
DbVisualizer 4.3
Users Guide

June 2005

http://www.dbvis.com

Table of Contents

Getting Started and General Overview..7
Introduction ...7
Installing..7
Installation structure..7

Java Properties...7
How to install license for DbVisualizer Personal...8
Resources...9
Starting DbVisualizer..9

Command line arguments..9
Application overview...10

Worth knowing about the GUI...11
Grid, Graph and Chart..11
Context sensitive controls...12
Tool tips...12
Grids...13

Problem resolution...16
How to satisfy the DbVisualizer support team..17

Load JDBC Driver and Get Connected...18
Introduction..18
What is a JDBC Driver?...18
Get the JDBC driver file(s)...19
Connection Wizard..19
Driver Manager..22

Setup a JDBC driver..23
JDBC drivers that requires several JAR or ZIP files..25
The JDBC-ODBC bridge...25

Loading JNDI Initial Contexts..26
Errors (why are some paths red?)...27
Several versions of the same driver...27

Setup a database connection...27
Setup using JDBC driver..27
Setup using JNDI lookup..29
Connection Properties..30

Database Profile..32
Driver Properties...32

Always ask for userid and/or password...34
Using variables in the Connection details..35

Connect to the Database...37
Connections Overview...38

Database Objects Explorer..40
Introduction..40

Database Profiles..41
Objects tree for Oracle, DB2, SQL Server, Informix, Sybase ASE, PostgreSQL and
MySQL...41

Database Objects Tree..43
Tab tool bar operations..43
Right click menu operations..43
Filtering...44
Show Table Row Count..45

Standard Tree Objects..45

Connections object..45
Database Connection object...46

Connection Alias..47
Default databases and schemas...47
Remove and copy database connection objects..48
Database Connection details tabs...48
Search...48

Folder object..49
Object View Types..50

Grid..50
Form...51
Source..52
Table Row Count...53
Table Data...54

Right click menu..55
Where Filter..57
Quick Filter...58
Monitor row count..59
Editing...59

References...59
Generic Database Profile...60

Catalog (aka Database) object..60
Schema object..61
Table type object..62
Table object...63

Data tab...64
References tab..64

Procedure object...64
Specialized Database Profiles...65

Executing SQL statements in the SQL Commander...66
Introduction..66
Editor...66

Database Connection, Catalog and Schema...67
Fonts..68
Editor shortcuts..69
Load from and save to file..69
Comments in the SQL..70
Multiple editors...71

Tabs style...71
Windows style...71

Auto Completion...72
History..75
SQL Bookmarks..75

Execution..75
Execution control..75
Execute statement at cursor position...76
Selection executes..76
Commit and Rollback...76
SQL Scripts..76
Anonymous SQL blocks ...77
Stored Procedures...78
Client Side Commands ..78

@run - running SQL scripts from file...78
@cd <directory> - change directory...78
@<file> - run SQL script from file..78
@export - export result sets to file...79
@set serveroutput - enabling Oracle DBMS_OUTPUT.....................................81

Variables...82
Variable Syntax...83

Output View..83
Output View menu..84
Result set grids..85

Editing...86
Multiple result sets produced by a single SQL statement................................86
Text...88
Chart...89

Log...89
Log controls..90
Auto clear log..90

Monitor and Charts..91
Introduction..91
Monitor an SQL statement ...91

Monitor table row count...93
Monitor table row count difference...94

Monitor window..95
Charts..97

Chart Controls..97
Data..98
Layout...98

Chart View...100
Zooming...100
Rotating...100

Export...101
Edit Table Data..102

Introduction...102
Features that support editing..102
Edits might be denied..103
Commit...103
Error Log...104
Binary data/BLOB and CLOB...104

Inline Editor...105
Insert a new row...105
Update an existing row..106
Delete a row...107
Cell pop up menu..107

Form Editor...108
Form editor controls..108
Row Values..109
Insert a row...110
Edit a row (update, delete or insert copy)...110

Update the row..111
Delete the row...111
Insert a copy of a row...112

Import from File..112

Export from File..112
Editing Binary data/BLOB and CLOB...112

CLOB...113
Binary data/BLOB..113

Create Table and Index Assistants..116
Introduction...116
Create Table..116

Columns..117
SQL Preview...118
Execute...119

Create Index..119
SQL Bookmarks...121

Introduction...121
What's a bookmark in DbVisualizer?...121

The Bookmarks Main Menu..121
Bookmark Editor ..122

Bookmark list...123
New and History root folders...125
SQL Editor..125

Monitor information..125
The Note field..125

Executing an SQL bookmark or folder of SQL bookmarks.................................125
Tool Properties..128

Customizing DbVisualizer...128
The user preferences (XML) file...129

Categories...129
Appearance..129
Database Connection...131
Data Formats..131

Date, Time and Timestamp formats..132
Table Data...132

Data Editors..133
SQL...133

SQL Statements...133
Statement Delimiters...135
Pre-processing..136

Transaction..136
Copy...137
Bookmarks...137
Monitor..137
Grid..137

Colors..138
Binary/BLOB and CLOB Data..138

Editor..138
Key Bindings...138
Auto Completion..138

Fonts...139
Debug...139

Export, Import and Print...140
Introduction...140
Export Grid data...140

Settings page...140

Output Format...141
Encoding..142
Data Format..143
Quote Text Data..143
Options..143
Settings...144

Data page..144
Generate Test Data..146

Preview...148
Output Destination..148

Export Text data ..149
Export Graph data..150
Export Chart data...150
Import Table Data..151

Source File...151
Settings...152
Data Formats..154
Import Destination..156
Import process...157

Print...158
Grid..158
Graph..158

Print Preview...159
Plug-in Framework...160

Introduction...160
What features in DbVisualizer are affected by a database profile?........................160

How does DbVisualizer pick the correct database profile?................................161
XML structure..162

XML skeleton..163
XML Elements..164

<DatabaseProfile>..164
<Commands>..164

<Command>..165
<ObjectsTreeDef> - Definition of the Database Objects Tree...........................167

<GroupNode>...168
<DataNode>...169

<ObjectsViewDef> - Definition of the Object View..172
<ObjectView>...173
<DataView>...174

Mapping a database connection with a specific database profile...........................176
Current restrictions...177
Complete XML example...177

Getting Started and General Overview

Introduction

This document is worth reading for all new users as it explains the installation process,
resources and briefly how the application is organized.

Note: All documents in the Users Guide are primarly
focusing on the DbVisualizer Personal edition.

The screen shots throughout the users guide are using the Alloy look and feel.

Installing

Installing DbVisualizer is a straight forward task. The installation procedure is performed
using a graphical application and it is just a matter of answering the questions that are
displayed. Follow the instructions at the DbVisualizer web site how to start the
installation specifically for your platform.

Installation structure

The installer and launcher for DbVisualizer is based on the "install4j" product
(http://www.install4j.com). The structure of the installation directory contains the
following. (The content may differ slightly between platforms):

.install4j/
doc/
lib/
resources/
wrapper/
dbvis.exe
README.txt
uninstall.exe

There is basically nothing in this directory that is of general interest except the
dbvis.exe file which is used to start DbVisualizer. For information how to increase the
memory for the Java process that runs DbVisualizer and also how to modify the Java
version being used please read the on-line FAQ for latest information.

Java Properties

DbVisualizer relies on few Java properties that can be used to modify some
characteristics of the application. These DbVisualizer specific properties are available in
the resources/dbvis-custom.prefs file.

Note: There's normally no reason to alter these properties as their default values are
sufficent for most use.

Properties are expressed as:

property=value

The following are the properties that are specific for DbVisualizer:

Property Description

dbvis.driver.ignore.dir=lib:resourc
es:.install4j

Specify directories from DBVIS-HOME that
should not be listed in the Driver Manager
"System Classpath" list. Directories are
separated with ":"
Accepted values: one or several directory
names starting from DBVIS-HOME.

dbvis.grid.encode=false

Specifies if encoding of data in result set
grids will be performed or not. If set to
true then make sure the
dbvis.grid.fromEncode and/or
dbvis.grid.toEncode is set too.

dbvis.grid.fromEncode=ISO8859_1 Encoding used when translating text data
that is fetched from the database

dbvis.grid.toEncode=GBK Encoding used when translating data that
will appear in the result set grid

dbvis.formeditor.unlimitedfields=fa
lse

Specify whether the Form Editorn should
ignore the max column length and allow
any number of characters to be entered

dbvis.usegetobject=false

Specifies if the generic ResultSet.getObject
() method in JDBC will be used in favor of
the data type specific get methods or not.
Default is false.

dbvis.savedatacolumns=false

Column layout changes such as reordering
and/or visibility is saved for all grids in the
Objects Views *except* for the "Data" grid.
This property can be used to also include
the layout in the "Data" grid. Note: This
will result in DbVis saving the layout for
each table that is displayed in the Data
grid = huge XML file...

dbvis.disabledataedit=false
Specifies if Data editing should be
completely disabled. Note: This have only
effect when used with a licensed edition.

(DBVIS-HOME is the installation directory for DbVisualizer).

Note: All dbvis. properties may change in future versions of DbVisualizer. Some are
also experimental and may be removed or instead introduced in the DbVisualizer GUI.

How to install license for DbVisualizer Personal

If you have a license key file for DbVisualizer Personal then start DbVisualizer and open

the Help->License window. Enter the name of the license file in the License Key File
field or launch the file chooser by pressing the "..." button to the right of the license file
field. Once the file is loaded press

Resources

Resources related to DbVisualizer that are good to know:

Resources

The online home of DbVisualizer

The FAQ which is regularly updated with frequently asked questions and known
problems

The User Guide

The Databases and JDBC Drivers online page. This page gives latest information about
databases and JDBC drivers

The Minq forums.

The on line problem report form. This is the recommended channel for product
support.

Support by email. Questions, problems, comments or any feedback related directly to
the DbVisualizer product. Please use the support form web page in preference to
sending emails to this email address directly.

Starting DbVisualizer

The way to start DbVisualizer depends on what platform you are using.

● Windows
Locate the DbVisualizer sub menu in the Start menu. Select the DbVisualizer
entry in that menu

● Linux/Unix
Open a shell and and change directory to the DbVisualizer installation directory.
Execute the dbvis program

● Mac OS X
Double click on DbVisualizer application icon.

Command line arguments

DbVisualizer supports a range of command line arguments. These are listed in the
Help->Usage Information menu choice in DbVisualizer.

Usage: dbvis [-help] [-up <path>] [-sqlfile <path>]
 [-windowtitle <title>]
 [connect options] [remote options]
General Options:
 -help Display this help
 -up <path> Use an alternate user preferences file
 -sqlfile <path> Load file into the SQL Commander editor
 -windowtitle <title> Additional window title
 -execute Will execute SQL file automatically
 -invisible No windows will be displayed
Driver Connect Options:

 -driver Setup and connect using Driver:
 -alias <name> Database alias
 -drivername <name> Driver name
 -path <path> Path to driver class
 -class <class> JDBC Driver class
 -url <url> Connection URL
 -userid <user> Userid to connect as
 -password <pw> Connect password
JNDI Connect Options:
 -jndi Setup and connect using JNDI:
 -alias <name> Database alias
 -drivername <name> Driver name
 -path <path> Path to initial context class
 -class <class> Initial context class
 -url <url> Provider URL
 -lookup <name> Lookup name
 -userid <user> Userid to connect as
 -password <pw> Connect password
Remote Options:
 -attachremote Attach to remote DbVisualizer instance
 -enableremote Enable remote attachment
 -host <host> Remote host name (default: localhost)
 -port <port> Remote port (default: 8787)

Application overview

The main window for DbVisualizer as it looks at startup. The interface is organized
around the database objects tree to the left and two main tabs at the right:

● Database Objects Tree
This tree contains at the top level Database Connection objects (or folder objects
with their purpose to group Database Connections). Use this tree to navigate a
database. Clicking on an object will change the view in the Object View tab to
show details about the selected object.

● Object View
This tab shows details about the selected object in the tree. Every object have
their own representation in the object view tab.

● SQL Commander
Execute arbitrary SQL statements and scripts of statements.

Figure: The DbVisualizer main window

The main window is organized around a standard tool layout based on a menu and tool
bar at the top.

(Visit the master documentation index for detailed information about each of the
features).

Worth knowing about the GUI

The following section presents some generic topics that are worth knowing about when
you using DbVisualizer.

Grid, Graph and Chart

Grid, graph and chart are three terms that are often used in the application and in the
documentation. The following explains what they represent.

Example

Grid

Graph

Chart

Figure: The grid, graph and chart terms

Note: The reason the documentation refer to "grid" rather then "table" is because
otherwise it would in many situations be confused with a database table.

Context sensitive controls

All controls in DbVisualizer are context sensitive. This simply means that a control is
enabled only if it can be used.

Tool tips

Tooltips are used to explain a graphical control. They are also used to express status
information about a control. An example is the grid column header tooltip which lists
type data for the column:

Figure: Tooltip example

Grids

Grids are used heavily in DbVisualizer and probably needs a brief introduction.

Figure: Grid overview

The screen shot shows the grid and controls that are available in the Database
Objects->Data tab but the differences are minor compared to the standard grid.

Right click menu

The generic right click menu contains the following operations:

Figure: Grid right click menu

Menu Choice Description

Select All Selects all cells (aka rows and columns) in the grid

Select Row Selects all cells in the row

Copy Selection Copy all selected cells onto the system clipboard

Copy Selection (With
Column Header)

Copy all selected cells including column header onto the
system clipboard

Export Launch the export dialog

Export Selection Export the selection using the standard export feature

Fit Column Widths
Automatically fit all column widths according to the widest
cell value

Default Column Widths Set the column width equally for all columns

Find Launch the find dialog

Browse Row in Form
Displays all data for the selected row in a form.
Note: this is just a read only form as editing is not allowed.

Describe Data Show detailed information about the columns in the grid

Calculate Selection
Displays some metrics about the current selection. This is
especially useful for numeric fields. Read more in Calculate
Selection below.

Show/Hide Quick Filter
Displays or hides the quick filter pane. Read more about
Quick Filters in the SQL Commander document.

Set Quick Filter for
Selection

Sets the selected value as the current quick filter

Column Visibility
Displays the column visibility menu. Use this to control what
columns should be displayed in the grid. Read more in
Column Visibility below.

(The menu in the Data tab adds a few more operations that are used to generate SQL
statements based on the current selection).

Calculate Selection

The Calculate Selection feature is a utility that does various calculation on the current
selection. It is primarily useful when the selection keeps numbers. The following is an
example of what it shows.

Figure: The calculate selection popup

Property Description

Number of
Cells

shows the number of cells in the selection.

Valid Numbers lists the number of valid numbers in the selection.

Null Values shows the number of null values in the selection.

Bytes
shows the total number of bytes in the selection after that the data
has been translated to text

Sum shows the the total summary of the selection

Min shows the minimum number in the selection

Avg
shows the average value of the selection by doing sum / number of
valid numbers

Max shows the maximum number in the selection

Either click the red cross icon or anywhere in the popup to close it.

Column Visibility

The Column Visibility feature is used to control what columns that should appear in a
grid. The column visibility dialog is displayed either by choosing the Column Visibility
right menu choice in the grid or by clicking the button above the vertical scrollbar in the
grid.

Figure: The column visibility dialog

The column visibility dialog shows all columns that are available in the grid. The check
mark in front of a column name indicates that the column is visible in the grid while an
unchecked box indicates that it is invisible. Columns can be made invisible either by
selecting a checked column name in this list or by using the Remove Column menu
choice in the grid column header menu. The order of the columns can also be adjusted
in this dialog. Just select a row and then move it up (left in grid) or down (right in grid).

The Default Layout will reset the grid by making all column visible and put them in
their default locations.

Note 1: Modifying column visibility in conjunction with column resizing and column
ordering is saved between invocations of DbVisualizer for all grids in the various Object
Views except the Data tab.
Note 2: If modifying column visibility in the Data tab then these changes will persist
throughout the session i.e if you for example remove the column NAME in the Data tab
for the table EMPLOYEE then will NAME not appear if doing a reload or subsequent
shows of the Data tab for that table. You must manually make it visible again or simply
select Default Layout to bring it back. Another solution is simply to restart the
application.

Problem resolution

There are situations when problems, errors or even bugs appear even though
DbVisualizer is extensively tested before every new version. The runtime environment
for DbVisualizer is rather complicated when it comes to tracking the source of a
potential problem since it's not only DbVisualizer that may cause the problem but also

the actual JDBC driver(s).

There are a few things that you can do before reporting problems based on at what
stage the problem occurs:

1. Make sure you are using the latest version of Java 1.4
2. Make sure you are using at least the version of the JDBC driver that we've tested

DbVisualizer with
3. Read the DbVisualizer FAQ.
4. Check the on-line Forums.
5. Read the DbVisualizer Users Guide.

If you cannot find a solution to resolve the problem then please do the following and
email us the debug output:

● Problem during installation or when starting DbVisualizer
Debugging the installer

● Error or problem while using DbVisualizer
Debugging DbVisualizer

Use the DbVisualizer problem report form or email support@dbvis.com. We appreciate
detailed reports as well as screen shots when appropriate.

How to satisfy the DbVisualizer support team

Quite often we get incomplete problem reports and need to follow-up for additional
information. If an error or problem happen then you can do the following to let
DbVisualizer create system details that you can paste into a support email or in the
problem report form:

1. Select the Connection tab
2. In the Connection Message area select the right click menu
3. In the menu select Copy
4. This will copy system details to the clipboard. Then paste the details into an email

or in the problem report form mentioned above.
5. A bonus is if you provide screen shots! An image says more then ... you know.

Figure: The connection message right click menu

Load JDBC Driver and Get Connected

Introduction

This document describes the way JDBC drivers are managed in DbVisualizer and all
aspects about getting connected with your database(s).

Fast track: If you are impatient then please go ahead and read the Connection Wizard
section. It is the recommended feature in DbVisualizer to create database connections.

What is a JDBC Driver?

DbVisualizer is as you know a generic tool to administrate and explore databases.
DbVisualizer is in fact quite simple since it do not deal with how to communicate with
each database. The hard job is done by the JDBC driver which is a set of Java classes
that are either organized in a directory structure or collected into a JAR or ZIP file. The
magic of these JDBC drivers is that they all match the JDBC specification and the
standardized Java interfaces. This is what DbVisualizer relies on. A JDBC driver is a
database and database version specific implementation and there are a range of drivers
from the database vendors themselves and 3:rd party authors. In order to establish a
connection with a database using DbVisualizer it needs to load the driver and then get
connected to the database through the driver.

Figure: The runtime environment with the JDBC interface, JDBC driver and
sample databases

It is also possible to obtain a database connection using the Java Naming and Directory
Interface (JNDI). This technique is widely used in enterprise infrastructures such as
application server systems. It does not replace JDBC drivers but rather adds an
alternative way to get a handle to an already established database connection. To
enable database "lookup's" using JNDI an Initial Context implementation must be loaded
into the Driver Manager. These are then used in the connection properties in order to
lookup a database connection. The following information explains the steps of how to
get connected using a JDBC Driver and also how to use JNDI to obtain a database
connection.

A JAR, ZIP or directory that is loaded into the driver manager consists of a number of
Java classes that forms the complete implementation of the JDBC driver. DbVisualizer
automatically recognize the classes that are used to initiate the connection with the
database and presents them in the Driver Class list. You must select the correct class
in this list to make sure DbVisualizer successfully can initiate the connection. Consult
the driver documentation for information of which class to select or if the number of
found classes are low, figure out by trying each of them.

Get the JDBC driver file(s)

DbVisualizer do not include any JDBC driver so first you must grab a JDBC driver file(s)
that works with the actual database and the version of it. The following online web page
lists an up to date listing of the tested combinations:

Databases and JDBC Drivers

Information about almost all drivers that are available is maintained by Sun
Microsystems in this page:

JDBC Data Access API - Drivers

Download the driver to an appropriate directory. Make sure to read the installation
instructions provided with the driver. Some drivers are delivered in ZIP or JAR format
but need to be unpacked in order to make the driver files visible to the Driver Manager.
The Databases and JDBC Drivers web page lists from where to download each driver
and also what steps is needed to eventually unpack, install and load the driver in
DbVisualizer.

(Drivers are categorized into 4 types. We're not going to explain the differences here
but just give a hint that the "type 4" aka "thin" drivers are easiest to maintain since
they are pure Java drivers and do not depend on any external DLL's or dynamic libraries
i.e try to get a type 4 driver even though DbVisualizer works with any type of driver).

Connection Wizard

The Connection Wizard greatly simplifies the steps needed to load the JDBC driver and
create a new database connection. It is based on a few wizard pages in which
information about the driver file(s) and connection data should provided. Once the new
database connection has been created it will appear in the database objects tree.

Note: The wizard cannot be used to define database connections via JNDI data sources.

The first wizard screen look like this.

Figure: Connection Wizard - Page 1

In the connection alias field enter the name of the new database connection. This is
the name that will be used in DbVisualizer.
Press Next to connect to the next page.

In this page select the driver from the list that you are going to use. The red icon
indicates that the driver is not ready yet while a green icon indicates that it has been
properly configured (simply press Next to continue). If the driver you select is not yet
configured the following will be displayed. Press the Load Driver File(s) button to open
a file chooser in which you should select the JAR or ZIP file(s) that contain the driver
implementation. (Press Ctrl button in the file chooser to select several files).

Figure: Connection Wizard - Page 2

Once the driver has been properly a green icon will appear in front of the driver name.
Press Next to continue to the last page.

Figure: Connection Wizard - Page 3

This page lists the data that should be entered for the selected driver. Supply the
information and press Test Connection to check if the connection can be established.

Press Finish to create the new database connection and connect it.

It is recommended that you skip reading the rest of this document if you not:

● want to learn how the driver manager in DbVisualizer works
● need to have several versions of the same JDBC driver loaded simultaneously
● need to establish a connection via the JNDI interfaces (Java Naming and Directory

Interface)
● need to add a Driver that do not exist in the wizard list of drivers

Driver Manager

The Driver Manager in DbVisualizer is used to define the drivers that will be used to
communicate with the actual databases. Start the driver manager dialog using the
Tools->Driver Manager menu choice.

The left part of the driver manager dialog lists a collection of driver names and a symbol
indicating whether the driver has been configured or not. The right part displays the
definition of the selected driver in terms of the following:

● Name
A driver name in the scope of DbVisualizer is a logical name for either a JDBC
driver or an Initial Context in JNDI. This name is later listed in the Connection
tab setup when selecting what driver to use for a database connection

● URL Format
The URL format specifies the pattern for the JDBC URL or a JNDI Lookup name.
The purpose is to assist the user in the connection tab while entering the URL or
lookup name

● Default Class
Defines the default class to use when connecting

● Web Site
Link to the DbVisualizer web site containing up to date information how to
download the driver.

● Driver File Paths
Defines all paths to search for JDBC drivers or Initial Contexts during connect with
the database. The Driver File Paths is composed of two tabs, the User Specified
tab is used to locate and identify dynamically loaded JDBC drivers or Initial
Context classes. The System Classpath tab lists all paths that are part of the
Java system classpath.

Note: Do not bother about the System Classpath tab unless you are using the JDBC-
ODBC driver.

Figure: Driver Manager dialog

The driver list contains initially a collection of default drivers. These are not fully
configured as the actual paths used to search for the classes need to be identified. The
list can be edited as drivers can be created, copied, removed and renamed. A driver is
ready once a default class has been identified and this state is indicated with a green
check icon in the list. Not ready drivers are indicated with a red cross icon.

Note: Only ready (configured) drivers will appear in the Connection tab driver list.

