
	Connections Overview

	Database Objects Explorer
	Introduction
	Create Database Connection
	Database Connection object
	Alias
	Default database and schema
	Remove and copy database connection objects
	Database Connection detailed information
	Search

	Organizing Database Connections in Folders
	Connections overview

	Database Objects Tree
	Standard Actions
	Object Actions
	Common Object Actions
	Create Table
	Create Index
	Import Table Data
	Script Object to SQL Editor
	Script Object to New SQL Editor

	Objects Tree Filtering
	Show Table Row Count

	Database Profiles
	Database Specific Support
	Generic profile
	Database (Catalog) object
	Schema object
	Table Type object
	Table object
	Data tab
	References tab

	Procedure object

	Object Views
	Grid
	Form
	Source
	Table Row Count
	Table Data
	Right click menu
	Where Filter
	Quick Filter
	Monitor row count
	Editing

	DDL Viewer
	References
	Procedure Editor

	SQL Commander
	Introduction
	Editor
	Database Connection, Catalog and Schema
	Limiting Result Set size (Max Rows/Chars)
	Load from and save to file
	Load Recent

	Editor Preferences
	Multiple editors
	Tabs style
	Windows style

	Permissions
	Charsets and Fonts
	Key Bindings
	Client side Comments
	Auto Completion
	SQL Formatter
	SQL History
	SQL Bookmarks

	Execution
	Execute Selected Block
	SQL->Execute
	SQL->Execute Current
	SQL->Execute Buffer
	SQL->Execute Explain Plan (Oracle, SQL Server and DB2)
	Commit and Rollback
	SQL Scripts
	Anonymous SQL blocks
	Stored Procedures
	Client Side Commands
	@run - run SQL script from file
	@cd <directory> - change directory
	@<file> - run SQL script from file
	@export - export result sets to file
	Example 1: @export with minimum setup
	Example 2: @export with automatic table name to file name mapping
	Example 3: @export all result sets into a single file
	Example 4: @export using pre-defined settings

	@exit [nocheck] - Exit DbVisualizer
	@window iconify - Iconify the main window
	@window restore - Raise the main window
	@desc table - Describe the columns in table
	@spool log - Save log to file
	@stop on error - Stop execution if any error occur
	@stop on warning - Stop execution if any warning occur
	@spool log - Save log to file

	Parameterized queries (variables)

	Output View
	Log
	Log controls
	Auto clear log

	Result Set
	Result set menu
	Editing
	Multiple result sets produced by a single SQL statement
	Text
	Chart

	DBMS Output (Oracle)

	Query Builder
	Introduction
	Current Limitations

	Creating a Query
	Adding Tables
	Joining Tables
	Join Properties

	Remove Tables and Joins
	Query Details
	Columns
	Conditions
	Grouping
	Sorting

	SQL Preview

	Testing the Query
	Properties controlling Query Builder
	Express joins as JOIN clause or WHERE condition
	Table and Column Name qualifiers
	Delimited Identifiers
	Drag style and Diagram Size

	Monitor and Charts
	Introduction
	Monitor an SQL statement
	Monitor table row count
	Monitor table row count difference

	Monitor window
	Charts
	Chart Controls
	Data
	Layout

	Chart View
	Zooming
	Rotating

	Export

	Edit Table Data
	Introduction
	Permissions
	Features that support editing
	Edits might be denied
	Commit
	Error Log
	Binary data/BLOB and CLOB

	Inline Editor
	Insert a new row
	Update an existing row
	Delete a row
	Cell pop up menu

	Form Editor
	Form editor controls
	Row Values
	Insert a row
	Edit a row (update, delete or insert copy)
	Update the row
	Delete the row
	Insert a copy of a row

	Import from File
	Export from File
	Editing Binary data/BLOB and CLOB
	CLOB
	Binary data/BLOB
	GIF, JPEG and PNG viewer
	Serialized Java objects viewer
	Hex/Ascii viewer

	Create Table and Index Assistants
	Introduction
	Create Table
	Columns
	SQL Preview
	Execute

	Create Index

	Procedure Editor
	Introduction
	Create Procedure
	Edit and Compile
	Running in SQL Commander

	SQL Bookmarks
	Introduction
	What's a bookmark in DbVisualizer?

	The Bookmarks Main Menu
	Bookmark Editor
	Bookmark list
	New and History root folders
	SQL Editor
	Monitor information
	The Note field

	Executing an SQL bookmark or folder of SQL bookmarks

	Tool Properties
	Customizing DbVisualizer
	The user preferences (XML) file

	General Settings
	Appearance
	Fonts

	Key Bindings
	Database Connection
	Permissions
	SQL Commander Permissions
	Inline and Form Editor Permissions

	Data Formats
	Date, Time and Timestamp formats

	Table Data
	Inline/Form Editors

	Variables
	Transaction
	Bookmarks
	Monitor
	Grid
	Copy
	Colors
	Binary/BLOB and CLOB Data

	SQL Editor
	Statement Delimiters
	SQL Formatting
	Auto Completion
	Comments

	Debug

	Database Settings
	Authentication
	Delimited Identifiers
	Qualifiers
	Transaction
	SQL Statements
	Connection Hooks
	Objects Tree
	SQL Editor
	Database Specific settings
	Data Types (Oracle)
	Explain Plan (Oracle, SQL Server and DB2)
	Explain Plan (Oracle)
	Explain Plan (DB2)
	System Tables (Oracle)

	Export, Import and Print
	Introduction
	Export Grid data
	Settings page
	Output Format
	Encoding
	Data Format
	Quote Text Data
	Options
	CSV
	HTML
	SQL
	XML

	Settings

	Data page
	Generate Test Data
	Test data generator example

	Preview
	Output Destination

	Export Text data
	Export Graph data
	Export Chart data
	Import Table Data
	Source File
	Settings
	Data Formats
	Import Destination
	Import process

	Print
	Grid
	Graph

	Print Preview

	Plug-in Framework
	Introduction
	What features in DbVisualizer relies on the database profile?
	How does DbVisualizer know what database profile to use?

	XML structure
	XML skeleton

	<DatabaseProfile>
	<Commands> - The SQLs used to interact with the database
	<Command>
	Result set
	<Input> - Setting command input
	<Output> - Redefine command output

	<ObjectsTreeDef> - Definition of the Database Objects Tree
	<GroupNode> - Static objects used for grouping
	<DataNode> - Dynamic objects created via SQL
	<Command>
	<Filter>

	<SetVar>

	<ObjectsViewDef> - Definition of the Object Views
	<ObjectView>
	<DataView>
	Viewers
	grid
	text
	form
	node-form
	table-refs
	tables-refs
	table-data
	table-rowcount

	<Command>
	<Message>

	Extending ObjectView

	<ObjectsActionDef> - Definition of user actions
	Variables
	<ActionGroup>
	<Action>
	<Input>
	text (single line)
	text-editor (multi line)
	number
	password
	list (large number of choices)
	radio (limited number of choices)
	check (true/false, on/off, selected/unselected)
	separator (visual divider between input controls)
	procedure-params

	<SetVar>
	<Confirm>
	<Result>
	<Command>

	Conditional processing
	When are conditional expressions processed?
	Conditional processing when database connection is established
	Conditional processing during command execution

	Current limitations