The figure shows four drivers that are ready, MySQL RefFS, Oracle Thin, SQL Server
and Sybase ASE.

Setup a JDBC driver

The recommended way to setup a driver is to pick a matching driver name from the list
and then simply load the JAR, ZIP or directory that keeps the actual driver class(es) i.e
if you are going to load the JDBC driver for Oracle then select the Oracle driver in the
list. You can also create a new driver or copy an existing one.

Note: Check the following online web page with the most current information about the
tested databases and drivers.

● It lists what databases and drivers that has been tested
● Download links to JDBC drivers
● Information of what files to load in the driver manager for each JDBC driver
● Information of what Driver Class that should be chosen

Databases and JDBC Drivers

To load jar file(s) then press the Load button to the right of the User Specified paths
tree to show the file chooser and load the driver jar(s).

Figure: File Chooser dialog

It is important to load the root of the JDBC Driver i.e a JDBC Driver implementation
consists in most cases of several Java classes. These are also in most cases organized
using the package mechanism in Java. Example:

oracle.jdbc.driver.OracleDriver

Each package part in the name above (separated by ".") will be represented by a
directory in the file system. These directories are either explicitly visible in the file
system or implicitly if the driver is packaged in a ZIP or JAR file. The root of the driver is
in this case where the oracle directory is located. In the Oracle example this is the
ojdbc14.jar JAR file so the driver manager must load this path in order to find the
driver class. If the driver is packaged in a ZIP file or a directory then point the driver
manager to that path in order for the driver manager to locate the driver class.

Once a connection is established in the Connection tab will DbVisualizer search the
selected drivers path tree's in the following order:

1. User Specified
2. System Classpath

These are searched from the top of the tree i.e if there are several identical classes in

for example the dynamic tree then the topmost class will be used. Loading several paths
with different versions of the same driver in one driver definition is not recommended
even though it works (if you do this then you must move the driver you are going to use
to the top of the tree). The preferred solution to handle multiple versions of a driver is
to create several driver definitions.

Once one or several classes has been identified and listed in the Driver Class list then
make sure you select the correct Driver Class from the list. See the table earlier for
assistance.

JDBC drivers that requires several JAR or ZIP files

Some drivers depend on several ZIP, JAR files or directories. An example is the JDBC
driver for Microsoft SQL Server that requires three different JAR files to be loaded. In
this case simply load all JAR files even though the driver manager will only report the
driver class (com.microsoft.jdbc.sqlserver.SQLServerDriver) in one of them.

Simply select all JARs at once and press Open in the file chooser dialog. The Driver
Manager will then automatically analyze each of the loaded files and present any JDBC
driver classes or JNDI initial context classes in the tree.

Figure: File Chooser dialog

The JDBC-ODBC bridge

The JDBC-ODBC driver is by default part of most Java installations. The
JdbcOdbcDriver class is included in a JAR file that is commonly named rt.jar and is
stored somewhere in the Java directory structure. DbVisualizer automatically identifies
this JAR file in the System Classpath tree. To locate the JdbcOdbcDriver simply press
the Find Drivers button to the right of the System Classpath tree. Once found then
make sure the sun.jdbc.odbc.JdbcOdbcDriver is selected as the Default Class.

Loading JNDI Initial Contexts

Initial Context classes are needed in order to get a handle to a database connection that
is registered in a JNDI lookup service. These classes are similar to JDBC driver classes
since an Initial Context implementation is required.

Note: Remember that the appropriate JDBC driver classes must be loaded into the
Driver Manager even if the database connection is obtained using JNDI.

To load Initial Context classes into the Driver Manager simply follow the steps outlined
for loading JDBC drivers. The difference is that you will instead load locations that
contain Initial Context classes instead of JDBC drivers. Once Initial Context classes have
been found the following will appear in the Driver Manager list.

Figure: Driver Manager List with Initial Context classes

The visual difference between the identified JDBC drivers and Initial Context classes is
the icon in the tree.

The figure shows the required JAR files in order to first obtain the JNDI handle and then
also the actual JDBC driver that is needed to interface the database. Check with the
application server vendor or similar for more information of what files that need to be
loaded to get connected via JNDI.

Errors (why are some paths red?)

A path in red color indicates that the path is invalid. This may happen if the path has
been removed or moved after it was loaded into the driver manager. Simply remove the
erroneous path and locate the correct one.

Several versions of the same driver

The Driver Manager supports loading and then using several versions of the same driver
concurrently. The recommendation is to create a unique driver definition per version of
the driver and then name the drivers properly. Ex. Oracle 9.2.0.1, Oracle 10.2.1.0.1,
etc.

Setup a database connection

This section explains how to setup a Database Connection in the Connection tab.

Setup using JDBC driver

A Database Connection in DbVisualizer is the root of all communication with a specific
database. It requires at a minimum that a driver is selected and a Database URL is
specified. A new Database Connection is created using the Database->Add Database
Connection menu choice in the main window:

Figure: New Database Connection using JDBC driver

The Connection tab is the only enabled tab if you are not already connected to the
database. Database connection objects appear throughout the application and are by
default listed by their URL. A URL can be, and often is, quite complex and long. The
Database Alias is used to optionally set a more readable name of the database
connection. The Driver list when opened shows all defined drivers that have been
defined properly in the Driver Manager. Just open the list and select the appropriate
driver. The URL Format lists the format that the driver supports.

Tip: Put the mouse pointer on the URL Format and click with the mouse to copy the
format template into the URL field.

The < and > characters indicates that they are the boundary for a placeholder and that
they shall be replaced with appropriate values. Ex.

jdbc:oracle:thin:@proddb:1521:bookstore
jdbc:sybase:Tds:localhost:2638
jdbc:db2://localhost/crm
jdbc:microsoft:sqlserver://localhost;DatabaseName=customers

Userid and Password is optional but most databases require that they are specified.

Some drivers accept additional proprietary parameters described in the Connection
Properties section.

Setup using JNDI lookup

The information needed in order to obtain a database connection using JNDI lookup is
similar to getting connected using a JDBC driver.

Figure: New Database Connection using JNDI lookup

The figure above shows parameters to connect with a lookup service via the MySQL
RefFS driver. The /tmp/jnditest4975.tmp/test lookup name specifies a logical name
for the database connection that will be used. This example is in its simplest form since
userid and password is not specified, nor where the database connection is finally
fetched from. Any errors during the process of getting a handle to the database
connection will appear in the Connection Message area.

Connection Properties

Some of the connection properties are used to override the generic properties available
in the Tool Properties window. There are two ways to change the property for a
database connection:

● Tool Properties
These changes will be applied to all database connections that have not
overridden the actual properties in its Connection Properties.

● Connection Properties
These changes apply for the actual database connection only.

-"Okay, so there are two places to change the value of a property. Which shall I use?"

This depends on whether the change should be applied to all database connections or
just a single one. If the majority of database connections should use the new value then
it is recommended to set it in Tool Properties.
Any overridden properties in the Connection Properties tab are indicated with an icon in
the Properties tab label.

Figure: Connection Properties

The connection properties tab is organized in the same was as the tool properties
window. The difference is that the list only includes the categories that are applicable for
a database connection. The categories are briefly:

● Database Profile
● Driver Properties
● Database Connection
● SQL

● SQL Statements
● Pre-processing

● New Lines
● Transaction
● Editor

● Auto Completion

The Database Profile and Driver Properties categories are only available in the
Connection Properties tab and not in Tool Properties. The next section explains the
Database Profile and Driver Properties categories while the other categories are
described in the Tool Properties document.

Database Profile

Please read in the Database Objects Explorer document for detailed information about
database profiles.

The Database Profile category is used to select whether a profile should be automatically
detected and loaded by DbVisualizer or if a specific one should be used for the database
connection. The default strategy is to Auto Detect a database profile.

Figure: Database Profile category for a database connection

Note: The way DbVisualizer auto detects a profile is based on mappings in the DBVIS-
HOME/resources/database-mappings.xml file.

If you manually choose a database profile then this choice will be saved between
invocations of DbVisualizer.

Driver Properties

The Driver Properties category is used to fine tune a driver or Initial Context before the

database connection is established.

Driver Properties for JDBC Driver

Some JDBC drivers support driver specific properties that are not covered in the JDBC
specification.

Figure: Driver Properties for JDBC Driver

The list of parameters, their default values and parameter descriptions are determined
by the actual driver. Not all drivers supports additional driver properties. To change a
value just modify it in the list. The first column in the list indicates whether the property
has been modified or not and so whether DbVisualizer will pass that parameter and
value onto the driver at connect time.
New parameters can be added using the buttons at the bottom of the dialog. Be aware
that additional parameters do not necessarily mean that the driver will do anything with
them.

Driver Properties for JNDI Lookup

The Driver Properties category for a JNDI Lookup connection always contain the same
parameters.

Figure: Driver Properties for JNDI lookup

The list of options for JNDI lookup is determined by the constants in the
javax.naming.Context class. To change a value just modify the value of the
parameter. The first column in the list indicates whether the property has been modified
or not and so whether DbVisualizer will pass that parameter and value onto the driver at
connect time. New parameters can be added using the buttons at the bottom of the
dialog. Be aware that additional parameters do not necessarily mean that the
InitialContext class will do anything with them.

Always ask for userid and/or password

Userid and password information is generally information that should be handled with
great care. DbVisualizer saves by default both userid and password (encrypted) for each
database connection. Userid is always saved while password saving can be disabled in
the connection properties.

The Require Userid and Require Password connection properties can be enabled to
control that DbVisualizer automatically should prompt for userid and/or password once a
connection is established. Enabling either one or both of these and leaving the Userid
and Password fields blank for a database connection ensures that DbVisualizer will not
keep this vital information between sessions. The following figure is displayed if
requiring both userid and password.

Figure: Dialog asking for Userid and Password as a result of having Require
Userid and Password settings enabled

Using variables in the Connection details

Variables can be used in any of the fields in the Connection tab. This can be useful
instead of having a lot of similar database connection objects. Several variables can be
in a single field and default values can be set for each variable. The following figure
shows an example of variables that are identified by the dollar characters, $$...$$.

Figure: Connection tab with variables

The following variables appear in the figure:

● $$Alias$$
● $$Database Host||localhost$$
● $$Port||1521$$
● $$SID||ORCL$$
● $$Userid||scott$$

All of these variables defines a default value after the "||" delimiter except $$Alias$$
that have no default value. These default values will appear in the connect dialog once a
connection is requested. The following figure shows the connect dialog based on the
information above.

Note: Using variables in conjunction with the Require Userid and/or Require
Password settings also works.

Figure: Connection tab with variables

Enter the appropriate information in the fields and then press the Connect button to
establish the connection. Once connected will DbVisualizer automatically substitute the
variables in the Connection tab with the values entered in the connect dialog. These will
at disconnect from the database revert back to the original variable definitions.

Figure: Connection tab as it look once connected using variables

Connect to the Database

Press Connect when all information has been specified. DbVisualizer will pass all
entered information onto the selected driver and if the connection is established the
following will appear.

Figure: A freshly initiated database connection using JDBC driver

The Connection Message now lists the name and version of the database as well as
the name and version of the JDBC driver. The database connection node in the tree
indicates that it is connected. The connection properties cannot be edited once while a
database connection is established. The Alias can be edited by selecting the database
connection node in the tree and then clicking on the name.

The figure above also shows that the database connection node in the tree has been
expanded to show its child objects.

If the connection is unsuccessful it will be indicated by an error icon in the tree. The
error message as reported by the database or the driver will appear in the Connection
Message area. Use this to track the actual problem. Since these conditions are specific

for the combination of driver and database it is generally recommended to check the
driver and database documentation to find out more. Below are a few common problem
situations:

Error Explanation

No suitable driver.
There is no driver that can handle a
connection for the specified URL. The
most common reason is that the driver is
not loaded in the Driver Manager. Also
make sure the URL is correct spelled.

The JDBC support in Java determines
what driver to load based on the
database URL. If the URL is
malformed then there might be no
driver that is able to handle the
database connection based on that
URL. This error is produced when this
situation occurs or when the driver is
not loaded in the driver manager.
The recommendation is to check the
JDBC driver documentation for the
correct syntax.

java.sql.SQLException: Io exception:
Invalid number format for port number
Io exception: Invalid number format for
port number

The URL templates that are available
in the Database URL list contains the
"<" and ">" place holders. These are
there to indicate that the value
between them must be replaced with
an appropriate value. The "<" and
">" characters must then be
removed.

This example error message is
produced by the Oracle driver when
using the following URL:

jdbc:oracle:thin:@<qinda>:<152
1>:<fuji>

Simply remove the "<" and ">"
characters and try again.

Connections Overview

The Connections overview is displayed by selecting the Connections object in the
Database Objects Tree. This overview displays all database connections in a list and is
handy to get a quick overview of all connections. In addition to the URL, driver, etc
there are a few symbols describing the state of each connection. Double clicking on a
connection will change the display to show that specific connection.

Figure: The Connections Overview

Information for each symbol is provided in the description area below the list. The fifth
check symbol is the only editable symbol and is used to set the state of the Connect
when Connect All property i.e whether the database connection should be connected
when selecting the Database->Connect All menu choice.

Database Objects Explorer

Introduction

The Database Objects Tree in conjunction with the Object View tab is used to
explore all of your databases and to show detailed information about selected objects.

Figure: Database Objects tab

The Database Objects Tree to the left is the place to define new database connection
objects and establish connections. Once connected click the database connection object
and explore the child objects that are available. The right Object View area displays
when selected information about the currently selected object in the tree.

The tab tool bar buttons are used to perform various operations on the tree and the
objects in it. The Tree Filter settings are used to control by name what objects are
displayed in the tree. It is handy in order to limit the number of objects.

All object views except the table Data editing facility are used to browse the database.
This means that DbVisualizer Personal can be used to browse the source for functions,
procedures, triggers, etc but it does not allow manipulation of such other then using the
SQL Commander to perform any changes.

Tip: The Database Objects Tree is always visible to the left. If the currently selected
main tab is the SQL Commander then you can double click on an object in the tree to
automatically switch to the Object View tab.

Database Profiles

Since DbVisualizer Personal 4.1 there are a collection of new database specific objects
represented both in the objects tree and in the various objects views. The definition of
what is shown is defined in a database profile and DbVisualizer Personal currently
supports specialized profiles for the following databases:

● Oracle
● DB2
● Sybase ASE
● SQL Server
● MySQL
● PostgreSQL
● Informix

The information displayed is specifically per each of these databases and the following
document will cover Oracle as an example. For databases where no specialized database
profile exist or when using DbVisualizer Free, a generic database profile is used. It
displays basic information about catalogs (aka databases), schemas, tables and
procedures.

Objects tree for Oracle, DB2, SQL Server, Informix, Sybase ASE, PostgreSQL
and MySQL

The following shows what each database profile displays in the objects tree.

Oracle DB2 SQL Server

Informix Sybase ASE PostgreSQL

MySQL

Figure: Overview of what objects each supported database profile displays

The generic database profile when used for an Oracle connection look as follows:

Figure: The generic database profile when applied to an Oracle database
connection

The appearance of the generic database profile may include schema objects and/or
catalog objects depending on whether the actual database supports these objects or
not. The Procedures object always appear in the tree independent on whether the
database connection supports procedures or not.

Note: The generic database profile is always used in DbVisualizer Free.

Read more about the generic tree objects in the Generic Database Profile section.

Database Objects Tree

Tab tool bar operations

The Database Objects tool bar buttons are used to do tree related operations. These are
individually enabled or disabled based on what object is currently selected.

Description of the buttons from the left:

Tool bar button Description

Reload
Reloads the currently selected object by asking the JDBC driver to
fetch information for the object from the database. This is useful if
new objects have been created or removed.

Toggle display
of Filter setup

Is a toggle button that determines whether the Filter management
pane will be displayed below the tree or not.

Create
Database
Connection

Adds a new Database Connection object in the tree. The location of
the new object is determined based on the current selection. If no
selection then the new object added ti the end of the list.

Create Folder Creates a new folder object.

Show in
Window

Request to display the details view in a separate window for the
selected object.

Right click menu operations

The right click menu contains the following operations:

Figure: The tree right click menu

Filtering

The Filtering setup is located below the database objects tree. The visible state of this
pane can be controlled using the filter button in the database objects tool bar. Filtering
is useful to limit the number of objects that will appear in the tree.

Tree filters are managed per database connection object. What can be filtered is defined
per database profile. The generic database profile supports filtering on catalog, schema
and table names.

The unfiltered schema
objects for an Oracle
connection.

The same objects but now
filtered based on all schema
names starting with "O" or
"S".

Filter defined as all names
that do not start with "O"
and "S".

Figure: Examples of tree filter settings

An active filter for a database connection is represented by the funnel icon just before
the database connection name. The active state for a filter is defined using the Active

box in the name filter pane. A filter can only be activated if there are any filters defined.

Up to 5 filters can be defined per catalog, schema or the table objects. Removing a filter
definition always removes the last definition in the list.

Tip: It is often desired to list only the default schema or catalog (database) in the
database objects tree. This can be accomplished using the filtering functionality but the
recommended place to do this is in the properties tab for the database connection.
Please read more about the Show only default Database or Schema in Tool
Properties document.

Show Table Row Count

The Show Table Row Count setting below the database objects tree defines whether
the number of rows for table objects will be listed after the name of the table.

Note: Enabling this property results in a performance degradation.

Standard Tree Objects

There are a few objects that always appear in the tree independent of what edition of
DbVisualizer and database profile that is used. The most important object is the
Database Connection. It is used to setup and establish a database connection. The
following sections explains these standard tree objects.

Connections object

The Connections object is the root object in the tree and acts as a holder for all
database connections and folders. The purpose of this is that when selected it displays
an overview of all database connections in the details view. Here you can see the basic
settings and states for your database connections. Read more about it in the Load JDBC
Driver and Get Connected document.

Figure: Connections object

Database Connection object

The Database Connection object is the root object for a connection. Before exploring
or accessing a database you need to establish the connection. Create a new database
connection using the Database->Add Database Connection main menu choice and
the following appear.

Figure: Add database connection

(Detailed information on how to establish a connection is provided in the Load JDBC
Driver and Get Connected document).

Tip 1: Once a database connection has been setup properly then you just need to
double click on the object to establish the connection.

Tip 2: The Database->Connect All main menu choice is used to connect all enabled
database connections with a single click. You make a database connection "Connect All"
-aware in the Properties for the Database Connection or in the Connections overview.

Connection Alias

The name of the database connection object as it appears in the tree is by default the
URL of the connection. The Connection Alias can be used to override this name to
something more descriptive and shorter. Either enter the new name in the Alias field in
the Connection sub tab or click on the name in the tree and start editing the name.

Default databases and schemas

The (default) indicator in the name of a database or schema in the tree indicates that

it is the default database or schema. The default is determined by whether the database
was supplied in the URL during connect. A default schema is the same as the schema in
Oracle that the user logged in as.

Figure: The (default) indicator for catalog (aka database) and schema objects

Tip: The Properties sub tab in the connection settings can be used to specify that only
default databases or schemas will be visible in the tree.

Remove and copy database connection objects

To remove a database connection then select the Database->Remove Database
Connection operation in the main menu. To copy a database connection select
Database->Duplicate Database Connection.

Database Connection details tabs

The following section briefly explains the tabs in the objects view for a database
connection.

Tab Description

Connection
This tab is always enabled and is used to setup the details for a
database connection. This is also the place to control the connection
state.

Database
Info

When connected, the database info tab shows various information
supplied by the driver. Much of this info is low level even though some
may be useful.

Data Types The data types tab lists all data types supported by the database.

Search

The search tab is used to search among the objects in the tree. Search
operates on the content in the tree based on if there are any filter
defined or if any other setting has been set that effects the content of
the tree. See next section for more information about search.

Search

The Search tab is used to search among the objects in the tree by object name. This
result will depend on if there are any tree filter defined or if any other property has been

set that affects the content of the tree. The search operation is case insensitive.

Figure: The Search tab

Search by specifying the name of the object or part of the name and press the Search
button. The search operation can be stopped using the standard Stop button in the
main tool bar. The Show Object Path check box is used to define whether the
complete path for each found object should be displayed in the result or not. This path
is the same as if navigating to each object manually in the objects tree.

Note: The search may take some time to perform the first time since all objects that
are defined in the actual database profile are examined.

Tip: Detailed information of a specific object can be examined by double clicking on a
row. This will display all information about the object in a separate window.

Folder object

The folder object is used to organize and group database connections. It allows child
folder objects in an unlimited hierarchy. You can either use the View->Move
Up/Down main menu choices to organize the folders (and database connections) in the
tree, or you can also use drag and drop to move things around.

Figure: The database objects tree and the folder object type

Object View Types

The object views in the right area of the Database Objects tab shows detailed
information about the selected tree object. The object view may contain several object
view tabs depending on the current database profile. There are also several
representations of a view to better illustrate the information. The following sections
explains each of these visual presentation forms.

Grid

The grid view is the most common one as it displays the data in a standard grid style.

Figure: The Grid view

Form

The form view extends the grid view by a form below the grid. Click on a row in the grid
and the information is displayed in the form.

Figure: The Form view

If there is only one row in the result will no grid appear but only the form.

Source

The source view is typically used to show the source for functions, procedures, triggers,
etc. It is based on a read only editor with SQL syntax coloring. The sub tool bar buttons
from the left:

● Export data to file
● Wrap long lines
● Copy the data to SQL Commander

Figure: The Source view

Table Row Count

The row count view is really simple as it only shows the number of rows in the selected
object.

Table Data

The Data tab is used to browse the data in the table and to do various data related
operations. This view is based on the generic grid but adds a few more visual
components to limit the max number of rows, the width of text columns and the
collection of data tab specific operations in the right click menu. In addition it is also
possible to set a filter that will ensure that only the rows that match the filter will be
displayed. The data tab is the place to do edits in DbVisualizer Personal.

Figure: The Data tab for Table objects

Right click menu

The right click menu in the data tab grid menu adds some operations into the standard
right click menu. These are primarily used to create SQL statements based on the
current selection. Choosing any of these will create the appropriate SQL and then switch
the view to the SQL Commander tab. These operations are used to edit table data in the
DbVisualizer Free edition since the inline and form based editors are specifically for
DbVisualizer Personal. (Information about the standard right click menu operations are
available in the Getting Started and General Overview document).

The generated SQL can contain either static values as they appear in the grid or
DbVisualizer variables. A variable is essentially used as a place holder for a value in an
SQL statement. Once the statement is executed DbVisualizer will locate all variables and
present them in a dialog. The values for the variables can then be entered or modified
and DbVisualizer will in the final SQL replace the variable place holders with the new
values. Variables can be used in any SQL statement and DbVisualizer relies heavily on
them. (Read more about variables in the Executing SQL statements in the SQL
Commander document).

The use of variables in the SQL statements generated by the SQL operations in the right
click menu depends on the Table Data->Include Variables in SQL setting in Tool
Properties. This setting is by default true (include variables) and will result in variables
being used in the statement. Disabling the property will result in static SQL in the
generated statement.

Here follows an example with the Include Variables in SQL setting enabled and then
disabled. The SQL is generated when the select * where operation is selected based
on the selection in the previous figure.

Include Variables in SQL is enabled
select *
from SCOTT.EMP
where ENAME = $$ENAME (where)||WARD||String||where ds=10 dt=VARCHAR nullable $$
and JOB = $$JOB (where)||SALESMAN||String||where ds=9 dt=VARCHAR nullable $$

Include Variables in SQL is disabled
select *
from SCOTT.EMP
where ENAME = 'WARD'
and JOB = 'SALESMAN'

The following lists the generated SQL for each of the operations based on the selection
of ENAME = WARD and JOB = SALESMAN.

Operation SQL Example

Set Filter for Selection
ENAME = 'WARD' and
JOB = 'SALESMAN'

Script: SELECT ALL
select *
from SCOTT.EMP

Script: SELECT WHERE

select *
from SCOTT.EMP
where ENAME = 'WARD'
and JOB = 'SALESMAN'

Script: INSERT INTO
TABLE

insert into SCOTT.EMP
(EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
values (,'','',,'',,,)

Script: INSERT COPY
INTO TABLE

insert into SCOTT.EMP
(EMPNO, ENAME, JOB, MGR, HIREDATE, SAL, COMM, DEPTNO)
values (7521, 'WARD', 'SALESMAN', 7698,
 '1981-02-22 00:00:00.0', 1250, 500, 30)

Script: UPDATE WHERE

update SCOTT.EMP
set EMPNO = 7521,
 ENAME = 'WARD',
 JOB = 'SALESMAN',
 MGR = 7698,
 HIREDATE = '1981-02-22 00:00:00.0',
 SAL = 1250,
 COMM = 500,
 DEPTNO = 30
where ENAME = 'WARD'
and JOB = 'SALESMAN'

Script: DELETE WHERE
delete from SCOTT.EMP
where ENAME = 'WARD'
and JOB = 'SALESMAN'

Script: DROP TABLE drop table SCOTT.EMP

Where Filter

The filter capability in the Data tab is used to form the where clause that will limit the
number of rows in the grid.

Figure: The Data tab filter

The filter area is composed of two parts. The upper one is used to define the where
clause for a single column. The available columns and operators are selected from two
lists. The value of the column is specified in a text field. You can use Ctrl-Enter while
editing the value to force a reload of the grid based on that single filter. The lower part
displays the complete filter and the buttons are used to control whether the newly
entered filter will be AND'ed or OR'ed with the complete filter. The buttons change
appearance based on whether there is any filter or not. While in the complete filter you
can use Ctrl-Enter to force a reload based on the complete filter. The right click menu
lists the last 20 filters that have been applied to the grid.

Figure: The filter history right click menu

To reset the use of the filter select the Reload operation in the data tab tool bar.

(The visible state of the filter pane is controlled using the Filter toggle button in the data
tab tool bar).

Quick Filter

The quick filter acts on the data that is already in the grid as opposed of a where filter
which is used to limit the number of rows fetched from the database. Quick filter is
convenient as it is used to quickly list only those rows that match the entered search
string.

The following figure shows data that matches the search string "d". Matching cells are
highlighted.

Figure: The filter history right click menu

Entering successive characters will narrow the result even further as in the following
figure.

Figure: The filter history right click menu

When the Instant Filtering control is enabled then is the grid filtered while entering
new characters. Having a lot of rows in the grid may slow down the search if having
Instant Filtering enabled. If it is disabled then you must press the Filter button in order
to apply the filter.

Monitor row count

Read more about the Monitor Row Count and Monitor Row Count Difference in
Monitor and Charts.

Editing

Read about data editing in Edit Table Data

References

The references tab is used to visualize the references from the table and what tables
reference it. Use the sub tabs at the bottom of the display to show either view. The
following shows the references from the table.

Figure: The references graph showing imported keys for a table

The following shows the references to the table.

Figure: The references graph showing exported keys for a table

Generic Database Profile

DbVisualizer supports a wide range of databases and since the nature of these and what
they support is different from vendor to vendor so will the appearance and the structure
of the tree below the database connection objects look different. The generic database
profile and so DbVisualizer Free displays objects based on what JDBC offers in terms of
database objects (aka meta data information). DbVisualizer does this by simply asking
the actual JDBC driver for all schemas, catalogs, tables and procedures. It then builds
the tree based on what it gets.

The advantage of using JDBC to get meta data about the database is that it's the
responsibility of the driver to perform the operations in order to get the requested
information. The drawback of letting the driver do this is that JDBC does not offer that
much support for getting meta data information about the objects in a database i.e. the
object types that are presented in the tree are sufficient for most database while there
are obvious objects that are missing for some databases. The solution is simply to
upgrade to the DbVisualizer Personal edition.

Catalog (aka Database) object

The Catalog object is the generic JDBC term for a Database in for example Sybase,
PostgreSQL, SQL Server and MySQL. It groups all objects for a logical database. The
object view for a catalog is a pane with two tabs, Tables and References. The tables
tab lists all the tables that are located in the catalog while references shows the exact
same list of tables but instead as a referential integrity graph.

Figure: The view for Catalog objects

The child objects shown for a catalog depends on the capabilities of the JDBC driver.
Normally you will see a list of the supported table types that groups the tables of these
types. The number within parentheses is the number of tables. The example shows a
MySQL database. The driver reports that it can handle the table types, TABLE and
LOCAL TEMPORARY. (These table types are the same as those listed in the Table
Types tab when selecting a database connection object.

Tip 1: You can double click on a catalog object to display the detail view in a separate
window.

Tip 2: Select one or several rows (cells) in the tables grid and then choose Database-
>Build Select Script to create a select script for the selected tables.

Schema object

The Schema object is organized in the same way as the Catalog objects. There is in fact
no difference except that the schema objects are in another level in the tree and
represented by another icon.

The following screen shot shows the information for the selected schema with the
Reference tab selected.

Figure: The view for Schema objects

Table type object

The Table Type object has been briefly explained earlier. The name and the number of
table type objects are determined by the driver as DbVisualizer asks for the supported
table types. When DbVisualizer retrieves all tables it checks each table's type and puts
them into the matching table type object. The reason is simply to make the tree easier
to browse.

Figure: Example of table type objects for PostgreSQL

Note: Even though the figure above lists objects as INDEX, SEQUENCE, VIEW, etc are
all treated as tables by DbVisualizer.

Table object

The Table object is probably the most frequently accessed object in the tree as when
selected it shows not only a lot of information about the table but also the data in it.
This is also the place where data edits are performed.

Figure: The view for Table objects

The detailed view for table objects displays

Tab Description

Info Brief information about the table object

Columns This tab lists type information about all columns in the table

Data Read more in Data tab

Row Count Lists the table row count

Primary Key Shows the primary key

Indexes Lists all indexes for the table

Table Privileges Displays any privileges for the table

Row Id Displays the optimal set of columns that uniquely identifies a row

References Read more in References tab

Data tab

Read more about the Data tab in the Table Data section.

References tab

Read more about the References tab in the References section.

Procedure object

The procedure object is probably the simplest since it shows the name of the procedure
or function in the tree, and in the object view lists the parameters that are used when
calling it.

Figure: The procedure object

The object view shows a list of column names for the selected procedure.

Specialized Database Profiles

Specialized database profiles are available for Oracle, Sybase, SQL Server, Informix,
DB2, MySQL and PostgreSQL. Since each of these databases supports different types
will the database objects tree look different. The structure and organization of a
database profile is also something that may impact the layout of the tree even though
the provided ones are similar in their structure. There are two groups of objects in the
the tree:

● User objects
● DBA objects

User objects are for example, tables, views, triggers, functions, etc. while DBA objects
most probably requires certain privileges in the database in order to access them.
DbVisualizer organizes all DBA objects in the DBA Views tree object. If privileges are
not sufficient to access a DBA object may this result in an error.

Figure: The DBA Views tree object

Note: Database profiles are defined in XML and it is quite easy to extend and modify
them. Read more in Plug-in Framework.

Executing SQL statements in the SQL
Commander

Introduction

The SQL Commander is used to edit and execute SQL statements or SQL scripts
(several SQL statements in one batch). The result is either displayed in grids or log
entries depending on what result is returned from the execution. There is support for
multiple editors, setting of font, key bindings, auto completion, management of multiple
result sets and a lot more. The SQL Commander tab is organized as follows:

Figure: SQL Commander overview

The figure shows the editing area and controls above and the output view in the lower
part of the screen. The following sections give a detailed explanation of all features and
controls in the SQL Commander.

Editor

The SQL editor in DbVisualizer is based on the NetBeans editor module and supports all
standard editing features. The editor supports keyword coloring, auto completion and
the key bindings can be customized in Tool Properties.

The right click menu contains the following operations:

Figure: The SQL editor right click menu

The SQL editor is also used in the Bookmark Editor and when editing CLOB's in the form
editor.

Database Connection, Catalog and Schema

The Database Connection and Catalog (aka Database) boxes above the editor specify
which connection and database the SQL in the editor will be executed by. The list of
connections shows all connections as they are ordered in the Database Objects tree with
the exception that all currently active connections are listed first.

Figure: The Database Connection box

The Sticky box above the list specifies when enabled that the current connection
selection will not change automatically when passing SQL statements from other parts
of DbVisualizer. One example is passing an SQL bookmark from the Bookmark Editor.
Consider an SQL bookmark defined for database connection "ProdDB". If the Sticky
setting is disabled the database connection will automatically be changed to ProdDB. If
however the Sticky setting is enabled then the current setting of database connection
will be unchanged. The Sticky setting is per SQL editor instance.

The Catalog box (more commonly known as Database) is used to set what catalog in the

connection will be the target for the execution. In the event of catalogs not being
supported by the database connection the header will indicate this with No Catalogs
for the Database Connection.

Figure: The Catalog box

The Schema box is used only to help the auto completion feature to limit what tables to
show in the completion pop up. It does not define that the actual SQL should be
executed in the selected schema.

Fonts

The SQL editor supports changing font which is useful and necessary in order to display
characters for languages like Chinese, Japanese, etc.

Figure: SQL Editor with another font

Open Tool Properties and select the Font category in order to set the font for the SQL
Editor. (It is advisable to set the same font for both the SQL editor and the grid
components).

Note: Displaying data correctly is not just a matter of setting the font. The reason is
that the character encoding on the client side (in which DbVisualizer runs) and the
database server may not be compatible. There is experimental support to set encodings
to accomplish proper conversation between different encodings. Please see the Getting
Started and General Overview document for more information.

Editor shortcuts

The editor shortcuts or key bindings can be re-defined in the Tool Properties->Editor
category. These settings are saved between invocations of DbVisualizer.

Figure: The Editor category in Tool Properties used to re-define shortcuts

Load from and save to file

The SQL editor supports loading from file and saving to file. Use the standard file
operations, Load, Save and Save As in the File main menu to accomplish this. Loading
a file always loads into the currently selected editor.

Figure: Loading a file into the SQL Commander

The name of the loaded file is listed in the status bar of the editor. The editor tracks any
modifications and indicates changes with an asterisk (*) after the filename.

DbVisualizer will ask at exit if there are any pending edits that need to be saved.

Comments in the SQL

Comments in the SQL editor are identified by the comment identifiers in Tool Properties.
These are client side comments and are simply removed before execution.

Figure: The Comments category in Tool Properties

Multiple editors

Multiple SQL editors can be created with the File->Create SQL Editor main menu
operation. Editors can be organized as tabs or internal windows using the View buttons.
There is always one default editor named Main Editor. This editor is used when passing
SQL bookmarks from the Bookmarks Editor or when issuing requests from other parts of
DbVisualizer that activate the SQL Commander. To remove all but the Main Editor select
the File->Close all SQL Editors menu operation.

The following figures show 3 editors organized in the tabs style and the windows style

Tabs style

The SQL editors in the figure below show the Main Editor, Editor 1 and Editor 2. A file
has been loaded into Editor 1 and the label shows the file name and indicates with an
asterisk if the content in the editor has been modified. Remove an editor by choosing
the Close operation in the right click menu while over the tab header.

Figure: Multiple SQL editors in the Tabs view

Windows style

The following figure shows the same editors but in the Windows view.

Figure: Multiple SQL editors in the Windows view

Remove an SQL editor window by selecting the close (red cross) button in the window
header. Windows can be automatically organized using the Tile and Cascade
operations in the Window main menu.

Auto Completion

Auto completion is a convenient feature used to assist in the editing of SQL statements.
The auto completion support in DbVisualizer currently supports completing table and
columns names for the following DML commands:

● SELECT
● INSERT
● UPDATE
● DELETE

To display the completion pop up then use the key binding Ctrl-SPACE. You can close
the pop up either by selecting an entry in the list or simply by pressing the ESC button.

Note 1: If there are several SQL statements in the editor then make sure to separate
them using the statement delimiter character (default to ";").
Note 2: In order for the column names completion pop up to appear then you must first
make sure there are table names in the statement.
Note 3: All table names that has been listed in the completion pop up are cached by
DbVisualizer to make sure subsequent displays of the pop up is performed quickly
without asking the database. The cache is cleared only when doing a Refresh in the
datatbase objects tree or reconnecting the database connection.
Note 4: The Schema list above the editor is used only to assist the auto completion
feature to limit what tables to list in the pop up.

The following shows the completion pop up with table names.

Figure: Auto completion pop up showing table names

Here is another completion pop up showing column names.

Figure: Auto completion pop up showing column names

Here follows a couple of examples. The <AC> symbol indicates the position where the
auto completion pop up is requested. The currently selected catalog is empty and the
selected schema is HR. (These examples are when accessing an Oracle database).

select * from <AC> Shows all tables in the HR schema
(since HR is the selected schema)

select * from SYS.<AC>
The pop up will display all tables in the
SYS schema indepentent of the schema
list selection

select * from SYS.a<AC> Lists all tables in the SYS schema
beginning with the A character

select <AC> from SYS.all_objects Lists all column in the SYS.all_objects
table

select <AC> from SYS.all_objects all, EMPLOYEES
Lists all columns in the
SYS.all_objects and EMPLOYEES
table (in the HR schema)

select emp.<AC> from EMPLOYEES emp Lists all columns in the EMPLOYEES
table here identified by the alias emp

select emp.N<AC> from EMPLOYEES emp
Lists all columns in the EMPLOYEES
table identified by alias emp starting
with the N character

insert into EMPLOYEES (<AC>

Lists all columns in the EMPLOYEES
table. Selecting the -All Columns- in
the pop up will result in that all
columns will be added. Each table is
comma separated.

It is possible to fine tune how auto completion shall work in the connection properties.
The following settings can be used to adjust how auto completion should work.

Figure: Properties controlling auto completion

Prepend Column Name with Table Name specifies if completed column names
should be prefixed with the actual table name i.e TABLE.COLUMN. This setting will only
have effect if NOT using table name aliases.

The Prepend Table Name with Schema/Database Name setting is by its name
quite self explanatory...

History

The History operations available in the View main menu are used to walk forward and
backward through the history of executed SQL statements. These operations are
performed in the currently selected editor and simply insert the next or previously
executed SQL with accompanying settings for Database Connection and Catalog (if
Sticky is disabled).

The history entries are in fact SQL Bookmarks and managed by the History root folder in
the Bookmark Editor.

SQL Bookmarks

SQL Bookmarks are used to manage favorite SQL statements between invocations of
DbVisualizer. These are handled by the Bookmark Editor but the execution is performed
in the SQL Commander. Please refer to the SQL Bookmarks document for how to use
the Bookmarks main menu operations in the SQL Commander.

Execution

The Database->Execute main menu operation is used to execute the SQL in the
current (selected) SQL editor. The SQL Commander does this by analyzing the content

in the editor to determine the SQL statements. It will then execute the statement(s)
and indicate the progress. All statements in one editor are executed by the Database
Connection that has been selected. The SQL Commander does not support executing
SQL's for multiple database connections in one batch.

The result of the execution is displayed in the output view based on what result(s) are
returned. If there are several results and an error occurred in one of them the Log view
will automatically be displayed to indicate the error.

Execution control

The execution of multiple SQL statements can be controlled using the Stop Execution
On controls. These define whether the execution of the following SQL statements will be
stopped based on two states:

● Errors
Stop the execution if the SQL resulted in an error

● Warnings
Stop the execution if the SQL executed successfully but no rows were affected

Note: The Stop Execution On controls are only effective when executing multiple SQL
statements.

Execute statement at cursor position

The Execute Current operation is useful when having a script of several SQL
statements. Use it to execute the statement at the cursor position without first needing
to select the SQL statement. The default key binding for execute current is Ctrl-
PERIOD (Ctrl-.).

Note: Execute Current determines the actual statement by parsing the editor buffer
using the standard statement delimiters.

Selection executes

Selection Executes is useful when a batch of SQL statements are in the SQL editor and
you just want to execute one or a few of the statement(s).

Figure: Selection execute

The above figure will result in only the highlighted statement being executed.

Commit and Rollback

The commit and rollback SQL commands and the accompanying operations in the
Database main menu are enabled only if the setting of Auto Commit is off for the
database connection. The default setting for auto commit is on which means that the
driver/database automatically commits each SQL that is executed. If auto commit is
disabled then it is very important to manually issue the commit or rollback operations
when appropriate.

SQL Scripts

An SQL script is composed of several SQL statements and can be executed in a batch.
Each SQL statement is separated by a single character, a sequence of characters or the
go word on a single line. The default settings for the separator characters are defined in
Tool Properties and can be modified to match your needs.

Figure: Statement Delimiters

The following SQL script illustrates some uses of the SQL statement delimiters based on
the settings in the previous figure:

select * from MyTable;
/* Stmt 1
*/

insert into table MyTable
(Id, Name) /* This is a comment */ values (1, 'Arnold')
go

/* Stmt 2
*/

update MyTable set Name = 'George' where Id = 1;
/* Stmt 3
*/

select * from
MyTable; // This is a comment

/* Stmt 4
*/

Anonymous SQL blocks

An anonymous SQL block is a block of code which contains not only standard SQL but
also proprietary code for a specific database. The anonymous SQL block support in the
SQL Commander uses another technique in the JDBC driver to execute these blocks.
The way to let the SQL Commander know that a SQL block is to be executed is to insert
a begin identifier just before the block and an end identifier after the block. The figure in
the previous section shows these settings and the default values:

Begin Identifier: --/

End Identifier: /
Here follows an example of an anonymous SQL block for Oracle:

--/ script to disable foreign keys
declare cursor tabs is select table_name, constraint_name
from user_constraints where constraint_type = 'R' and owner = user;
begin
 for j in tabs loop
 execute immediate ('alter table '||j.table_name||' disable constraint '||j.constraint_name);
 end loop;
end;
/

Stored Procedures

Executing stored procedures is not officially supported by DbVisualizer even though it
works for some databases. The best way to figure it out is to test.

Our internal tests show that the Sybase ASE and SQL Server procedure calls work ok in
the SQL Commander. DbVisualizer also presents multiple result sets from a single
procedure call as of version 4.0 for these databases.

Client Side Commands

The SQL Commander supports a number of DbVisualizer specific editor commands. An
editor command begins with the at sign, "@". The following sections describe what
commands are available.

@run - running SQL scripts from file

@cd <directory> - change directory

@<file> - run SQL script from file

Use the following commands to locate and execute SQL scripts directly from file without

first loading the script into the SQL editor. This is useful if you are using an external
editor or a development environment to edit the SQL and then use DbVisualizer to
execute it.

● @run <file>
Request to execute the file specified as parameter

● @cd <directory>
Change the working directory for the following @run or @<file> commands

● @<file>
Same as @run <file>

Example of a script utilizing the file referencing commands:

select * from
MyTable;

-- Selects data from MyTable

@run createDB.sql;

-- Execute the content in the
-- createDB.sql file. The location
-- of this file is the same as the working
-- directory for DbVisualizer.

@cd /home/mupp; -- Request to change directory to /home/mupp

@loadBackup.sql;
-- Execute the content in the
-- loadBackup.sql file. This file will now
-- be loaded from the /home/mupp directory.

@export - export result sets to file

The @export commands are used to control that any result sets from the SQL
statements that follows will be written to file instead of being presented in the
DbVisualizer tool. This is really useful since it enables dumping very large tables to file
for later processing or to perform for example backups. The following commands are
used to control the export:

● @export on
Defines that the SQL statements that follows will be exported rather then being
presented in DbVisualizer

● @export set parm1="value1" parm2="value2"
The set command is used to costumize the export process. Check the table below
for the complete set of parameters.

● @export off
Defines that SQL statements that follows will be handled the normal way and that
any result sets are presented in the DbVisualizer tool

These are all supported parameters and their values:

Parameter Default Value Valid Values

AppendFile false true, false, clear

BinaryFormat Don't Export
Don't Export, Value,
Hex, Base64

CsvColumnDelimiter \t (TAB)

CsvIncludeColumnHeader true true, false

CsvIncludeSQLCommand false true, false

CsvRowCommentIdentifier

CsvRowDelimiter \n
\n (UNIX/Linux/Mac OS
X), \r\n (Windows)

DateFormat yyyy-MM-dd
See valid formats in Tool
Properties document

DecimalNumberFormat Unformatted
See valid formats in Tool
Properties document

Destination File File

Encoding UTF-8

Filename REQUIRED

Format CSV CSV, HTML, XML, SQL

HtmlIncludeSQLCommand false true, false

HtmlIntroText

HtmlTitle DbVisualizer export output

NumberFormat Unformatted
See valid formats in Tool
Properties document

QuoteTextData None (ANSI if Format="SQL")
None, Single, Double,
ANSI

SettingsFile

ShowNullAs (null)

SqlIncludeSQLCommand false true, false

SqlRowCommentIdentifier --

SqlSeparator ;

TimeFormat HH:mm:ss
See valid formats in Tool
Properties document

TimeStampFormat
yyyy-MM-dd
HH:mm:ss.SSSSSS

See valid formats in Tool
Properties document

XmlIncludeSQLCommand false true, false

XmlIntroText

Example 1: @export with minimum setup

The following example shows the minimum commands to export a result set.
The result set produced by the select * from Orders will be exported using default
settings to the C:\Backups\Orders.csv file.

@export on;
@export set
filename="c:\Backups\Orders.csv";

select * from Orders;

Example 2: @export with automatic table name to file name mapping

This example shows that the file name will be the same as the table name in the select
statement. The example also shows several select statements, each will be exported in
the SQL format. Since the file name is defined to be automatically set this means that
there will be one file per result set and each file is named by the name of its table.

Note: There must be only one table name in a select statement in order to
automatically set the filename i.e if the select joins from several tables or pseudo tables
are used then you must explicitly name the file.

@export on;
@export set filename="c:\Backups\${table}"
format="sql";

select * from Orders;
select * from Products;
select * from Transactions;

Example 3: @export all result sets into a single file

This example shows how all result sets can be exported to a single file. The AppendFile
parameter supports the following values.

● true
 The following result sets will all be exported to a single file

● false
 Turn off the append processing

● clear
 Same as the true value but this will in addition clear the file before the first
result set is exported

@export on;
@export set filename="c:\Backups\alltables.sql" appendfile="clear"
format="sql";

select * from Orders;
select * from Products;
select * from Transactions;

Example 4: @export using pre-defined settings

The export grid wizard supports saving export settings to a file for later use in the
export wizard. A export settings file can in addition be referenced in the @export set
command.

@export on;
@export set settingsfile="c:\exportsettings\htmlsettings.xml"
 filename="c:\Backups\${table}";

select * from Orders;
select * from Products;
select * from Transactions;

The example shows that all settings will be read from the
c:\exportsettings\html.xml file.

@set serveroutput - enabling Oracle DBMS_OUTPUT

Stored procedures, functions and package bodies in Oracle supports the DBMS_OUTPUT
PL/SQL command. It is used to output information to the end user. In order to grab
these outputs you need to enable DbVisualizer to catch and display them. Use the
following commands to either enable or disable capturing DBMS_OUTPUT.

● @set serveroutput on
● @set serveroutput off

When enabled will the output appear in the SQL Commander log.

Variables

Variables can be used to build parameterized SQL statements. The SQL Commander will
at execution check for variables and prompt for replacement values of the variables.
Variables are also used internally in DbVisualizer. The SQL templates that are listed in
the Tool Properties->SQL->SQL Statements category are used inside DbVisualizer in
various situations. The difference with these is that DbVisualizer automatically
substitutes the pre-defined variable names with correct values once the templates are
used instead of prompting for values as the SQL Commander does.

A variable has the following format in its simplest use:

$$FullName$$

A variable must begin and end with the character(s) identified by the Variable
Identifier property in the Tool Properties->SQL category (default is $$ as in the
example above). During execution the SQL Commander will search for variables and
display a window with the name of each variable and an input (value) field. Enter the
value for each variable and then press Execute. This will replace the original variable
with the value and finally let the database execute the statement.

Tip: Use the Ctrl->Enter key binding as a shortcut for Execute.

Figure: The substitute variables window

The above example is the simplest case as it only contains the variable name. In this
case it is also necessary to place the text value within quotes since the substitution
window cannot determine from the variable itself if it is a number or text variable.

The final substituted SQL statement that results from the initial SQL and variable value
is:

update Friends set LastName = 'Svensson' where Id = 100;

Variable Syntax

The variable format supports setting a default value, data type and a few options as in
the following example:

$$FullName||Swansons||String||where pk $$

The full format of the variable syntax is:

$$variableName [|| defaultValue [|| type [|| options]]]

● variableName
Required. This is the name that will appear in the substitution dialog. If several
variables have the same name then the substitution dialog will show only one and
the entered value will be applied to all variables of that name.

● defaultValue
The default value that will appear in the substitution dialog

● type
The type of variable - String, Integer, BinaryData, etc. This is used to determine if
the value will be enclosed by quotes or not. If no type is specified then it is
treated as an Integer (no quotes).

● options
The options part is used to express various things. Most interesting are the pk
and where keywords.

(Note: There must be a whitespace character following a keyword).
● pk

Defines whether an icon will appear before the variable name in the
substitution dialog to indicate that it is a primary key field.

● where
Defines that the variable is part of the where clause and so will appear last
in the list of variables.

Output View

The Output View in the lower area of the SQL Commander is used to display the result
of the SQL's being executed. How the results are presented is based on what type of
result it is. A log entry is always produced in the Log view for each SQL statement that
is executed. This entry shows at a minimum the execution time and how many rows
were affected by the SQL. There may also be a result set if the SQL returned one. These
result sets are presented either as tabs or windows based on your choice.

Figure: The output view

If an error occurs during execution the SQL Commander will automatically switch to the
Log view so that you can further analyze the problem.

Output View menu

The Output View menu in the lower right area contains the following choices:

Figure: The output view

Menu Choice Description

Load SQL into
Editor

Loads the SQL for the selected result set tab or window into the
current editor.

Insert SQL into
Editor

Inserts the SQL for the selected result set tab or window into
the current editor at the cursor position.

Pin All
Pins all result sets. Pinning a result set will prevent it from
being removed at the next execution.

Unpin All
Unpins any pinned result sets making them candidates for
removal during the next execution.

Remove Pinned Removes all pinned result sets directly.

Remove Unpinned Removes all unpinned result sets directly.

Pin New Result
Sets

Check this to make sure all new result sets are pinned by
default.

Remove Empty
Result Sets

Removes all empty result sets.

Clear Output View
Clears the current view. This operation is valid to use when the
Log is being displayed and will clear all log entries.

Result set grids

A result set grid is created for every SQL that returns one or more result sets. These
grids can be displayed in a tab or window style view similar to how the SQL editors are
displayed. Each grid shares the common layout and features as described in the Getting
Started and General Overview document. The format of the result can be one:

● Grid
The result is presented in a grid.

● Text
The result is presented in a tabullar format.

● Chart
Read more in Monitor and Charts.

Figure: The windows output view

This figure shows the Windows output view with three result set grids. The Max Rows
and Max Chars fields at the bottom of the figure are used to set the maximum number
of rows and columns (for text data) that will be fetched and presented in new result set
grids. The labels for the number of rows and columns in the grid will be displayed in red
if either of these exceed their respective maximum settings. A result set grid can be
closed using the red cross in the window frame header.

If the output view is Tabs then use the Close right click menu choice when the mouse
pointer is in the tab header:

Figure: The right click menu for tabs

Editing

A result set grid may be enabled for editing based on the following criterias:

1. The result really is a result set
2. The SQL is a SELECT command
3. Only one table is referenced in the FROM clause
4. All columns in the result set exist in the table with exactly matching names

If all the above is true then the standard editing tool bar will appear just above the grid.
Read more about editing in the Edit Table Data document.

If any of the above fail to comply will the editing tool bar not appear.

Multiple result sets produced by a single SQL statement

Some SQL statements may produce multiple result sets. Examples of this are stored
procedures in Sybase ASE and SQL Server. The SQL Commander will simply check the
results as returned by the JDBC driver and add grids to the output view accordingly. The
following shows the sp_help Emps command which returns several result sets with
various information about the Emps table.

Figure: Multiple result set grids produced by a single SQL statement

The result set grids above all share the same label, sp_help Emps. The number after
the label represents the order number for the actual result. A stored procedure can
return different results, not all being result sets. The number helps to identify in the log
which entry matches what result set grid. Here is the Log output view for the previous
example.

Figure: The Log after executing an SQL statement that returns multiple results

All entries with the log message "Result set fetched" are represented in the previous
figure.

Text

The Text format for a result set presents the data in a tabullar style. The column widhts
are calculated based on the length of each value and the length of the column label.

Note: The columns widths may vary between executions of the SQL.

Figure: The Text result set format

Chart

A result set can be charted using the Chart view in a grid. Please read more about it in
the Monitor and Charts document.

Log

The log keeps an entry for each SQL statement that has been executed. It keeps
generic information such as how many rows were affected and the execution time. The
important piece of information is the execution message which shows how the execution
of that specific statement ended. If an error occurred then the complete log entry will
be in red indicating that something went wrong.

Figure: The Log with one failed statement

The detail level in an error message is dependent on the driver and database that is
being used. Some databases are very good at telling what went wrong and why while
others are very quiet. The icon to the left of each log entry is used to pass the SQL for
the entry into the current SQL editor when clicked.

Log controls

The Show controls below the log are used to define what information will appear in the
log. The Filter controls are used to specify what entries will be displayed.

Auto clear log

The Auto Clear Log control can be enabled to let the SQL Commander automatically
clear the log between executions.

Monitor and Charts

Introduction

The monitor feature in both editions of DbVisualizer is used to show the results of one or
many SQL statements in the Monitor window. These monitors can then be re-loaded
(executed) manually or by the auto reloader which will automatically re-load all
monitors at a given interval. A monitored SQL statement is an SQL Bookmark and the
definition and management of which SQL Bookmarks are monitored is controlled in the
Bookmark Editor. Any SQL Bookmark that produces a result set (data in a grid) can be
monitored. The monitor feature supports monitoring SQL Bookmarks for different
database connections concurrently.

The monitoring feature in conjunction with the charting capability in DbVisualizer
Personal is really powerful since it delivers real time charts of one or several monitored
SQL Bookmarks simultaneously. Typical scenarios when this is useful are to see live
trends in a production database, surveillance, statistics, etc. It is just a matter of
imagination and the level of SQL expertise that sets the limit! At Minq Software there is
a dedicated work station that automatically presents various charts from our database.

Charts can also be exported to JPEG and PNG files.

Note: Charts cannot be printed directly. You must first export and then use another tool
to print.
Note: The chart customization covered in this document is also applicable in the SQL
Commander (DbVisualizer Personal).

The Monitor window with four monitored
SQL Bookmarks. The results can be viewed
as windows or tabs. This example shows
the grid data as returned from each SQL
statement.

The same monitored SQL
Bookmarks as in the left figure
but here presented as charts.
(DbVisualizer Personal)

Monitor an SQL statement

An SQL statement to be monitored must be defined as an SQL Bookmark in
DbVisualizer. A bookmark is briefly an SQL statement with associated information about
its database connection and an optional catalog (generic JDBC denomination which
translates to a database in for example Sybase, MySQL, SQL Server, etc). The

Bookmark Editor supports organizing SQL bookmarks in a tree structured folder view
and the complete structure and all SQL Bookmarks are saved in the XML file between
invocations of DbVisualizer. It is the Bookmark Editor that is used to enable a SQL
Bookmark to become a monitored SQL Statement.

Figure: Bookmark Editor

The figure shows the Computers Sold per Month bookmark and the SQL that is
associated with it. The Monitor field in the tree is used to determine whether the SQL
Bookmark is a monitor or not. Just click on the check mark and the SQL Bookmark will
appear in the Monitor window. Uncheck it to remove the monitor.

The following is an example of what the above SQL Bookmark produces:

Figure: Monitor showing the result in Grid format

The interesting columns in the result are the Month and Count. The Year and
MonthNum are there just to get the correct ascending order of the result.

There are alternative operations to simplify creation of monitored SQL Bookmarks. Read
the following sections to find out how this is done.

Monitor table row count

The Monitor Table Row Count operation is activated in the Data tab for a table (left
button below):

Figure: Data tab tool bar buttons that are used to create monitors

It is used to create a monitor that displays in a single row the current time stamp for
when the monitor is executed and the total number of rows (count(*)) in the table. Each
execution of the monitor will result in one row being added to the grid. The monitoring
feature in this example keeps a pre defined number of rows until the oldest rows are
removed. Example:

Computers: Row Count

PollTime RowCount

2003-01-23 12:19:10 43123

2003-01-23 12:11:40 43139

2003-01-23 12:21:10 43143

2003-01-23 12:22:40 43184

... ...

Figure: Example of the result from a Table Row Count monitor

The SQL for this monitor introduces two variables, DbVis-Date and DbVis-Time. These

variables are substituted with the current date and time formatted according to the
formats in Tool Properties. The reason these variables are used instead of using
appropriate SQL functions to retrieve them is simply because it is almost impossible to
get the values of these in a database independent way. Another reason is that we want
to set the time of the client machine rather than the database. The SQL can of course
be modified to contain whatever SQL that is appropriate as long as the PollTime and
RowCount labels are not changed.

Figure: Sample of the SQL for the Table Row Count monitor

The above does not introduce any big news for an SQL hacker.

The magic of this monitor is that it keeps a pre defined number of rows in the grid. This
is managed by the Allowed Row Count property in the Bookmark Editor. This property
is automatically set when creating a row count monitor. The default value is to keep the
100 latest rows added to the grid (one per execution).

Figure: Allowed Row Count property pane

The above setting can be modified to limit or extend the number of rows that the
monitored grid will keep. Setting it to 0 or a negative number tells DbVisualizer to
always clear the grid between executions of monitors.

Monitor table row count difference

The Monitor Table Row Count Difference operation is activated in the Data tab for a
table buttons (right button below):

Figure: Data tab tool bar buttons that are used to create monitors

Its purpose is similar to Monitor Table Row Count except that this monitor reports the
difference between the two latest executions in the result grid:

Computers: Row Count Change

PollTime RowCount RowCountChange

2003-01-23 12:19:10 43123 0

2003-01-23 12:11:40 43139 16

2003-01-23 12:21:10 43143 4

2003-01-23 12:22:40 43184 41

...

Figure: Example of the result from a Table Row Count Difference monitor

The SQL for this monitor adds a third field which is the RowCountChange. It is rather
simple since the current count(*) in the table is is used when subtracting the RowCount
in the previous execution round or count(*) if there are no previous rows in the grid.
This gives the difference. The trick here is that DbVisualizer always keeps all values of
the last row that was added in the grid. Any of its fields can be referenced in the
succeeding execution of the monitor.

Figure: Sample of the SQL for the Table Row Count Difference monitor

Monitor window

The Monitor feature launched via the Tools->Monitor menu option is used to browse
the active monitors. The monitors can be organized either as tabs or internal windows.
In DbVisualizer Free the monitor results can be viewed as grids while DbVisualizer
Personal adds the capability to view them as charts. The following figure is a screen shot
of the Monitor window:

Figure: The Monitor window with all monitors organized as tabs

The screen shot is from DbVisualizer Personal as the selected monitor has the Text and
Chart sub tabs which are not there in DbVisualizer Free. The Auto Reload feature at
the bottom of the main window is used to control whether auto update of all monitors is
enabled or not. The Seconds field specifies how many seconds the Monitor feature
should wait before doing an auto reload. If auto reloading is enabled then the monitor
toolbar icon in the main window is displayed to indicate its state. The Edit Bookmark
button is used to open the Bookmark Editor for the currently selected monitor. The
Bookmark Editor will automatically locate the actual SQL Bookmark for the monitor.

Note: The specified number of seconds may be increased automatically by DbVisualizer
if the total execution time for all monitors is longer.

The Window menu contains choices to control the appearance in the Monitor:

Figure: Window menu operations

The Show Grids, Show Texts and Show Charts toggles the monitors to display the
monitors in the selected view. Cascade and Tile are used to automatically arrange the
windows in the Windows view.

Charts

This section is only applicable for DbVisualizer Personal.

Charts in conjunction with the Monitor feature is really powerful since monitored data is
very often a good candidate to be charted. The charting capability in DbVisualizer
Personal is also available in the SQL Commander feature even though this document
does not cover it.

The basic setup of a chart is really easy since it is just a matter of selecting one or more
columns that should appear as series in the chart. The basic requirement is that the
monitor has been executed so that there are columns to choose the series from. The
appearance of the charts can be thoroughly customized using the advanced
customization editor.

The chart view is controlled by sub toolbar for each monitor:

Figure: Chart control buttons

The controls are from the left:

1. Show/Hide chart controls pane
2. Reset any zoom

The following sections explain the features and how to setup the chart.

Chart Controls

The chart controls are used to customize the Data that shall be displayed in the chart,
optional axis labels, titles, etc. It is also used to control the Layout of the chart in terms
of chart type, legend type, etc.

Data

Specify in the Data customization which data shall appear in the chart.

Figure: Data customizer

Select at least one Series from the list of columns and the chart is ready! Selecting
several series will show them accordingly in the chart. The Label field can be used to
specify an optional label for the serie as it will appear in a legend. The name of the
column is used if no label is specified.

The X-Axis Label box is used to specify the column in the result that should be used to
render the labels of the X-axis. Chart Title specifies the main title of the chart. This is
the same title as the SQL Bookmark in the Bookmark Editor. X-Axis Title and Y-Axis
Title specifies the titles for the X and Y axis. The Rotation settings are used to set the
rotation of the X and Y axis.

Layout

The layout tab is used to configure the appearance of the chart and primarily what type
of chart that will be displayed. Note that all settings are per monitor. The following
screen shots show some of the most commonly used chart types.

Figure: Chart type examples

The advanced layout editor can be used to customize every aspect of the layout. The
basic layout settings however are the following:

Figure: Layout customizer

Show symbols specifies whether each value in a line chart will be represented by a
symbol. Show Inverted defines whether the X and Y axis will be switched. 3D specifies
if a bar chart will be displayed in 3D. The Chart Type lists all the available chart types.
Fill Pattern defines how a bar, area and pie chart shall be filled. Legend Type specifies
whether a legend will be displayed or not.

The Advanced Settings editor is used to customize all the bits and pieces of the chart.
This document does not explain all the configurations that can be done using this editor
since that would result in a 100 page book.

Note: Settings that are made in the Advanced Editor are not saved between invocations
of DbVisualizer.

Chart View

Zooming

Charts support zooming by selecting a rectangle in the chart area. Selecting another
rectangle in that zoomed area will zoom the chart even further and so on. To reset the
zoom then just press the Reset Zoom button or the "r" keyboard button while the
mouse pointer is in the chart area.

Rotating

All 3D chart types support rotating and changing the depth of the chart. Use the
following to change the appearance:

● Shift+Left Mouse button
Changes the depth of the chart

● Ctrl+Left Mouse button
Changes the rotation of the chart

Examples:

Figure: Example of 3D charts

The above screen shots are just a few examples of the 3D chart types and how depth
and rotation settings are used to change the appearance.

Export

The export operation is context sensitive and works on the currently selected chart,
graph or grid. The controls in the export dialog also adapt to the currently selected
object. If a chart is the current object the following export dialog will appear:

Figure: Export dialog for charts

The default size of the image that is about to be exported is the same as it appears on
the screen. To change the size then either select a pre-defined paper size in the Size
list or enter a size in pixels.

Edit Table Data

Introduction

The editing support in DbVisualizer Personal is used to insert, update or remove single
rows in a database table. Editing is performed using two different editors:

● Inline Editor
● Form Editor

The Inline Editor is convenient in situations when fast edits of single columns need to be
made. The Form Editor presents all columns in a form and some users prefer it since it
is easier to get an overview of the data. The final SQL and the rules to determine the
row that is affected are the same irrespective of which editor is used.

The following figure shows what buttons in the Data tab and in a result set grid that are
used specifically for editing.

Figure: The buttons in the Data tab used to control the inline and form editors

Features that support editing

Editing of table data can be performed in the Database Objects->Data tab or in the
results from an SQL statement in the SQL Commander.

There are a few rules that must be fulfilled in order to enable editing in the SQL
Commander:

1. It is a result set
2. The SQL is a SELECT command
3. Only one table is referenced in the FROM clause
4. All current columns exist by name (case sensitive) in the identified table

The editing tool bar is hidden if these rules are not met.

Edits might be denied

The editing features in DbVisualizer ensure that only one row in the table will be
affected by update and delete requests. This prevents the user from doing changes in
one row that might also silently affect the data in other rows. DbVisualizer uses the
following strategies to determine the uniqueness of the edited row:

1. Primary Key
2. Unique Index
3. Selected Columns
4. All Previous Values

The Primary Key concept is widely used in databases to uniquely identify the key
columns in tables. If the table has a primary key then DbVisualizer will use it. There are
situations when primary keys are not supported by a database or when primary keys
are supported but not used. If no primary key is defined then DbVisualizer will check if
there is a unique index. If there are several unique indices then DbVisualizer will pick
one of them. So why not only try to identify the row by all its previous values? The
reason Selected Columns is searched before checking All Previous Values is because
not all data types are allowed to be used in a where clause. Typical examples are BLOB
and CLOB data types. The Selected Columns check simply uses the selected columns
in the inline editor or checked columns in the form editor to find out if the values
identify a unique row. If that check fails then All Previous Values is searched.

The following dialog appears when none of these strategies can uniquely identify the
row.

Figure: Warning dialog when a unique row could not be identified

Commit

DbVisualizer issues an implicit database commit after each successful edit operation (the
value of the Auto Commit property in Tool Properties is bypassed during editing). The
commit request is per database connection and it commits all pending updates even
those that have been executed in the SQL Commander.

The following example explains the effect of the implicit commit:

1. The Auto Commit property is disabled in Tool Properties.
2. An SQL statement that deletes some rows is executed in the SQL Commander but

it is not explicitly committed.
3. We now go to the Data tab for a table and edit the value of a column.
4. Once the update in the grid is performed the update is committed. This commit

will also commit the delete statement that was executed earlier in the SQL
Commander. The reason is that all commits are performed per Database
Connection.

Error Log

If the insert, update or delete request is successfully executed by the database then the
row in the grid will be updated accordingly. There are however situations when errors
occur during the database execution phase. These messages are presented in the
execution log.

Figure: Error Log view

The log keeps information of all edits that have been executed in both the inline and
form editors. It presents not just failed operations (red color) but also all successful
edits. All error messages that appear in the log are produced by either the JDBC driver
or the database. Refer to the driver or database documentation for explanation of the
error messages.

Binary data/BLOB and CLOB

Binary data/BLOB and CLOB data can only be edited in the form editor. Read more
about it in Editing Binary/BLOB data and CLOB.

Inline Editor

The inline editor is handy when fast edits need to be made. The editor is simple to use
since it is activated by typing characters in the cell (column in a row) that is to be
modified. The inline editor is data type aware and checks that the entered values are
valid for each column's data type. Any errors are reported in the error log. Only those
cells that have been modified (indicated by a yellow color) during the editing session will
be propagated to the database.

The inline editor keeps all edits that have been made in a single row until the edit is
implicitly committed by selecting another row in the grid or by using the update tool bar
button (see below). All other operations such as selecting another table in the
Database Objects tree will silently revert any edit.

The following tool bar buttons are used to control the inline editor:

Figure: Tool bar buttons to control the inline editor

Description of the buttons (from left):

● Confirm edits (on/off)
(Check this button to make sure DbVisualizer always asks before performing any
edits in the database table)

● Insert row
● Delete row
● Perform the current edit
● Revert the currently edited row

A row is edited by typing characters in a cell. All cells that have been edited are
indicated by a yellow background color. Only these columns will be updated once the
final SQL is executed to perform the change. All cells irrespective of whether they have
been edited or not are highlighted with a yellow border to indicate which row is being
edited.

It is not possible to edit binary data, BLOB and CLOB values in the inline editor. Use the
form editor to manipulate values for these data types.

Insert a new row

To insert a new row just press the Insert row tool bar button. All columns in the table
that do not allow nulls are by default switched to the yellow background color. The
default value for all columns is the character representation for null which is (null) by
default. Now just start typing in the cells to set the values of the new row.

Figure: Initial view of the inline editor when a new row is about to be edited

If a value is entered that is not valid for a cell then an error dialog is displayed. The
color of the invalid cell is at the same time switched to red.

Figure: Error dialog when the data type is invalid for a column

Follow the instructions in the dialog to either correct the value to match the data type of
the column or revert to its original value.

If the newly added row is the only row in the table then there is no other row to select
in order to perform the insertion. You must in this situation explicitly press the Perform
the current edit button in the tool bar.

Update an existing row

To update the value of a cell then just select the cell and start typing. The same checks
as when inserting a new row are done here as well. To perform the edit just press the
Perform the current edit button in the tool bar or select a cell in another row.

DbVisualizer use three different strategies to determine the row that will be updated. In
order to let DbVisualizer use Selected Columns then first edit the cells that should be
updated. Now select each cell that should be part of the selected columns list. Press the
Perform the current edit button in the tool bar to let DbVisualizer use the selected
columns in the final where clause.

Delete a row

To delete a row then select at least one cell in the row to be removed. DbVisualizer will
use one of the strategies in order to determine the row that will be deleted. Selecting
one or several cells in the row will form the where clause that optionally will be used if
the Selected Columns strategy is used to identify the row.

A confirmation dialog is displayed (the appearance of this dialog can be controlled in
Tool Properties) in which the deletion must be confirmed.

Figure: Confirmation dialog when deleting a row

Cell pop up menu

The cell pop up menu is active while editing a cell value and it is displayed using the
right mouse button.

Figure: Cell pop up menu

The list of operations in the cell pop up menu is different depending on what data type
the column is. Common for all data types are the Set to Null and Uncheck Column
operations. The Uncheck Column is used to remove the editing state of the cell which
means that it will not be included in the update of the row (the yellow background color
is removed).

Remember that the format of time stamp, date or time values must match the format
settings in Tool Properties.

Insert current Timestamp (can also be Insert current Time and Insert current
Date) menu choice is valid only for the appropriate data types and simply inserts the
current time stamp. The format of these values matches the format settings in Tool
Properties.

Form Editor

The Form Editor enables editing of data in a form based dialog. This editor is useful
when inserting new rows and when it is important to get a more balanced overview of
all the data. The form editor and the inline editor are based on the same set of rules and
the visual appearance is similar.

The following tool bar buttons are used to start the form editor:

Figure: Tool bar buttons to control the form editor

Description of the buttons (from left):

● Insert row
● Edit row (update, delete or insert copy)

An alternative way to start the form editor in edit mode is to double click on the row
header.

Form editor controls

The following explains how the form editor is organized and what controls are available.

Figure: The form editor

The form editor is composed of two main views (at the bottom of the dialog), they are
the Edit and Log views. The edit view is as its name implies the place where the actual
edits take place. The log view maintains a list of log messages for all edits that have
been performed. The log view is displayed automatically if an error occurs during the
database operation.

The tool bar buttons are used to Insert,Update and Delete the current row. (Only the
insert button is enabled if the form editor has been launched to insert a new row).

The Wrap Lines check box is used to control whether long values should be wrapped
automatically.

The Reload Data Grid check box determines whether the Data tab grid should be
automatically re-loaded once the form editor is closed. If this box is disabled then make
sure to reload the data tab grid manually to reflect the changes that have been made in
the form editor.

Row Values

The Row Values section in the form editor lists all columns and values (fields) as they
appeared in the data tab grid when the form editor was launched (i.e if a column was
manually removed from the grid then it wont show in the form editor). Each field is
composed of a label which is the column name and the value. Any primary key columns
are indicated with a key-like icon to the left of the label.

The check box between the label and the value indicates whether the column will be
part of the SQL that is finally executed to perform the edit. The checked state is
automatically enabled if the field of the value is being edited and the color of the value
field is automatically switched to yellow to indicate what fields will be part of the
database request.

Additional information about a column is listed below the list of fields. This information is
updated when the pointer is in a value field.

All text fields allow data to be entered in multiple lines (press the enter keyboard
button). Boolean and Bit fields are managed by toggle buttons. The state of these fields
can be either true, false or null. All fields except boolean fields have a pop up menu
associated with them similar to the one in the inline editor. For all fields it contains the
Set to Null operation. For time stamp, date and time columns it also contains Insert
current Timestamp, Insert current Time or Insert current Date. The formats of
time stamp, date and time are the same as specified in Tool Properties.

Remember to use the same format for time stamp, date and time fields as specified in
the formats section in Tool Properties.

Each of the fields limits the amount of data that can be entered. Entering more
characters than allowed will be denied. Some JDBC drivers report invalid column lengths
such as 0 or a negative size. The form editor tries to figure out if the length is invalid
and adjust the width accordingly.

Insert a row

The following dialog is displayed when choosing to insert a new row using the Form
Editor.

Figure: The form editor as it appears when a new row is about to be edited

The form editor automatically enables the checked state for all columns that do not
accept nulls. All other fields are unchecked with the value of (null) (or whatever the text
representation of null has been set to in Tool Properties). Now specify the values
accordingly and press the Insert button to perform the insertion. The form editor is
closed if the execution was successful.

The Data->Insert (Keep Window) is an alternate insert operation that is used to
insert the new row. The difference is that the form editor dialog is kept. This is useful if
successive inserts need to be made.

Edit a row (update, delete or insert copy)

Do the following in the Data tab grid to edit a row using the form editor:

1. Double click on the row header for the row that is to be edited
2. Select one or more cells in the row and press the Edit row in a form tool bar

button

The first choice is useful if the table has primary keys or if the database table accepts an

update request based on all current values for the row. The second choice is useful
when the table has primary keys or when one must be able to select the columns (cells)
that will form the Selected Columns where clause. See Edits might be denied for more
information.

Figure: The form editor as it appears when edit of an existing row has been
requested

Update the row

All fields are automatically unchecked when the form editor appears in edit mode.
Change the desired values and press the Update button to perform the update request.

The form editor is closed if the update operation is successful.

Delete the row

To delete the current row in the form editor just press the Delete tool bar button. A
confirmation dialog might be displayed (the appearance of this dialog can be specified in
Tool Properties) in which the deletion must be confirmed.

Figure: Confirmation dialog when deleting a row

The form editor will be closed if the delete operation is successful.

Insert a copy of a row

The form editor allows a new row to be inserted based on the values that are currently
in the editor. Make sure to set each fields check state or use the Edit->Check All
Values menu choice to enable the checked state for all fields. Use the Insert tool bar
button or Data->Insert (Keep Window) menu operation to perform the insertion.

Import from File

The File->Import From File operation can be used to load any file into the currently
selected field. Importing from file is exactly the same as manually entering the data i.e
the max field sizes are considered and it might not be possible to load a file for which
content does not fit into the actual field.

Imported binary data with a recognized binary viewer will be displayed accordingly.

Export from File

The File->Export To File is used to export the content of any field including binary
data to a file.

Editing Binary data/BLOB and CLOB

There are a few constraints specifically for editing of BLOB and CLOB data types in
DbVIsualizer:

● They can only be edited in the form editor
● A primary key is recommended to successfully update these data types
● Note: A primary key is required for update of BLOB and CLOB in Oracle

Binary data in DbVisualizer is the generic term for several common binary database
types:

● LONGVARBINARY
● BINARY
● VARBINARY
● BLOB

Read the following sections about CLOB and Binary/BLOB data for specific information

CLOB

CLOB data appears (apart from other data types) in a multi line text field in the form
editor. Data can be entered manually or imported using the File->Import From File
operation.

Figure: The CLOB text editor

Binary data/BLOB

Binary data data can by its nature not be manually edited in DbVisualizer, it can only be
imported from a file.

The form editor recognizes some common formats and presents them in an appropriate
viewer.

GIF, JPEG and PNG viewer

Figure: Binary data viewer for common image formats

Serialized Java objects viewer

Figure: Binary data viewer for serialized Java objects

Hex/Ascii viewer

The generic hex/ascii viewer is used if the data format is not recognized.

Figure: Hex/Ascii viewer for unrecognized binary data

Create Table and Index Assistants

Introduction

The Create Table and Index Assistants are used to create new tables and indexes. The
assistants are quite simple to use since they examine various meta data in the database
(depending on what assistant is used) and then let the user point and click to define the
actual table or index. Both assistants finally generate the appropriate SQL and pass it
over to the SQL Commander which is used to execute it.

These utilities are launched from the Database main menu or in the Database
Objects tree right click menu. The menu choices are enabled only if a table or index
can be created for the selected node in the Database Objects tree.

Note: Remember to manually select the Reload right click menu choice in the
Database Objects tree once a new table has been created.

Create Table

Start the table creation assistant by choosing the Database->Create Table menu
choice or the Create Table menu choice in the Database Objects tree right click menu.
Make sure you have located and selected the appropriate object in the Database
Objects tree as this selection is used to define which database, schema, etc. the table
will be created in.

Figure: The right click menu in the Database Objects tree

The Create Table assistant is organized in three areas from the top:

● Table Info
Specifies the owning database connection, database and/or schema. These are
picked up from the selection in the tree when the assistant is started. Table name
is empty and must be specified.

● Columns
The list is used to organize the columns that will be in the final create statement.
The Data Type column is a list of supported data types for the actual database.
Columns can be re-ordered using the main controls.

● SQL Preview
The SQL previewer instantly shows the SQL that is used to create the table.

Figure: The table assistant

Columns

Add columns by using the Edit->Insert menu choice and Edit->Delete to remove the
currently selected row. They can be re-organized using the Edit->Move Up and Edit-
>Move Down menu operations.

The assistant is based on generic JDBC and it is the responsibility of the user to enter
the required fields i.e. specifying size for text data types, ignore size for some BLOB
types, enter scale for decimal types, etc.

The Data Type field for a column when selected contains a list of valid data types for
the actual database connection.

Figure: Data Type list (for MySQL)

The Size and Scale fields are used either in conjunction or else the size field on its own.
Size is often used to set the max length of text columns. It is also used in combination
with the Scale field when defining decimal boundaries.

Figure: Size and scale for a DECIMAL data type

The above example will allow a total length (including the decimal places) of 7.
Examples:

 1.02
 9871.1
 8172.0
 18291.22
 12.112 <- Error
1921211.11 <- Error

SQL Preview

The SQL Preview area is updated automatically to match the edits made in the
assistant. The preview is read only.

Figure: The SQL Preview for a table

Execute

When you are satisfied with the table then choose File->Pass SQL to SQL
Commander menu choice. The SQL is then inserted into the SQL Commander. Now
select Database->Execute main menu choice to execute it as per any regular SQL. If
any errors appear during the execution then go back to the Table Assistant and make
the necessary changes.

Note: If you want to refine the setup of a table then just select the already visible Table
Assistant window. Do not choose the Create Table menu choice again since it will then
clear the assistant from its current setup.

Create Index

The Create Index Assistant is much the same as the Create Table Assistant. It is
launched from the same menus and the overall layout and controls are the same. The
only difference is the Columns list which now lists the columns that will be part of the
index. The Column field when selected lists the current columns in the table.

Figure: The Index creation assistant

The example shows that a new unique index, UniqueName will be created for the
MyFirstTable. It will index the Name column in Ascending order.

Please read the previous sections on how to use the Table assistant to edit and create
the actual index.

SQL Bookmarks

Introduction

The SQL Bookmark feature was one of the original ideas when DbVisualizer was first
designed. The background is that most SQL tools offer quite good support to edit and
test SQL statements. But when the final optimized and really awesome SQL is complete
then you're all alone. (We used to use a standard text editor and the famous copy/paste
capability to transfer SQL's from and to SQL*Plus ;-))

The key concept behind the bookmark management is to offer a way to save SQL
statements between invocations of DbVisualizer and make it easy to execute them.
Another important requirement is to organize SQL statements in folders for structural
and grouping purposes. The core of the bookmark management is the Bookmark Editor.
It is here the bookmarks are organized.

The bookmark editor depends heavily on the SQL Commander since when requesting to
execute an SQL Bookmark the bookmark editor will pass the actual SQL along with the
connection data to the SQL Commander. It is then the SQL commander that is used to
edit and test the SQL until it is complete.

What's a bookmark in DbVisualizer?

An SQL Bookmark is generally an SQL statement that is saved between invocations of
DbVisualizer. In addition it also keeps related information needed to execute the SQL
and present the result accordingly once it is requested.

● SQL statement
● Bookmark name
● Database Connection
● Catalog (aka Database)
● Chart settings (optional)

The bookmark management is primarily used to save SQL statements that are used
often or for whatever reason there might be. There are different types of bookmarks
and DbVisualizer automatically creates bookmarks in the following function areas:

● Each SQL that is executed in the SQL Commander is saved as an SQL bookmark in
the History folder

● Each monitored SQL statement in the Monitor feature is an SQL bookmark and is
added to the New folder

(Read more about this in the following sections).

The Bookmarks Main Menu

The bookmarks main menu in the DbVisualizer window contains the following choices:

Figure: The Bookmark main menu

All except the Bookmark Editor choice are disabled if you are not in the SQL Commander
tab.

Menu
Choice

Description

Bookmark
Editor

Requests to display the Bookmark Editor.

Add
Bookmark
to Folder

This is composed of a sub menu in which all folders are displayed. This
list displays the paths for all folders (i.e the folder hierarchy from the
root). The root folders are Personal, New or History (read more about
these in the sections below). Once a folder has been selected the
following dialog is displayed. Here you can change the default name and
add an optional note.

Replace
Bookmark

This option is used to replace the chosen SQL bookmark with the SQL
and connection data that is in the current SQL Commander editor. The
replace bookmark menu consists of the root folders and last in the menu
possibly the name of the last SQL bookmark that was passed from the
bookmarks editor. If you want to replace the data for that SQL Bookmark
just select its name in the menu.

Get
Bookmark

Get Bookmark shows the same menu hierarchy as Replace Bookmark
except that it is used to fetch the chosen SQL Bookmark and insert it
into the current SQL Commander editor.

Bookmark Editor

The bookmark editor is the core of the bookmark management and is used to organize
SQL bookmarks in folders and to do various adjustments.

Bookmark list

The editor is based on a tree list with the same structure as the tree that appears in the
Bookmarks main menu options. The tree has three root folders that cannot be
changed, moved or removed. There is basically no difference between these root folders
except that they are used in different contexts in DbVisualizer.

● Personal
This root folder is supposed to hold the structure of favorite SQL bookmarks. By
putting SQL bookmarks in folders you get a better organisation and overview of
your bookmarks. All nodes in the root folder are manually maintained.

● New
Creating Row Count Monitors in the Database Objects->Data tab will add
these monitors (as SQL Bookmarks) to the New root folder.

● History
All SQL statements or scripts that are executed in the SQL Commander are
automatically added in the History root folder. The latest executed statement
appear first in the list.

(The number after the root folder names indicates the number of SQL bookmarks that
are in that root folder).

Figure: The Bookmark Editor

You cannot create folders or SQL bookmarks in the New or History root folders. The
way to work with these folders is to copy the SQL bookmarks you want from them into
the appropriate location in the Personal root folder.

The tree of folders and SQL bookmarks is contains the following information:

Column in
list

Description

Name

The name of the node (folder or SQL bookmark). Modify the name by
selecting the column and click once to get into editor mode. The Edit-
>Change Name menu choice can be used for the same purpose. If a
SQL bookmark was created by some other function in DbVisualizer then
the name will be the first 40 characters of the SQL statement.

Database
Connection

The database connection column when clicked displays a list of all
defined database connections. The list indicates whether a connection is
established or closed. It is here you specify using another database
connection for an SQL bookmark.

Catalog

This column lists the Catalog (aka Database) that was current when the
bookmark was created. You can change the Catalog by clicking in it. A
list of accessible catalogs is then displayed.

Note: The list of catalogs is empty if the Database Connection is not
established.

Monitor
Check this box to enable the SQL bookmark to become a monitor and
thereby appear in the Monitor main tab. SQL's that returns results are
the most obvious candidates for being monitored.

Contain
Variables

This column is read only and indicates whether the SQL statement
includes any DbVisualizer variables. (I.e $$variable name$$)

Multi SQL
This column is also read only and indicates whether the SQL statement
is composed of several SQL statements (aka script). This is determined
by looking for statement delimiters in the SQL.

New and History root folders

The number of SQL bookmarks that may be added by DbVisualizer to the New and
History root folders are specified in the Tool Properties->Bookmarks category.
Bookmarks in these folders can be removed one by one or each folder can be cleared
using the File->Clear all New entries or File->Clear all History entries.

SQL Editor

Monitor information

The monitor sub tab controls the total number of rows that will be kept in the result grid
until rows are automatically removed. This feature is specific to the monitor feature.
Please see Charts and Monitors for more information.

The Note field

The note field can be used to write a short note about the SQL Bookmark. This note will
appear as a tool tip in the Bookmarks main menu.

Executing an SQL bookmark or folder of SQL bookmarks

The SQL editor in the bookmark editor can be used to modify the SQL but it is not the
place to execute SQL statements. Instead it is the SQL Commander that is used to
execute SQL's. Select the Edit->Execute menu operation to copy the selected SQL
bookmark into the SQL Commander. The SQL Commander is then used to execute and

edit the SQL. Once you are satisfied with it then select the last entry in the Bookmarks
menu:

Figure: The Bookmark->Replace sub menu

If the last entry displays "No current bookmark" then it indicates that the currently
edited SQL was not passed from the Bookmark Editor. You can use the other menu
choices to locate the actual bookmark that will be replaced.

The Execute operation can also operate on a folder. Doing this will result in a script of
all direct child SQL bookmarks that are located in that folder. Each of the SQL
statements will be delimited by the delimiter as specified in Tool Properties.

Figure: Selecting a folder for execution

Once the Execute is selected the following will appear in the SQL Commander editor:

Figure: The SQL Commander editor

Note that the Database Connection and Catalog lists are empty. You need to select
these from the lists when a script of SQL bookmarks is passed from the Bookmark
Editor.

Tool Properties

Customizing DbVisualizer

DbVisualizer is highly customizable, you can control formatting, layout and the way
DbVisualizer interacts with databases. The default settings are good enough for the
average user but sometimes it is necessary to modify properties. This chapter guides
you through all the properties.

Note: Not all properties that are saved between invocations are configurable through
the tool properties dialog since these are instead adjusted in the appropriate places in
the application.

Figure: The Tool Properties window

The Tool Properties window is organized as in many other applications. The category
list in the left area and the properties for the selected category in the right area. A
category may group one or several properties.

The buttons at the bottom of the window control whether the changed properties should
be applied using the Ok button, if changes should be reverted using the Cancel button
or if the factory defaults should be applied using the Defaults button.

Note that the Ok and Defaults buttons are used to apply values for all categories and
not only the currently selected one.

The user preferences (XML) file

All properties are saved in an XML file. The exact location of this file is platform
dependent. The location on your system is listed in the frame header of the main
window. The XML file contains, in addition to all properties, also the information about
drivers, database connections, bookmarks, etc. The general recommendation is to not
edit this file manually even though it is quite easy to do so.

DbVisualizer automatically creates a backup copy of the XML file when the application is
started. The location of this file is the same as for the standard XML file except that the
.bak suffix is appended to the file name. The standard XML file might get broken for
various reasons. If a warning message that the XML file could not be read is displayed
during launch of DbVisualizer then simply copy the backup file to the standard location
and restart the application. If the XML file is moved from its standard location or if it is
removed then DbVisualizer will automatically create a new one.

Tip: the -up command line argument is used to identify the file name (and path) to an
alternate XML file.

Categories

The following sections describes each property.

Appearance

Property Description

Look and Feel

Controls which look and feel will be used.
Note 1: You must restart DbVisualizer in order to use a new look
and feel.
Note 2: Some look and feels are platform specific and do not
appear on all OS'es

Metal (Ocean)

Motif

Windows

Alloy

GTK+

Icon Sizes
The Menus, Main Tool Bars, Sub Tool Bars settings are used to
control the size of the icons.

Show Tab
Icons

Specifies whether an icon will appear in the header of all tabs.

Database Connection

Property Description

Run "Connect All"
at Startup

Defines whether a database connection will be connected when
the Connect All operation is selected in the main window
menu bar.

Connection
Authentication

Save Password specifies if connection passwords should be
saved between invocations of the application. (Passwords are
encrypted).
Require Userid specifies if DbVisualizer should ask for userid
when connecting a database connection. (DbVisualizer will only
ask if there is no userid entered already).
Require Password specifies if DbVisualizer should ask for
password when connecting a database connection.
(DbVisualizer will only ask if there is no password entered
already).

Connection
Timeout

Specify number of seconds that the driver will wait until
terminating ongoing connection request.
Note: This property is handled by JDBC drivers and might not
be supported.

Show only default
Database or
Schema

Check to enable that only default database and/or schemas will
appear in the Database Objects tree and throughout the
application. The default Schema in Oracle is the schema with
the same name as the userid that is used when connecting.

Confirm
"Disconnect All"

Checking this property will force a dialog to be displayed before
disconnecting all current database connections using the
Disconnect All operation.

Data Formats

Property Description

Date Format
Select the date format that will be used throughout the
application (i.e grids, forms and during editing). More
information below.

Time Format
Select the time format that will be used throughout the
application (i.e grids, forms and during editing). More
information below.

Timestamp Format Select the timestamp format that will be used throughout
the application (i.e grids, forms and during editing). More
information below.

Numbers Format Specifies how numbers will be formatted.

Decimal Number Format Specifies how decimal numbers will be formatted.

Null String
This is the string representation of the null value. This
string is the readable form of null and appears in grids,
forms, exports and during editing.

Date, Time and Timestamp formats

The lists for date, time and timestamp format contains a collection of standard formats.
If these formats are not suitable then you can enter your own format in the appropriate
field. The tokens used to define the format is listed in the right click menu while the
field has focus.

Figure: The date and time right click menu

The complete documentation for these tokens are listed in the following web page
SimpleDateFormat.

Table Data

Property Description

Show Table
Row Count

Specifies if the number of rows in a table will be displayed in the
header of the table when in the Database Objects->Data tab.
Enabling this property will cause an extra round trip to the database
(i.e minor performance penalty)

Highlight
Primary Key
Columns

Specifies if Primary Key columns will be indicated in the Database
Objects->Data tab, Variable Substitution dialog, SQL Commander
Result grids and in the References Graph.

Confirm Data
Deletion

Check to enable the Confirm Delete dialog when removing rows in the
Inline and Form based editors

Include
Variables in
SQL

Specifies if the right click menu operations in the Data tab will create
appropriate SQL statements that include DbVisualizer variables or if
the generated statements are plain SQL. Letting DbVisualizer
generating statements with variables results in the variable
substitution dialog being displayed when these statements are
executed in the SQL Commander.

Max Rows at
First Display

Set the number of rows that will be fetched for a table in the Data tab
when a table is first displayed.

Data Editors

Property Description

Confirm Data
Deletion

Check to enable the Confirm Delete dialog when removing rows
in the Inline and Form based editors

Reload Grid after
Edit

Check this to enable auto reloading of the grid after a successful
edit in the inline editor.

SQL

The SQL category groups properties that are related to execution of SQL statements and
the processing associated with it.

SQL Statements

This category controls the SQL templates that DbVisualizer uses internally throughout
the application. Each SQL template is composed of the standard SQL and the
DbVisualizer Variable notation. A variable is identified by the Variable Identifier and
can be composed of several parts each delimited by the Variable Delimiter.
DbVisualizer relies on a list of pre-defined variable names that are accessed in the SQL
Statement Template right click menu:

Figure: All pre-defined variables

A specific pre-defined variable can be used in on or more of the SQL templates. Using a
variable in a SQL statement that is not valid will result in the variable appearing as is
once the statement is executed.

There is normally no reason to modify the SQL templates nor the variable identifier or
delimiter settings. There might however be circumstances when edits are needed:

● To put quotes or brackets around table names
● To change the variable identifier or variable delimiter since the default settings

may interfere with object names in the database
● To modify the appearance of the where clause or the list of columns

Note: change of SQL templates should be considered in the Connection Properties tab
instead of in Tool Properties. The reason is that SQL templates and the associated
settings are most often related to a specific database connection.

Detailed information about variables and their syntax is provided in the Executing SQL
statements in the SQL Commander.

Property Name Description

SQL Templates

SELECT ALL
Command used when selecting all rows for a
table

SELECT ALL
WHERE

Command used when selecting some rows for
a table

SELECT
COUNT

Command used to get the number of rows in
a table

INSERT INTO
Command used to insert a new row into a
table

UPDATE
WHERE

Command used to update an existing row in a
table

DELETE
WHERE

Command used to delete a specific row in a
table

DROP TABLE Command used to drop a specific table

CREATE
TABLE

Command used to create a new table with an
optional primary key

CREATE
INDEX

Command used to create an index for a
specific table

Monitor Row
Count

Command used to get the number of rows in
a table and the current time stamp

Monitor Row
Count
Change

Command used to get the row count
difference in a table compared to the previous
execution. The calculated row count and the
current time stamp is returned

Enclosing
Characters

Table Name
Prefix/Suffix

Here you can enter the character(s) that
DbVisualizer will prefix/suffix all table names
with. This is needed when dealing with table
names that for example contains a blank
character, etc.

Column
Name
Prefix/Suffix

See above.

Variable Identifier
The identifier for a variable. A variable starts
and ends with this identifier.

Variable Delimiter
The delimiter used to identify the parts of a
variable.

Statement Delimiters

Statement delimiters define how a script should be divided into specific SQL statements
in the pre-processing phase.

Property Description

SQL Statement
Delimiter 1

Defines the character(s) used to delimit one SQL statement from
another in a SQL script

SQL Statement
Delimiter 2

Defines the additional character(s) used to delimit one SQL
statement from another in a SQL script. If there is no need for more
then one SQL statement delimiter then set this one to the same as
delimiter 1.

Allow "go" as
Delimiter

Specifies whether go as the first word on a single line will be
interpreted as a statement delimiter.

Begin
Identifier

Defines the character(s) that identifies the start of an anonymous
SQL block

End Identifier
Defines the character(s) that identifies the end of an anonymous
SQL block

Pre-processing

Pre-processing properties define as the name implies the settings that are used when
DbVisualizer pre-processes any SQL statement or script of statements before executing
it with the JDBC driver.

Comments

Property Description

Single Line Identifier 1
Defines the character(s) that identifies the beginning of
a one line comment

Single Line Identifier 2
Defines the additional character(s) that identifies the
beginning of a one line comment

Block Comment Begin
Identifier

Specifies the character(s) that identifies the start of a
multi line comment block

End
Specifies the character(s) that identifies the end of a
multi line comment block

New Lines

Property Description

Remove New
Line
Characters

Specifies whether any new line characters should be removed from
any SQL statement executed in the SQL Commander and in the
implicit SQL execution functionality in DbVisualizer. Some
drivers/databases such as DB2 requires that no new line characters
are part of any executed SQL.

Transaction

Property Description

Auto Commit

Defines if each executed SQL statement will be auto committed
or not. This setting applies for all SQL's that are executed in the
SQL Commander. The inline and form editors in DbVisualizer
Personal handles the commit and rollback management
independently of the setting of Auto Commit.

Pending
Transactions at
Disconnect

Defines what DbVisualizer will do on exit from the application
when the auto commit setting is disabled.

Transaction
Isolation

Attempts to change the transaction isolation level for all
database connections. Note: If this property is changed during a
transaction, the result is JDBC driver specific.

Copy

The copy category groups properties that are used to control the result of using Copy
Selected Cells or when using the Ctrl-C shortcut in grids.

Property Description

Column Delimiter
Specifies the delimiter between columns in a multi column
copy

End of Line Delimiter
Specifies the new line control characters for multi row copy
requests

Bookmarks

Property Description

Number of
Bookmarks Limit

Specifies the number of SQL bookmarks that the New and
History bookmark object may keep until the lists are
truncated.

Monitor

Property Description

Start Monitors
Automatically

Check to enable start of monitors automatically when
database connections are established.

Grid

Property Description

Fit Grid
Column
Widths

Enable to let DbVisualizer automatically fit the content in each grid
column based on the widest cell value.

Meaning of
setting Max
Chars

The Max Chars property in the Database Objects Data tab and in the
SQL Commander is used to control the max number of characters
that text values can hold. If the number of characters for a text
column is wider then this setting then the column is colored in a light
red color.

The meaning of setting this property can be one of the following:

● Truncate Values
Will truncate the original value to be less then the setting of
Max Chars.
Note: this will affect any subsequent edits and SQL operations
that use the value since it's truncated. This setting is only
useful to save memory if viewing very large text columns.

● Truncate Values Visually
Will truncate the visible value only and leave the original value
intact. This is the preferred setting since it will not harm the
original value. The disadvantage is that more memory is
needed if dealing with large text columns.

Colors

The Colors category defines how odd and even numbered rows in grids should be
presented.

Binary/BLOB and CLOB Data

Property Description

BLOB
Specifies how BLOB and binary data values will be represented in grids.
Setting this property to By Value will result in performance penalties and
the memory consumption will increase dramatically.

CLOB
Specifies how BLOB and binary data values will be represented in grids.
Setting this property to By Value will result in performance penalties and
the memory consumption will increase dramatically.

Editor

The editor category controls various settings specific for the SQL Commander editor.

Key Bindings

The editor category is used to modify the key bindings that are used in the editor.

Auto Completion

Property Description

Prepend Column Name
with Table Name

specifies if completed column names should be prefixed
with the actual table name i.e TABLE.COLUMN. This
setting will only have effect if NOT using table name
aliases.

Prepend Table Name with
Schema/Database Name

This property is self explanatory.

Fonts

Individual fonts can be defined for SQL editors and grids.

Debug

The debug category is used to control the amount of output that is produced when
setting various debug modes. Normally only error messages are displayed in the default
debug destination which is the Tools->Debug Window. The support team often refer
to the debug properties when we want more information in a problem situation.

Property Description

Debug Output
Destination

Specifies the destination to which all debug messages will be written
to. It is not advisable to set this to Off since then also error
messages will then also be ignored. Standard Out is only useful if
the debug mode of the DbVisualizer launcher is enabled.

Debug
DbVisualizer

Defines the amount of logging that will be produced. Full output is
when Log Level is set to Debug and lowest output is Error. Setting
Detail Level to Full produces the most detail and also consume
more resources.

Read more about Problem Resolution.

Export, Import and Print

Introduction

The export feature is used to export data that has been fetched and presented in
DbVisualizer. The export wizard dialog looks different depending on whether a grid,
graph or chart data is going to be exported. The following sections describe the settings
that can be made in each of these contexts. There are major differences between
DbVisualizer Free and Personal when exporting grid data. This document explains the
complete functionality in the Personal edition even though it implicitly covers the export
functionality in DbVisualizer Free.

The import feature is used to import data stored in CSV (Character Separated Values)
format from files.

The printing feature can be used to print grid and graph data to printer or file.

Exporting very large result sets using the standard export feature may fail with memory
problems since all data must first be presented in DbVisualizer. Using the @export client
side command in the SQL Commander solves this problem since the data is exported on
the fly while it is fetched from the database.

Export Grid data

The Export wizard is primarily initiated using the File->Export main menu choice. This
operation examines the current context and displays the appropriate wizard. The File-
>Export Selection main menu choice is specifically for Grid contexts and is used to
export the current selection instead of all data in the grid. It is only enabled if the
current context is a grid and if there are any selected cells in it. In addition all grids
throughout DbVisualizer offer the right click menu choice for Export Selection. It is a
shortcut for the File->Export Selection main menu operation.

Settings page

There are a number of options to configure how the data should be exported. The
settings page contain general properties that control how the exported data should be
formatted. All settings in the settings page can be saved to a file for later use in the
export wizard or in the SQL Commander when exporting result sets using the @export
editor command.

Figure: The grid export wizard

Read the sections below for detailed information on each field and what settings that
can be made.

Output Format

Grid data can be exported in the following formats.

Format Description

CSV

The CSV format (Character Separated Values) is used to export the grid of
data to a file in which each column is separated with a character or several.
It is even possible to specify the row delimiter (aka newline sequence of
characters).

5,Hepp,59248
15,Hopp,41993
16,Hupp,44115

The above example use a "," as the column delimiter and a "\n" sequence as
the row delimiter (invisible above).

HTML
The data is exported in HTML format using the <TABLE> and associated
tags.

SQL

The SQL format simply creates an SQL INSERT statement for each row in
the grid. It also uses the column names from the grid to define the column
list in the SQL statement.

insert into table1 (Column1, Column2, Column3) values (5,
'Hepp', 59248);
insert into table1 (Column1, Column2, Column3) values (15,
'Hopp', 41993);
insert into table1 (Column1, Column2, Column3) values (16,
'Hupp', 44115);

XML

The XML format is handy when importing or using the exported data in an
XML enabled application. The structure of the XML format is:

<ROWSET>
 <ROW>
 <Column1>5</Column1>
 <Column2>Hepp</Column2>
 <Column3>59248</Column3>
 </ROW>
 <ROW>
 <Column1>15</Column1>
 <Column2>Hopp</Column2>
 <Column3>41993</Column3>
 </ROW>
 <ROW>
 <Column1>15</Column1>
 <Column2>Hupp</Column2>
 <Column3>44115</Column3>
 </ROW>
</ROWSET>

Encoding

The encoding choice controls what encoding the data will be exported in. This will also
set the encoding in the HTML and XML headers. The default choice is based on your
systems default encoding.

Data Format

The data format settings defines how the data for each of the data types will be
formatted.

Quote Text Data

Defines if text data should appear between quotes or not. Selecting the ANSI choice will
automatically prefix any single quotes with an additional one.

Options

The options section is used to define settings that are specific for the selected output
format.

CSV

Figure: CSV specific export options

HTML

Figure: HTML specific export options

SQL

Figure: SQL specific export options

XML

Figure: XML specific export options

Settings

The Settings button lists when pressed a menu with options to save and load settings to
and from a file.

● Use Default Settings
Press this button to initiate the settings with default values. Some of the settings
will be fetched from the general tool properties dialog.

● Load
Press this button to open the file choose in which you can select a settings file

● Save As
Use this choice to save the settings to a file

● Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be
pasted into the SQL Commander to define the settings for @export editor
commands.

Data page

The columns list is used to control what columns will be exported and the format of their
data. The list is exactly the same as the column headers in the original grid i.e. if a
column was manually removed from the grid before launching export then it will not

appear in this list.

Figure: The grid export wizard

The Table Rows fields tells how many rows that are available and the choice to
optionally specify the number of rows to export. This setting along with the Add Row
button is especially useful if using the test data generation feature described in the next
section.

Here follows information about the columns in the list.

Field Description

Export
Defines whether the column will be exported or not. Uncheck it to ignore the
column in the exported output.

Name
The name of the column. This is only used if exporting in HTML, XML or SQL
format. Column headers are optional in the CSV output format.

Type
The internal DbVisualizer type for the column. This type is used to determine
if the column is a text column (i.e if the data will be surrounded in quotes or
not).

Text
Specifies if the column is considered to be a text column (this is determined
based on the type) and so if the value will be enclosed in quotes.

Value
The default "$$value$$" variable will simply be substituted by the actual
value in the exported output. You can enter additional static text in the value
field. This is also the place where any test data generators are defined.

Generate Test Data

The test data generator is useful when you need to add random column data to the
exported output. The actual value of the data that is going to be in the exported output
is referenced by the $$value$$ variable in the Value field. This variable is simply
replaced by the real value during the export process. Additional static data can be added
before and after the $$value$$ field and will be exported as entered. The value field is
also the place to setup any test data generators. While in the editing mode of the value
field there is a right click menu with the supported generator functions.

Figure: Right click menu with the test data generator functions

Function Name Function Call Example

Generate random
number

$$var||randomnumber
(1, 2147483647)$$

Generates a random number between
1 and 2147483647

Generate random
string of random
size

$$var||randomtext(1,
10)$$

Generates random text with a length
between 1 an 10 characters

Generate random
value from a list
of values

$$var||randomenum(v1,
v2, v3, v4, v5)$$

Picks one of the listed values in
random order

Generate
sequential
number

$$var||number(1,
2147483647, 1)$$

Generates a sequential number
starting from 1. The generator re-
starts at 1 when 2147483647 is
reached. The number is increased with
1 every time a new value is
generated.

Test data generator example

Here follows an example that utilizes the test data generators. Consider this data:

Figure: Sample of grid data

The Data page will look like this based on exporting the previous grid.

Figure: The export window

The JOB column should not appear in the output and the new JOB_FUNCTION should
contain abbreviated job functions. To accomplish this we simply uncheck the Export
field for JOB entry. The Value for the JOB_FUNCTION is set to use the Generate
random value from a list of values function.

Figure: Customized columns list with a generator function

Previewing the data (or exporting it) in CSV format results in this:

EMPNO, ENAME, JOB_FUNCTION, MGR, HIREDATE, SAL, COMM, DEPTNO
7369, SMITH, adm, 7902, 2005-01-24 12:11:08, 800, (null), 20
7499, ALLEN, adm, 7698, 2005-01-24 12:11:08, 1600, 300, 30
7521, WARD, eng, 7698, 2005-01-24 12:11:08, 1250, 500, 30
7566, JONES, adm, 7839, 2005-01-24 12:11:08, 2975, (null), 20
7654, MARTIN, eng, 7698, 2005-01-24 12:11:08, 1250, 1400, 30
7698, BLAKE, eng, 7839, 2005-01-24 12:11:08, 2850, (null), 30
7782, CLARK, eng, 7839, 2005-01-24 12:11:08, 2450, (null), 10
7788, SCOTT, eng, 7566, 2005-01-24 12:11:08, 3000, (null), 20
7839, KING, eng, (null), 2005-01-24 12:11:08, 5000, (null), 10
7844, TURNER, eng, 7698, 2005-01-24 12:11:08, 1500, 0, 30
7876, ADAMS, fin, 7788, 2005-01-24 12:11:08, 1100, (null), 20
7900, JAMES, eng, 7698, 2005-01-24 12:11:08, 950, (null), 30
7902, FORD, eng, 7566, 2005-01-24 12:11:08, 3000, (null), 20
7934, MILLER, fin, 7782, 2005-01-24 12:11:08, 1300, (null), 10
7939, MILLER, fin, 7782, 2005-01-24 12:11:08, 1300, (null), 10
...

Preview

The preview page shows the first 100 rows of the data as it will appear when it is finally
exported. This is useful to verify the data before performing the export process. If the
previewed data is not what you expected then just use the back button to modify the
settings.

Output Destination

The destination field specifies the target destination for the exported data.

Figure: The output destination and final page for grid export

Destination Description

File This option outputs the data to a named file.

SQL
Commander

This destination will transfers the export data to the SQL Commander
editor. It is primarily useful when exporting the SQL output format.

Clipboard

Export to the (system) clipboard is convenient if you want to use the
exported data in another application without the extra step of
exporting to file first. Data can even be pasted into a spreadsheet
application such as Excel or StarOffice and the cells in the grid will
appear as cells in the spreadsheet. Read more about the CSV format
in the Format section.

Export Text data

The wizard when exporting result sets in Text format is very simple as it is only possible
to specify where the exported output should go.

Figure: Export window for text format result sets

Export Graph data

Exporting references graphs will export the graph in the same zoom level as it appears
on the screen. The export window when exporting graphs looks like this:

Figure: Export window for graphs

The export window is quite limited as compared to when exporting grids. The graph can
only be exported to a File in the JPEG or GIF formats.

Export of graphs cannot be previewed or exported to any other destination then file.

Export Chart data

Exporting charts adds the capabilities to set the size and orientation of the exported file.

Figure: Export window for charts

A chart can only be exported to a File in the JPEG and PNG formats. The optional
Layout settings are used to control the size of the image. The initial width and height
are the same as the size of the chart as it appear on the screen. The Size list when
clicked shows a list of well known paper formats. The Width and Height will be
changed to match the selected size. Setting the width and height or selecting a pre-
defined size will scale the exported image accordingly.

Export of charts cannot be previewed or be exported to any other destination then file.

Import Table Data

The import table data feature is used to import files whose data is organized as columns
with separator characters between them. The destination for the imported data can be
to a database table or a grid in DbVisualizer. The grid option is convenient for smaller
files as the grid functionality then can be used to do various things with the data. An
example is that a CSV file rather easily can be converted into an XML file or a HTML
document by using the data import feature to grid and then use the export functionality
in the grid to output the grid in the desired format.

The import wizard is launched from the Tools->Table Data Import menu choice.

Note 1: The first row in the source file is used to find out the actual columns.
Note 2: The import wizard can not be used to import binary data.

Source File

In the first wizard page select the source file to import.

Figure: The Source File import wizard page

Settings

In the settings page you specify options how the data in the file is organized. The Data
section at the bottom of the page lists a preview of the parsed data in the Grid tab
while the File tab shows the original source file. If a row in the Grid tab is red then it
indicates that the row will be ignored during the import process. This happens if setting
any of the Options that will result in rows not being qualified.

In the Delimiters section define what character that separates the columns in the file. If
enabling the Auto Detect choice then DbVisualizer will try the following characters:

● comma ","
● tab "TAB"
● semicolon ";"
● percent "%"

Use the Options section to further define how the data should be read.

Figure: The Settings wizard page

The following shows the preview grid with some rows red. The reason is that the Skip
First Row(s) and Skip Rows Starting With is set i.e the first two rows and the
rows starting with 103 will not be imported.

Figure: The Settings wizard page

Data Formats

The Data Formats page is used to define formats for some data types. The first row in
the preview grid here contains a drop down box which lists the actual data types. Just
select the appropriate type for the column.

Figure: The Settings wizard page

The following is displayed when selecting the drop down box in the preview grid.

Figure: The data type drop down

Import Destination

The import destination page initially shows two options, Grid and Database Table. The
Grid choice is used to import the data into a grid that will be presented in its own
window in DbVisualizer. When the Database Table choice is selected will you be
prompted to choose what target table to import to. The Map Table Columns with File
Columns grid will show what columns are in the selected database table and a column
with the columns in the source file. You can here select what fields in the source file
should be imported into what columns.

DbVisualizer automatically assigns the columns in the source file with the first columns
in the target table. You can then manually assign them. Choose the empty choice in the
columns drop down to ignore the column during import.

Figure: The data type drop down

Import process

The last wizard page is used to start and monitor the import process. Here you can
select whether all rows in the source file should be imported or only a portion. Errors
that occur during the import process will be presented in the log.

Figure: The import process page

Print

The printing support in DbVisualizer supports printing of Grids and Graphs. The print
dialog looks somewhat different depending on what is printed.

Note: Printing of charts is currently not supported. The workaround is simply to export
the chart and then use your favorite printing tool to get it on paper (a standard web
browser is sufficient).

Grid

Printing a grid in DbVisualizer causes the visual grid to be output on paper. This includes
the table headers, sort and primary key indicator, etc. It can be output as a screen shot
that spans several pages depending on the number of rows and columns that are
printed. The other solution to printing grids is to export to HTML and then use a web
browser to print it. The choice of which is more attractive than the other is up to you to
decide.

Figure: Standard print dialog

The content and layout of the print dialog is platform specific. The above screen shot is
from Linux/RedHat.

Graph

The graph printing setup dialog adds a step before the standard printing dialog is
displayed.

Figure: Print options when printing graphs

It is possible to specify the number of rows (pages) and columns (pages) that the
complete image will be divided into. It is also possible to select whether the view as it
appears on the screen will be printed or the complete graph.

Print Preview

The File->Print Preview feature is used to preview a grid or graph before print.

Grid Graph

Figure: Grid and graph print previews

Plug-in Framework

Introduction

Note: The plug-in framework is supported only by the DbVisualizer Personal
edition.

This document explains the database profile concept which is the base for how
DbVisualizer presents information in the Database Objects tree and in the Object View.
The document is targeted for advanced users needing to create or modify database
profiles.

What features in DbVisualizer are affected by a
database profile?

Key features in DbVisualizer are the database objects tree used to navigate the
database and the object view showing details about a database object. The general
problem exploring databases that can be connected via DbVisualizer is that they are all
different with respect to the information describing whats in the database (also called
system tables or database meta data). This briefly means that it's rather complex
for a tool such as DbVisualizer since each database must be explored specifically at the
implementation level. (JDBC offers a generic toolkit that can be used but its level of
support is very limited).

The database profile concept was introduced to ease the process of defining what
information DbVisualizer will display for each database. A database profile is an XML
document stored in a file which makes it extremely easy to modify what information
should be presented in DbVisualizer. No programming is necessary! DbVisualizer comes
with a collection of different object viewers that can be used depending on how object
data should be presented. Creating or modifying database profiles requires no technical
knowledge other then the basics in XML.

All database profiles are loaded from the DBVIS-HOME/resources/profiles directory.

The following figure illustrates what in the DbVisualizer user interface that is handled by
the database profile.

Figure: Database Objects tab

The red box at the left shows the database objects tree. This tree is used to navigate
the structure and contained objects in the database. Selecting an object in the tree will
show the object view (blue box) specifically for the selected object type. An object
view may have several data views with object information. DbVisualizer show these as
labeled tabs. The green box shows in this screen shot the content of the data view
labeled Columns. The type of viewer that is presenting the data in the screen shot is
the grid viewer. Read more about data viewers in the Viewers section.

Common for both the database objects tree and the object view are the SQL commands
that are used to fetch the information from the database. The associated SQL is
executed by DbVisualizer whenever a node in the tree is expanded (to find out any child
objects) or when a node is selected to fill the object data views.

How does DbVisualizer pick the correct database profile?

The way DbVisualizer determine what XML file to load is based on a couple of
parameters:

The default behavior is that DbVisualizer auto detects what profile to use as follows:

1. When the database connection has been established DbVisualizer also knows what
kind of database and JDBC driver that is being used.

2. The information about the database connection is now matched with the
information in the database-mappings.xml file.

3. If there is a matching profile then it will be used.
4. If there is no matching entry then a generic profile will be used. (This is solely

based on what JDBC offers).

A database connection can in addition be defined to always use a specific profile. This is
specified in the database connection properties feature. Manually choosing a profile
requires that the profile supports the actual database. If it doesn't then various errors
will be reported once the database objects tree is explored. (Whenever a profile is
manually selected must the actual database connection be re-started).

The name of the loaded profile is listed in the Connection tab status bar once the
connection has been established.

Figure: The status bar in the Connection tab

XML structure

The mapping from the visual components in the user interface described earlier and the
element definitions in the XML file is briefly as follows:

● The database objects tree (green box) is described by the <ObjectsTreeDef>
XML root element. (The Database Connections node is mandatory and its
appearance cannot be controlled by the profile).

● The object views (green and blue boxes) that may appear are described by the
<ObjectsViewDef> XML root element.

● The commands used to execute the SQL in order to get the information for both
the <ObjectsTreeDef> and the <ObjectsViewDef> definitions are defined by the
<Commands> XML root element.

The XML for a database profile is quite simple but there are a few things that must be
highlighted. All database connections loads a database profile from an XML file. If there
is no matching database profile then a generic profile will be used. This profile uses the
standard JDBC meta data calls in order to obtain information about the structure and
objects in the database. The generic profile is not one XML file as specialized profiles but
actually three files:

● generic-commands.xml
● generic-tree.xml
● generic-view.xml

All these three files a referred in the generic.xml file as include statements i.e each of
the above files will be included in the generic.xml file. The reason for this is that all of
these files can be included and extended in a specialized profile. See later for more

information.

The XML structure used to represent the database profile is organized as follows (in
order):

● <Commands>
Keeps <Command> child elements. Each command defines input, output, what
SQL to execute and optional attributes.

● <ObjectsTreeDef>
Describes how the database objects tree should appear.

● <ObjectsViewDef>
Describes the view for a specific object type.

XML skeleton

The following is a minimal XML file showing the key structure.

<?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd" [
 <!ENTITY generic-commands SYSTEM "generic-commands.xml">
 <!ENTITY generic-view SYSTEM "generic-view.xml">
]>
<DatabaseProfile
 name="sybase-ase"
 desc="Profile for Sybase ASE"
 version="$Revision: 1.3 $"
 date="$Date: 2005/04/21 13:40:40 $">
 <!-- === -->
 <!-- Definition of the commands -->
 <!-- === -->
 <Commands>
 &generic-commands;
 ...
 </Commands>
 <!-- === -->
 <!-- Definition of the database objects tree structure -->
 <!-- === -->
 <ObjectsTreeDef id="sybase-ase">
 ...
 </ObjectsTreeDef>
 <!-- === -->
 <!-- Definition of the database objects views -->
 <!-- === -->
 <!-- Include the generic-view -->
 &generic-view;
 <ObjectsViewDef id="sybase-ase" extends="generic">
 ...
 </ObjectsViewDef>
</DatabaseProfile>

Note: The name of the XML file (sybase-ase) and the values for the name attribute for
the DatabaseProfile, ObjectsTreeDef and ObjectsViewDef elements must be the same

The first rows in the XML defines external dependencies and their URI's. The DOCTYPE
identifier defines the DTD that is used to verify the XML with. The ENTITY identifiers
lists URI's for external references. In this case they identify the generic-commands.xml
and generic-view.xml files. They can then be referred in the XML as either &generic-
commands; and &generic-view; and simply means that the accompanying XML files
will be included in the XML.

The root of the database profile is the <DatabaseProfile> element. Continue to the
next sections for information about the elements forming the database profile.

XML Elements

The following section describes the key XML elements and their attributes.

<DatabaseProfile>

The <DatabaseProfile> is the root element in the XML file. It is required and have the
following attributes.

<DatabaseProfile
 desc="Profile for Sybase ASE"
 version="$Revision: 1.3 $"
 date="$Date: 2005/04/21 13:40:40 $">
 ...
</DatabaseProfile>

All attributes are required. They will appear in the Database Profile list when selecting
the properties for a database connection:

Figure: The list of available database profiles

<Commands>

This element keeps all <Command> child elements each describing the SQL and its
interface. Each <Command> element is identified by a unique id which is referred in
the ObjectsTreeDef and in the ObjectsViewDef definitions.

<Commands>
 &generic-commands;
 <Command>
 ...
 </Command>
</Commands>

The first statement in the <Commands> element is:

 &generic-commands;

This simply means that the generic-commands entity defined at the top of the XML file

will be included in the XML i.e all its definitions will be accessible as is.

<Command>

The <Command> element identifies everything needed for DbVisualizer to execute the
SQL associated with the command. The SQL must return a result set with 0 or several
rows i.e statements that doesn't return any result set is currently not supported. The
following command queries for login information in Sybase ASE.

<Command id="sybase-ase.getLogins">
 <SQL>
<![CDATA[
select name, suid, dbname, fullname, language, totcpu,
totio, pwdate from master.dbo.syslogins
]]>
 </SQL>
</Command>

The id for this command is sybase-ase.getLogins. The reason for prefixing the id with
the name of the profile is for maintainability. Since the generic-commands.xml file is
included in most profiles it is easier to set unique prefixes for all commands so that they
are not mixed with the the commands in the generic-commands.xml file.

Result set

The result set for the previous query looks as follows:

name suid dbname fullname language totcpu totio pwdate

sa 1 master (null) (null) 0 0 2005-02-24 23:59:14

probe 2 subsystemdb (null) (null) 0 0 2005-02-25 00:01:15

The way DbVisualizer handles the result set depends on whether the command is
executed as a request in the database objects tree (ObjectsTreeDef) or in the object
view (ObjectsViewDef). If executed in the database objects tree then each row in the
result set will be a new node in the tree. If executed in the object view then it is the
actual viewer component that decides how the result will be presented. For more
information how a result set is used in either the ObjectsTreeDef and ObjectsViewDef
read the specific sections.

Another important difference between the database objects tree and object view is that
the tree is a hierarchical structure of objects while object view presents information
about a specific object. An object that is inserted in the database objects tree is a 1..1
mapping with a row from the actual result set. The end user will see these objects
(nodes) by some descriptive name as defined in the ObjectsTreeDef. However, all data
for the row in the original result set is stored with the object in the tree. This is not the
case in the ObjectViewDef.

The following example put some light on this. Consider the previous result set and that
it is used to create objects in the database objects tree. The end user will see the
following in DbVisualizer. The visible name for each row is the name column in the
result set.

Figure: Sample of the Logins node having two child nodes

Each of the sa and probe nodes have all their respective data from the result set
associated with the nodes. The data is referenced as commandId.columnName i.e
sybase-ase.getLogins.name, sybase-ase.getLogins.dbname, etc. The complete
structure for the sa node then looks as follows:

sybase-ase.getLogins.name = sa
sybase-ase.getLogins.suid = 1
sybase-ase.getLogins.dbname = master
sybase-ase.getLogins.fullname = (null)
sybase-ase.getLogins.language = (null)
sybase-ase.getLogins.totcpu = 0
sybase-ase.getLogins.totio = 0
sybase-ase.getLogins.pwdate = 2005-02-24 23:59:14

<Input> - Setting input data

There are two types of Commands: with or without dynamic input. The difference is that
dynamic input Commands accepts input data that is typically used to form the WHERE
clause in the SQL. The previous example illustrates a static SQL (without dynamic data).

To allow for dynamic input just add the <Input> element as a child to the Command.
The SQL must also be modified to contain variables at the positions in the statement
that should get dynamic values. The following is an extension to the previous example
allowing for dynamic input.

<Command id="sybase-ase.getLogins">
 <SQL>
<![CDATA[
select name, suid, dbname, fullname, language, totcpu,
totio, pwdate from master.dbo.syslogins
where name = '${name}' and suid = '${suid}'
]]>
 </SQL>
 <Input>
 <Column name="name" value="sa">
 <Column name="suid" value="${sybase-ase.getProcesses.suid}">
 </Input>
</Command>

The previous example adds two input variables: name and suid. The value for the first
name input column is set to "sa".

<Column name="name" value="sa">

There is no magic with this definition since the ${name} variable in the SQL will be
replaced with "sa". (This variable is defined as an example. In a real profile it is better
to remove it since it's static and insert the value into the SQL).

The second input column definition introduces that variables can be set as value.

<Column name="suid" value="${sybase-ase.getProcesses.suid}">

The value for the suid definition will in this case get the value of the sybase-
ase.getProcesses.suid when the SQL is executed. So where is this variable defined?
As explained in the Result Set section we introduced how all the data for a row in the
result set is associated with the objects in the database objects tree. In addition can a
command reference information in parent object using the very same variable syntax.
So the variable ${sybase-ase.getProcesses.suid} simply means that DbVisualizer
will look through the parental tree structure and pick the first matching entry and use
its value.

<Output> - Re-defining the output

As mentioned earlier is a specific column value in a result set row referenced by the
name of the column. Sometimes this is not desirable and the <Output> definition can
be used to change this. The following simply identifies a column in the result set by its
index number starting from 1 and then force its name to be set as the value of the id
attribute.
<Output>
 <Column id="sybase-ase.getLogins.Name" index="1">
 <Column id="sybase-ase.getLogins.suid" index="2">
</Output>

Another option using the <Output> element is to alter the columns in the result set by
either adding, renaming or removing them.

<Output>
 <Column modelaction="add" index="THIS_IS_A_NEW_COLUMN" value="Rattle and Hum">
 <Column modelaction="rename" index="ADDR" name="ADDRESS">
 <Column modelaction="rename" index="2" name="PHONE">
 <Column modelaction="drop" index="MOBILE_PHONE">
 <Column modelaction="drop" index="4">
</Output>

(The rename and drop actions accepts either the name of the column or index number
starting from left with 1).

The add operation is used to add a new column to all rows. The value attribute accepts
variables using the ${...} syntax.
The rename operation simply renames a column.
The drop operation drops the specified column.

The rename operation is primarily used when building a custom command that is
supposed to be used by a viewer that requires a certain input by column names. Read
more in the <ObjectsViewDef> section.

<ObjectsTreeDef> - Definition of the Database Objects Tree

The ObjectsTreeDef controls how the database objects tree will be presented and what
commands that are used to form its content. The mapping between the ObejctsTreeDef
and the visual appearance in DbVisualizer is very easily mapped:

<ObjectsTreeDef id="sybase-ase">
 <GroupNode type="Databases">
 <DataNode type="Catalog">
 <GroupNode type="Tables">
 <DataNode type="Table"/>
 </GroupNode>
 <GroupNode type="SystemTables">
 <DataNode type="SystemTable"/>
 </GroupNode>
 <GroupNode type="Views">
 <DataNode type="View"/>
 </GroupNode>
 <GroupNode type="Users"/>
 <GroupNode type="Groups">
 <DataNode type="Group"/>
 </GroupNode>
 <GroupNode type="Types"/>
 <GroupNode type="Triggers">
 <DataNode type="Trigger"/>
 </GroupNode>
 <GroupNode type="Procedures">
 <DataNode type="Procedure"/>
 </GroupNode>
 </DataNode>
 </GroupNode>
 <GroupNode type="DBA">
 <GroupNode type="ServerInfo"/>
 <GroupNode type="Logins">
 <DataNode type="Login"/>
 </GroupNode>
 <GroupNode type="Devices">
 <DataNode type="Device"/>
 </GroupNode>
 <GroupNode type="RemoteServers"/>
 <GroupNode type="Processes"/>
 <GroupNode type="ServerRoles">
 <DataNode type="ServerRole"/>
 </GroupNode>
 <GroupNode type="Transactions"/>
 <GroupNode type="Locks"/>
 </GroupNode>
</ObjectsTreeDef>

Figure: The visual database objects tree and its XML definition

The screen shots shows all nodes representing the <GroupNode> definitions in the
ObjectsTreeDef. One exception is the Logins object that has been expanded to
illustrate how <DataNode> objects look. The ObjectsTreeDef in the example above has
been simplified to only show the type attribute. (The label of the nodes as they appear
in the visual tree is not listed in the ObjectsTreeDef example) The type attribute is
primarily used internally in the profile as an identifier between the ObjectsTreeDef and
the ObjectsViewDef. The type is also visible in the DbVisualizer GUI when either the tool
tip for a tree node is displayed and in the object view header. The type is also used to
identify what icon that will be used to represent the object.

There are no limitation on the number of levels in the ObjectsTreeDef. A good rule is
however to keep it simple and intuitive.

<GroupNode>

The <GroupNode> element is used to represent a static object in the tree and cannot
execute any commands. It is primarily used for structural and grouping purposes. The
GroupNode element have the following attributes.

<GroupNode type="SystemTables" label="System Tables" isLeaf="false">
 ...
</GroupNode>

The isLeaf attribute is optional and controls whether the GroupNode may have any child
objects or not. It can always be set to true but the effect in the visual database objects
tree is then that the expand icon to the left of the group node icon will always be
displayed even though it can never have any child objects. The default setting for
isLeaf is false.

<DataNode>

The <DataNode> element feeds the tree with dynamic data produced by Commands.
The example in the <Command> section querying for all logins look as follow in the
ObjectsTreeDef:

<GroupNode type="Logins" label="Logins">
 <DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">
 <Command idref="sybase-ase.getLogins"/>
 </DataNode>
</GroupNode>

First there is a <GroupNode> element with the purpose to group all child objects.
The <DataNode> have in this example the same attributes as the <GroupNode>, the
type is however "Login" instead of "Logins" as for the <GroupNode>. This difference
is important once the user click on either of the objects so that the Object View will
show the appropriate views. The <DataNode> definition can be seen as a template as
the associated command will fetch rows of data from the database and DbVisualizer will
use the <DataNode> definition to create one node per row in the result set.

The label attribute for the data node is somewhat different as it introduces the use of a
variable. The real value for the label will in this example be the value in the Name
column produced by the sybase-ase.getLogins command as you can see in the
<Command> definition (the name of the variables have the same prefix as the
commands).

The <Command> element defines by an idref attribute what command that should be
used to create the objects in the tree. The command in this case and in the Result set
section produced a result set with 2 rows and 8 columns. The result will then be that
two nodes will be created each with the label of the Name column in the result set.

Figure: Sample of the Logins node having two child nodes

The label can be changed by setting it to any other variable or a composition with
several variables:

label="${sybase-ase.getLogins.Name} (${sybase-ase.getLogins.dbname})"

Will result in following being displayed:

sa (system)
probe (subsystemdb)

The complete set of attributes for the <DataNode> element is as follows:

<DataNode type="value" - The type of node (required)
 label="value" - The visual label (required)
 isLeaf="true/false" - Specifies if the node can have child objects (default true)
 sort="col1,col2" - A comma separated list of names/variables used for sorting
 drop-label-not-equal="value" - Do not add the node if the label is not equal to this value
 stop-label-hot-equal="value" - The node will be a leaf if label don't match this value
 is-empty-output="continue/stop"/> - If result set it empty then use this to control whether child
 GroupNode/DataNodes should be added anyway or ignored

The <Command> definition in this example is the common way of referencing
commands i.e only by its name using the idref attribute. There are however situations
when additional data must be set in the <Command> specifically for a <DataNode>.
Continue reading the next section for details.

<Command>

The common way commands are referenced in the <DataNode> definition is by its id as
the idref attribute. Sometimes its is required that a specific <DataNode> must supply
for example different input to a command. This is done by simply adding the standard
<Input> element to the <Command>.

<DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">
 <Command idref="sybase-ase.getLogins"/>
 <Input>
 <Column name="name" value="sa">
 <Column name="suid" value="${sybase-ase.getProcesses.suid}">
 </Input>
</DataNode>

If the <Command> in the <Commands> section have any <Input> element defined
then this is overridden if specifying the <Input> element in the <DataNode> definition.

The value of any variables in the <Input> element will be searched based on the
strategy described in the Result set section.

<Filter>

The <Filter> element is specific for <Commands> that appear in the
<DatabaseObjectsTree> structure. A filter definition simply defines what columns for a
<DataNode> that are allowed to use in filters. These filters are more known as
Database Objects Tree Filtering in DbVisualizer and appear below the database objects
tree. The following example shows that filtering may be defined for these types:

● Catalog

● Table
● System Table
● View

For each of these <Filter> definitions are one or several columns defined that can be
used to filter on.

Figure: Screen shot showing the filter pane

<DataNode type="Views" label="${sybase-ase.getViews.Name}" isLeaf="true">
 <Command idref="sybase-ase.getViews">
 <Filter type="View" name="View Table">
 <Column index="TABLE_NAME" name="Name"/>
 </Filter>
 </Command>
</DataNode>

The filter definition above specifies that the type of object the filter is for is View. The
name specifies what the name of the tab in the filter pane will be. The <Column>
element(s) then defined the index which should be either a column name in the result
set or an index number representing the actual column. The name attribute then
specifies the name of the column as it will appear in the filter pane.

Several columns may be specified in the Filter element.

<SetVar>

The <SetVar> element is used to assist DbVisualizer so that it can work properly. There
are 3 main object types that DbVisualizer relies on:

● Catalog (name="catalog")
● Schema (name="schema")
● Table (name="table")

For these object types you need to define with the <SetVar> element that it is a
catalog, schema or table. The value should be the label of the appropriate object.

<DataNode type="Views" label="${sybase-ase.getViews.Name}" isLeaf="true">
 <SetVar name="schema" value="${getTables.TABLES_SCHEM}">
 <SetVar name="table" value="${getTables.TABLES_NAME}">
 <SetVar name="rowcount" value="true/false">
</DataNode>

The reason these <SetVar> elements are defined for the Views type in sybase-ase
profile are that schemas are not expressed in the <ObjectsTreeDef>. The schema
information is however available by the command that is executed. The
TABLES_SCHEM value is simply fetched from the result set and then set as schema
using the <SetVar> element. The same applies for the table setting.
(catalog is set by a parent <DataNode> so it is not needed here).

The rowcount setting control whether the object supports getting row count with
select count(*).

<ObjectsViewDef> - Definition of the Object View

The <ObjectsViewDef> element defines all objects views that will appear when selecting
a node in the database objects tree. The object type information between the
<ObjectsTreeDef> and the <ObjectsViewDef> are the same and makes it easy to map
what viewers should appear for a specific object type.

When an object is selected in the tree (sa in the screen shot below) its complete
information is passed to the object view handler (right in the screen shot). This handler
determines based on the object type what object view will present the information.
Once found all data views are created as tabs in the user interface. The selected object
and its information is passed to each of the data views for processing and presentation.
The following shows how the Object View look in DbVisualizer and its accompanying
<ObjectView> definitions.

<ObjectView type="Logins">
 <DataView type="Logins" label="Logins" viewer="grid">
 <Command idref="sybase-ase.getLogins"/>
 </DataView>
</ObjectView>
<ObjectView type="Login">
 <DataView type="Info" label="Info" viewer="node-
form"/>
 <DataView type="Databases" label="Databases"
viewer="grid">
 <Command idref="sybase-ase.getLoginDatabases"/>
 </DataView>
 <DataView type="Roles" label="Roles" viewer="grid">
 <Command idref="sybase-ase.getLoginRoles"/>
 </DataView>
</ObjectView>

Figure: The visual database objects tree, object view and its XML definition

The screen shot shows both the Logins node and its child nodes, sa and probe. What
is not obvious in the screen shot is the object types of these objects. The Logins node is
of type Logins while the child nodes are of type Login.

The <ObjectView> definition above shows the views for two types, Logins and Login.
Clicking on the node labeled Logins in the tree will show the object view for the
<ObjectView type="Logins"> definition while clicking on the nodes labeled sa or
probe will show the object view for the <ObjectView type="Login"> .

The example shows sa being selected. Its <DataView> definitions are (by label):

● Info
● Databases
● Roles

These views are presented in DbVisualizer as tabs. The label of each tab is the label
defined in the <DataView> and the icons are defined by respective object type.

The <ObjectsViewDef> element has the following attributes

<!-- Include the generic-view -->
&generic-view;
<ObjectsViewDef id="Views" extends="generic" >
 ...
</ObjectsViewDef>

The first statement in the <Commands> element is:

 &generic-view;

This simply means that the generic-view entity defined at the top of the XML file will be
included in the XML i.e all its definitions will be accessible as is. An example is the
<ObjectView> definition in the generic-view.xml file for the Table object type. It
contains a lot of <DataView> elements that identifies all viewers for the Table. If you
now want to use the generic Table <DataView's> but add a new Abbreviations
<DataView> then simply extend the generic Table <DataView>. This is briefly done by
adding the extends="generic" attribute in the <ObjectsViewDef> element. Then by

using the exact same object type in the extending <ObjectView> you will get this
behavior. Read more about extending <ObjectView's> in the Extending <ObjectView>
section.

<ObjectView>

The <ObjectView> element is identified by an object type and groups all <DataView>
elements that will appear when the object type is selected in the database objects tree.
Here follows the <ObjectView> definition for the Login object type.

<ObjectView type="Login">
 ...
</ObjectView>

This element is simple as its only attribute is the type. The type is used when a node is
clicked in the database objects tree to map the object of the type clicked and its
<ObjectView>.

<DataView>

The <DataView> element is where the things happen. It defines how the viewer should
be labeled in DbVisualizer, what viewer it should use, commands and some other things.
The following is the <DataView> definitions for the Login object type. (The
<ObjectView> element is part of the sample just for clarification).

<ObjectView type="Login">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Databases" label="Databases" viewer="grid">
 <Command idref="sybase-ase.getLoginDatabases"/>
 </DataView>
 <DataView type="Roles" label="Roles" viewer="grid">
 <Command idref="sybase-ase.getLoginRoles"/>
 </DataView>
</ObjectView>

This definition will be presented in DbVisualizer as described in the introduction of
<ObjectsViewDef> section. These three data view elements have the viewer attribute.
It identifies how the data in the view will be presented. See next section for a list of
supported viewers.

Viewers

DbVisualizer supports the following viewers:

Viewer
name

Require
<Comman

d>
child

element

Description
Optional

attributes

grid Yes Presents a results set in a grid

text Yes Presents one row column in a text editor
column="column
Name"

form Yes

Presents the row(s) from a result set in
a form. If several rows are in the result
then those are presented in a list.
Selecting one row from the list will
present all its column in a form

node-form No
Presents all data from the original result
set for the tree object in a form

table-refs Yes
Shows the references graph for the
table object

tables-refs Yes
Shows the references graph for several
tables in the result set

table-data Yes
Shows the table grid with editing
features

table-
rowcount

Yes Shows the row count for the table object

<Command>

Please read in <Command> section earlier as its capabilities is the same here.

<Action>

Note: This element can be used only if the viewer attribute is grid for the <DataView>
element.

The <Action> is used to define what additional actions should appear in the grid right
click menu. These will only be enabled if there is at least one cell selected in the grid.
The following is the <Action> elements that are currently supported. (<DataView> is in
the sample for clarification).

<DataView>
 <Action name="Script: SELECT ALL" template="SelectAllCommand">
 <Map from="OWNER" to="schema"/>
 <Map from="TABLE_NAME" to="table"/>
 </Action>
 <Action name="Script: DROP TABLE" template="DropTableCommand">
 <Map from="OWNER" to="schema"/>
 <Map from="TABLE_NAME" to="table"/>
 </Action>
</DataView>

A <Map> element is used to map the original result set column and the name for it as
used by the template.

Note: The current support for <Action> is somewhat limited as it is mapped only two
SelectAllCommand and DropTableCommand. It is not possible to add more actions.

<Message>

The <Message> element is very simple as it defines a message that will appear at the
top of the dataview tab (above the viewer). The definition is as follows:

<DataView type="Source" label="DDL" viewer="text">
 <Command idref="oracle.getDDL"/>
 <Message>
<![CDATA[
<html>
This view shows the complete DDL used to create the object.

Note: The DDL viewer requires at least Oracle 9i and later versions.
</html>
]]>
 </Message>
</DataView>

It can be used to further explain the content in the viewer.

Extending <ObjectView>

An existing <ObjectView> definition made in for example the generic-view.xml file can
be extended in a database profile by using a few action attributes for each of the
<DataView> elements. To accomplish extensions the object type specified in the
<ObjectView> type attribute must match the type in the parent profile. Now you have
the following options:

● Adding a <DataView>
Simply add the <DataView> definition and it will be added to the current list of
<DataView> definitions

● Dropping an existing <DataView>
Add the <DataView type="xxx" action="drop"> to drop the object type named
"xxx"

● Replacing a <DataView>
Just add the <DataView> with the exact same type as the parent <DataView>. All
the new settings of the new <DataView> will replace the existing settings in the
parent <DataView>

Mapping a database connection with a specific
database profile

The default strategy for how DbVisualizer loads a database profile for a database
connection is by auto detecting it. This is accomplished by the database-
mappings.xml file located in the DBVIS-HOME/resources directory. The file is
organized as follows. (The sample lists only two DatabaseMappings for the Sybase ASE
and Sybase ASE):

<DbVisualizer>
 <DatabaseMappings>
 <DatabaseMapping>
 <If name="DatabaseMetaData.getURL" value="^jdbc:sybase.*"/>
 <If name="DatabaseMetaData.getDatabaseProductName" value="^adaptive server enterprise.*"
 <Set name="profile" value="sybase-ase"/>
 <Set name="facade" value="com.onseven.dbvis.sql.facade.SybaseASEFacade"/>
 </DatabaseMapping>
 <DatabaseMapping>
 <If name="DatabaseMetaData.getURL" value="^jdbc:sybase.*"/>
 <If name="DatabaseMetaData.getDatabaseProductName" value="^adaptive server anywhere.*"/>
 <Set name="facade" value="com.onseven.dbvis.sql.facade.SybaseASAFacade"/>
 </DatabaseMapping>
 </DatabaseMappings>
</DbVisualizer

Each <DatabaseMapping> element identifies the rules for one specific database type.
<If> elements specifies the conditions that should be matched while the <Set>
elements specifies what should be set when the conditions are met.

Conditions can be matched using <If> with values from three different pools. The full
variable name that should be matched is composed of the pool name a dot (".") and the
variable name. Example. DatabaseMetaData.getURL. These are the support variable
pools:

● DatabaseMetaData.
Checks with any accessor method (that takes no arguments) in the
DatabaseMetaData object. The name of the accessor method must match exactly
the name of the appropriate DatabaseMetaData accessor.
Example: <If name="DatabaseMetaData.getURL" value="^jdbc:mysql.*"/>

● SystemProperty.
Checks the System.getProperties.
Example: <If name="SystemProperty.os.name" value="linux"/>

● SessionProperty.
Checks the DbVisualizer session properties i.e all Properties listed in the
<General> section of the user preferences file (aka dbvis.xml).
Example: <If name="SessionProperty.SQLAllowGo" value="true"/>

The <If> elements matches a condition with a value or value pattern based on regexp
expressions. (Read about regexp at
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html).

The <Set> element identifies what should be set once all <If> statements are satisfied.
The name attribute in the <Set> element currently supports the following:

● profile
The value should contain the name of the profile file without the .xml extension.
This is the profile that will be used

● facade
This is optional. If specified then it should contain a class name that is used as a
facade internally in DbVisualizer.
(Note: The public support for facade objects are currently limited and the general
approach at the moment is simply to ignore setting any facade since a default one
will be used).

If DbVisualizer finds a matching <DatabaseMapping> then it will load it and ignore any
following <DatabaseMapping> elements.
If no matching <DatabaseMapping> is found then the generic profile will be used.

Current restrictions

● It is currently not possible to express version dependencies in profile definitions
i.e do one thing for one version of a database and another thing for another
version of the same database

● The <SQL> element can only contain SQL code that DbVisualizer execute using
JDBC. It can not contain any executables, scripts or OS specific calls

● It is not possible to specify conditions or compound commands i.e all needed to

execute a command must be expressed in a single SQL statement.

Complete XML example

This is the complete XML file for the MySQL database profile. It is in comparison with
other profiles quite small. The reason for this is that MySQL is limited in the number of
objects it supports (ex tables, users, processes, etc). Oracle, DB2 and SQL Server does
on the other hand support a myriad of objects which results in bigger XML files.

<?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd" [
 <!ENTITY generic-commands SYSTEM "generic-commands.xml">
 <!ENTITY generic-view SYSTEM "generic-view.xml">
]>

<!--
 Copyright (c) 2004 Onseven Software AB. All Rights Reserved.
-->

<DatabaseProfile
 name="sybase-ase"
 desc="Profile for Sybase ASE"
 version="$Revision: 1.3 $"
 date="$Date: 2005/04/21 13:40:40 $">

 <!-- === -->
 <!-- Definition of the commands -->
 <!-- === -->

 <Commands>

 &generic-commands;

 <Command id="sybase-ase.getObjects">
 <SQL>
<![CDATA[
select owner = user_name(uid), name, crdate "Creation Date"
from ${database}.dbo.sysobjects where type = '${type}' order by name
]]>
 </SQL>
 <Input>
 <Column name="database" value=""/>
 <Column name="type" value=""/>
 </Input>
 </Command>

 <Command id="sybase-ase.getObjectSource">
 <SQL>
<![CDATA[
select text from ${database}.dbo.syscomments c, ${database}.dbo.sysobjects s
where s.id = c.id and s.name = '${name}'
]]>
 </SQL>
 <Input>
 <Column name="database" value=""/>
 <Column name="owner" value=""/>
 <Column name="name" value=""/>
 </Input>
 </Command>

 <Command id="sybase-ase.getTriggers">
 <SQL>
<![CDATA[
use ${database}
select 'name' = object_name(o.instrig),
 'insert' 'type', 'owner' = user_name(o.uid), 'table' = object_name(o.id)
from ${database}.dbo.sysobjects o where o.type = 'U' and object_name(instrig) is not null
union
select 'name' = object_name(o.updtrig),
 'update' 'type', 'owner' = user_name(o.uid), 'table' = object_name(o.id)
from ${database}.dbo.sysobjects o where o.type = 'U' and object_name(updtrig) is not null
union
select 'name' = object_name(o.deltrig),
 'delete' 'type', 'owner' = user_name(o.uid), 'table' = object_name(o.id)
from ${database}.dbo.sysobjects o where o.type = 'U' and object_name(deltrig) is not null
]]>
 </SQL>
 <Input>

from ${database}.dbo.sysobjects o, ${database}.dbo.syscomments sc
where o.deltrig = sc.id and o.id = object_id('${name}') and object_name(deltrig) is not
null
]]>
 </SQL>
 <Input>
 <Column name="database" value=""/>
 <Column name="owner" value=""/>
 <Column name="name" value=""/>
 </Input>
 </Command>

 <Command id="sybase-ase.getUsers">
 <SQL>
<![CDATA[
${database}.dbo.sp_helpuser
]]>
 </SQL>
 <Input>
 <Column name="database" value="${catalog}"/>
 </Input>
 </Command>

 <Command id="sybase-ase.getGroups">
 <SQL>
<![CDATA[
${database}.dbo.sp_helpgroup
]]>
 </SQL>
 <Input>
 <Column name="database" value="${catalog}"/>
 </Input>
 <Output>
 <Column id="sybase-ase.getGroups.Group_name" index="1"/>
 </Output>
 </Command>

 <Command id="sybase-ase.getGroupUsers">
 <SQL>
<![CDATA[
select a.name from ${database}.dbo.sysusers a, ${database}.dbo.sysusers b
where b.name = '${name}' and a.gid = b.gid and a.uid != a.gid and a.uid != 1
]]>
 </SQL>
 <Input>
 <Column name="database" value="${catalog}"/>
 <Column name="name" value="${sybase-ase.getGroups.Group_name}"/>
 </Input>
 </Command>

 <Command id="sybase-ase.getUserTypes">
 <SQL>
<![CDATA[
select t.name 'Data Type', p.name 'System Type', b.name 'Creator',
t.allownulls 'Allow Nulls', t.length 'Length', t.prec 'Precision', t.scale 'Scale'
from ${database}.dbo.systypes t, ${database}.dbo.sysusers b, ${database}.dbo.systypes p
where t.uid = b.uid and t.usertype >= 100 and t.type = p.type and p.usertype =
(select min(usertype) from ${database}.dbo.systypes where type = t.type)
]]>
 </SQL>
 <Input>
 <Column name="database" value="${catalog}"/>
 </Input>
 </Command>

 <!-- === -->
 <!-- DBA related commands requiring certain privileges in the database -->
 <!-- === -->

 <Command id="sybase-ase.getLogins">
 <SQL>
<![CDATA[
select name "Name", suid, dbname "Default Database", fullname "Full Name",
language "Default Language", totcpu "CPU Time", totio "I/O Time", pwdate "Password Set"
from master.dbo.syslogins
]]>
 </SQL>
 <Output>
 <Column id="sybase-ase.getLogins.Name" index="1"/>
 <Column id="sybase-ase.getLogins.suid" index="2"/>
 </Output>
 </Command>

 <Command id="sybase-ase.getLoginDatabases">
 <SQL>
<![CDATA[
select a.name "Name", sum(c.size / 512) "Size (MB)"
from master.dbo.sysdatabases a, master.dbo.syslogins b, master.dbo.sysusages c
where (a.suid = b.suid) and (b.suid = ${suid}) and a.dbid = c.dbid group by a.name
]]>
 </SQL>
 <Input>
 <Column name="suid" value="${sybase-ase.getLogins.suid}"/>
 </Input>
 </Command>

 <Command id="sybase-ase.getLoginRoles">
 <SQL>
<![CDATA[
select role_name(lr.srid) "Name", lr.status "Status"
from master.dbo.sysloginroles lr, master.dbo.syslogins l
where lr.suid = l.suid and l.name = '${login}' and lr.status = 1
]]>
 </SQL>
 <Input>
 <Column name="login" value="${sybase-ase.getLogins.Name}"/>
 </Input>
 </Command>

 <Command id="sybase-ase.getServerRoles">
 <SQL>
<![CDATA[
select * from master.dbo.syssrvroles
]]>
 </SQL>
 <Output>
 <Column id="sybase-ase.getServerRoles.NAME" index="2"/>
 </Output>
 </Command>

 <Command id="sybase-ase.getRoleLogins">
 <SQL>
<![CDATA[
select l.name "Name", lr.status "Status"
from master.dbo.syslogins l, master.dbo.sysloginroles lr
where lr.srid = role_id('${name}') and l.suid = lr.suid and lr.status = 1
]]>
 </SQL>
 <Input>
 <Column name="name" value="${sybase-ase.getServerRoles.NAME}"/>
 </Input>
 </Command>

 <Command id="sybase-ase.getDevices">
 <SQL>
<![CDATA[

select a.name "Name", a.phyname "Pysical Name",
(a.high - a.low + 1) / 512 "Size (MB)",
(select (a.high - a.low + 1) / 512 - (sum(size / 512) * (2048 / 2048))
from master.dbo.sysusages
where (vstart <= a.high) and (vstart >= a.low)) "Free (MB)"
from master.dbo.sysdevices a where (a.cntrltype = 0) group by a.name
]]>
 </SQL>
 <Output>
 <Column id="sybase-ase.getDevices.Name" index="1"/>
 </Output>
 </Command>

 <Command id="sybase-ase.getDeviceDatabases">
 <SQL>
<![CDATA[
select a.name "Name", sum(b.size) / 512 "Size (MB)",
 (select l.name from master.dbo.syslogins l where l.suid = a.suid) "Creator"
from master.dbo.sysdatabases a, master.dbo.sysusages b, master.dbo.sysdevices c
where (a.dbid = b.dbid) and (b.vstart <= c.high) and
(b.vstart >= c.low) and (c.name = '${name}') group by a.name
]]>
 </SQL>
 <Input>
 <Column name="name" value="${sybase-ase.getDevices.Name}"/>
 </Input>
 </Command>

 <Command id="sybase-ase.serverInfo">
 <SQL>
<![CDATA[
exec sp_server_info
]]>
 </SQL>
 </Command>

 <Command id="sybase-ase.getRemoteServers">
 <SQL>
<![CDATA[
select s.srvid, s.srvname, s.srvnetname, s.srvclass, v.name
from master.dbo.sysservers s, master.dbo.spt_values v
where s.srvclass = v.number and v.type = 'X' and v.name not in ('access_server', 'sds')
order by s.srvname
]]>
 </SQL>
 </Command>

 <Command id="sybase-ase.getCaches">
 <SQL>
<![CDATA[
select a.name, a.status, a.value, (select b.value from master.dbo.syscurconfigs b
where b.config = a.config and b.comment = a.name)
from master.dbo.sysconfigures a where parent = 19 and config = parent order by 2
]]>
 </SQL>
 </Command>

 <Command id="sybase-ase.getProcesses">
 <SQL>
<![CDATA[
select p.spid, p.program_name, p.cmd, l.name, p.status, p.suid
from master.dbo.sysprocesses p, master.dbo.syslogins l
where p.suid *= l.suid order by 1
]]>
 </SQL>
 </Command>

 <Command id="sybase-ase.getCharSet">

 <SQL>
<![CDATA[
select name, description from master.dbo.syscharsets
where id = (select value from master.dbo.syscurconfigs where config = 131) ;
]]>
 </SQL>
 </Command>

 <Command id="sybase-ase.getTransactions">
 <SQL>
<![CDATA[
select type = convert(char(11),v3.name), coordinator = convert(char(10), v4.name),
starttime=convert(char(20), starttime), state = convert(char(17),v1.name),
connection = convert(char(9), v2.name), dbid=masterdbid, spid, loid, namelen, xactname
from master.dbo.systransactions ts, master.dbo.spt_values v1,
master.dbo.spt_values v2, master.dbo.spt_values v3, master.dbo.spt_values v4
where ts.state = v1.number and v1.type = 'T1' and ts.connection = v2.number and
v2.type = 'T2' and ts.type = v3.number and v3.type = 'T3'
and ts.coordinator = v4.number and v4.type = 'T4'
]]>
 </SQL>
 </Command>

 <Command id="sybase-ase.getLocks">
 <SQL>
<![CDATA[
select fid, spid, loid, locktype = v1.name, table_id = id, page, row,
dbname = db_name(dbid), class, context = v2.name
from master.dbo.syslocks l, master.dbo.spt_values v1, master.dbo.spt_values v2
where l.type = v1.number and v1.type = 'L' and (l.context + 2049) = v2.number and
v2.type = 'L2'
]]>
 </SQL>
 </Command>

 </Commands>

 <!-- === -->
 <!-- Definition of the database objects tree structure -->
 <!-- This definition do not list catalogs as these are not supported -->
 <!-- by Oracle. -->
 <!-- === -->

 <ObjectsTreeDef id="sybase-ase">
 <GroupNode type="Databases" label="Databases">
 <DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}"
 is-empty-output="continue">
 <SetVar name="catalog" value="${getCatalogs.TABLE_CAT}"/>
 <Command idref="getCatalogs">
 <Filter type="Catalog" name="Catalog">
 <Column index="TABLE_CAT" name="Name"/>
 </Filter>
 </Command>
 <GroupNode type="Tables" label="Tables">
 <DataNode type="Table" label="${getTables.TABLE_SCHEM}.${getTables.
TABLE_NAME}" isLeaf="true">
 <SetVar name="schema" value="${getTables.TABLE_SCHEM}"/>
 <SetVar name="table" value="${getTables.TABLE_NAME}"/>
 <SetVar name="rowcount" value="true"/>
 <Command idref="getTables">
 <Input>
 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="tableType" value="TABLE"/>
 </Input>
 <Filter type="Table" name="Table">
 <Column index="TABLE_NAME" name="Name"/>
 </Filter>

 </Command>
 </DataNode>
 </GroupNode>

 <GroupNode type="SystemTables" label="System Tables">
 <DataNode type="SystemTable" label="${getTables.TABLE_SCHEM}.${getTables.
TABLE_NAME}" isLeaf="true">
 <SetVar name="schema" value="${getTables.TABLE_SCHEM}"/>
 <SetVar name="table" value="${getTables.TABLE_NAME}"/>
 <SetVar name="rowcount" value="true"/>
 <Command idref="getTables">
 <Input>
 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="tableType" value="SYSTEM TABLE"/>
 </Input>
 <Filter type="SystemTable" name="System Table">
 <Column index="TABLE_NAME" name="Name"/>
 </Filter>
 </Command>
 </DataNode>
 </GroupNode>

 <GroupNode type="Views" label="Views">
 <DataNode type="View" label="${getTables.TABLE_SCHEM}.${getTables.
TABLE_NAME}" isLeaf="true">
 <SetVar name="schema" value="${getTables.TABLE_SCHEM}"/>
 <SetVar name="table" value="${getTables.TABLE_NAME}"/>
 <SetVar name="rowcount" value="true"/>
 <Command idref="getTables">
 <Input>
 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="tableType" value="VIEW"/>
 </Input>
 <Filter type="View" name="View Table">
 <Column index="TABLE_NAME" name="Name"/>
 </Filter>
 </Command>
 </DataNode>
 </GroupNode>

 <GroupNode type="Users" label="Users" isLeaf="true"/>

 <GroupNode type="Groups" label="Groups">
 <DataNode type="Group" label="${sybase-ase.getGroups.Group_name}"
isLeaf="true">
 <Command idref="sybase-ase.getGroups"/>
 </DataNode>
 </GroupNode>

 <GroupNode type="Types" label="User Defined Data Types" isLeaf="true"/>

 <GroupNode type="Triggers" label="Triggers">
 <DataNode type="Trigger" label="${sybase-ase.getTriggers.name}
(${sybase-ase.getTriggers.owner}.${sybase-ase.getTriggers.table})" isLeaf="true">
 <SetVar name="schemaName" value="${sybase-ase.getTriggers.owner}"/>
 <Command idref="sybase-ase.getTriggers">
 <Input>
 <Column name="database" value="${catalog}"/>
 </Input>
 </Command>
 </DataNode>
 </GroupNode>

 <GroupNode type="Procedures" label="Stored Procedures">
 <DataNode type="Procedure" label="${sybase-ase.getObjects.owner}.
${sybase-ase.getObjects.name}" isLeaf="true">
 <SetVar name="schemaName" value="${sybase-ase.getObjects.owner}"/>
 <SetVar name="procedureName" value="${sybase-ase.getObjects.name}"/>

 <Command idref="sybase-ase.getObjects">
 <Input>
 <Column name="database" value="${catalog}"/>
 <Column name="type" value="P"/>
 </Input>
 </Command>
 </DataNode>
 </GroupNode>

 </DataNode>
 </GroupNode>

 <!-- === -->
 <!-- DBA Nodes -->
 <!-- === -->

 <GroupNode type="DBA" label="DBA Views">
 <GroupNode type="ServerInfo" label="Server Info" isLeaf="true"/>

 <GroupNode type="Logins" label="Logins">
 <DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">
 <Command idref="sybase-ase.getLogins"/>
 </DataNode>
 </GroupNode>

 <GroupNode type="Devices" label="Database Devices">
 <DataNode type="Device" label="${sybase-ase.getDevices.Name}" isLeaf="true">
 <Command idref="sybase-ase.getDevices"/>
 </DataNode>
 </GroupNode>

 <GroupNode type="RemoteServers" label="Remote Servers" isLeaf="true"/>

 <GroupNode type="Processes" label="Processes" isLeaf="true"/>

 <GroupNode type="ServerRoles" label="Roles">
 <DataNode type="ServerRole" label="${sybase-ase.getServerRoles.NAME}"
isLeaf="true">
 <Command idref="sybase-ase.getServerRoles"/>
 </DataNode>
 </GroupNode>

 <GroupNode type="Transactions" label="Transactions" isLeaf="true"/>

 <GroupNode type="Locks" label="Locks" isLeaf="true"/>

 </GroupNode>

 </ObjectsTreeDef>

 <!-- === -->
 <!-- Definition of the database objects views -->
 <!-- === -->

 <!-- Include the generic-view -->
 &generic-view;

 <ObjectsViewDef id="sybase-ase" extends="generic">
 <ObjectView type="Catalog">
 <!-- Drop all views since these are available for type="Tables" -->
 <DataView type="Tables" action="drop"/>
 <DataView type="References" action="drop"/>
 </ObjectView>

 <ObjectView type="Tables">
 <DataView type="Tables" label="Tables" viewer="grid">
 <Command idref="getTables">
 <Input>

 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="tableType" value="TABLE"/>
 </Input>
 </Command>
 <Action name="Script: SELECT ALL" template="SelectAllCommand">
 <Map from="TABLE_SCHEM" to="schema"/>
 <Map from="TABLE_NAME" to="table"/>
 </Action>
 <Action name="Script: DROP TABLE" template="DropTableCommand">
 <Map from="TABLE_SCHEM" to="schema"/>
 <Map from="TABLE_NAME" to="table"/>
 </Action>
 </DataView>
 <DataView type="References" label="References" viewer="tables-refs">
 <Command idref="getTables">
 <Input>
 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="schemaName" value="${getSchemas.TABLE_SCHEM}"/>
 <Column name="tableName" value="%"/>
 <Column name="tableType" value="TABLE"/>
 </Input>
 </Command>
 </DataView>
 </ObjectView>

 <!-- Sub def of the Table type view -->
 <ObjectView type="Table">
 <!-- Add the Trigger view -->
 <DataView type="Trigger" label="Triggers" viewer="form">
 <Command idref="sybase-ase.getTableTriggers">
 <Input>
 <Column name="database" value="${getTables.TABLE_CAT}"/>
 <Column name="owner" value="${getTables.TABLE_SCHEM}"/>
 <Column name="name" value="${getTables.TABLE_NAME}"/>
 </Input>
 </Command>
 </DataView>
 </ObjectView>

 <ObjectView type="SystemTables">
 <DataView type="SystemTables" label="SystemTables" viewer="grid">
 <Command idref="getTables">
 <Input>
 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="tableType" value="SYSTEM TABLE"/>
 </Input>
 </Command>
 <Action name="Script: SELECT ALL" template="SelectAllCommand">
 <Map from="TABLE_SCHEM" to="schema"/>
 <Map from="TABLE_NAME" to="table"/>
 </Action>
 </DataView>
 <DataView type="References" label="References" viewer="tables-refs">
 <Command idref="getTables">
 <Input>
 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="schemaName" value="${getSchemas.TABLE_SCHEM}"/>
 <Column name="tableName" value="%"/>
 <Column name="tableType" value="SYSTEM TABLE"/>
 </Input>
 </Command>
 </DataView>
 </ObjectView>

 <ObjectView type="SystemTable">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Columns" label="Columns" viewer="grid">
 <Command idref="getColumns">

 <Input>
 <Column name="catalogName" value="${getTables.TABLE_CAT}"/>
 <Column name="schemaName" value="${getTables.TABLE_SCHEM}"/>
 <Column name="tableName" value="${getTables.TABLE_NAME}"/>
 </Input>
 </Command>
 </DataView>
 <DataView type="Data" label="Data" viewer="table-data">
 <Message>
<![CDATA[
<html>
Note: This is a system table. Do not edit unless you are really sure what you're
doing!
</html>
]]>
 </Message>
 </DataView>
 <DataView type="RowCount" label="Row Count" viewer="table-rowcount"/>
 </ObjectView>

 <ObjectView type="Views">
 <DataView type="Views" label="Views" viewer="grid">
 <Command idref="getTables">
 <Input>
 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="tableType" value="VIEW"/>
 </Input>
 </Command>
 <Action name="Script: SELECT ALL" template="SelectAllCommand">
 <Map from="TABLE_SCHEM" to="schema"/>
 <Map from="TABLE_NAME" to="table"/>
 </Action>
 </DataView>
 <DataView type="References" label="References" viewer="tables-refs">
 <Command idref="getTables">
 <Input>
 <Column name="catalogName" value="${getCatalogs.TABLE_CAT}"/>
 <Column name="schemaName" value="${getSchemas.TABLE_SCHEM}"/>
 <Column name="tableName" value="%"/>
 <Column name="tableType" value="VIEW"/>
 </Input>
 </Command>
 </DataView>
 </ObjectView>

 <ObjectView type="View">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Columns" label="Columns" viewer="grid">
 <Command idref="getColumns">
 <Input>
 <Column name="catalogName" value="${getTables.TABLE_CAT}"/>
 <Column name="schemaName" value="${getTables.TABLE_SCHEM}"/>
 <Column name="tableName" value="${getTables.TABLE_NAME}"/>
 </Input>
 </Command>
 </DataView>
 <DataView type="Data" label="Data" viewer="table-data"/>
 <DataView type="RowCount" label="Row Count" viewer="table-rowcount"/>
 <DataView type="Index" label="Indexes" viewer="grid">
 <Command idref="getIndexes"/>
 </DataView>
 <DataView type="Source" label="Source" viewer="text">
 <Command idref="sybase-ase.getObjectSource">
 <Input>
 <Column name="database" value="${catalog}"/>
 <Column name="owner" value="${getTables.TABLE_SCHEM}"/>
 <Column name="name" value="${getTables.TABLE_NAME}"/>
 </Input>

 </Command>
 </DataView>
 </ObjectView>

 <ObjectView type="Users">
 <DataView type="Users" label="Users" viewer="grid">
 <Command idref="sybase-ase.getUsers"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Groups">
 <DataView type="Groups" label="Groups" viewer="grid">
 <Command idref="sybase-ase.getGroups"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Group">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Users" label="Users" viewer="grid">
 <Command idref="sybase-ase.getGroupUsers"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Triggers">
 <DataView type="Triggers" label="Triggers" viewer="grid">
 <Command idref="sybase-ase.getTriggers">
 <Input>
 <Column name="database" value="${catalog}"/>
 </Input>
 </Command>
 </DataView>
 </ObjectView>

 <ObjectView type="Trigger">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Source" label="Source" viewer="text">
 <Command idref="sybase-ase.getObjectSource">
 <Input>
 <Column name="database" value="${catalog}"/>
 <Column name="owner" value="${sybase-ase.getTriggers.owner}"/>
 <Column name="name" value="${sybase-ase.getTriggers.name}"/>
 </Input>
 </Command>
 </DataView>
 </ObjectView>

 <ObjectView type="Types">
 <DataView type="Types" label="User Defined Data Types" viewer="grid">
 <Command idref="sybase-ase.getUserTypes"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Procedures">
 <DataView type="Procedures" label="Procedures" viewer="grid">
 <Command idref="sybase-ase.getObjects">
 <Input>
 <Column name="database" value="${catalog}"/>
 <Column name="type" value="P"/>
 </Input>
 </Command>
 </DataView>
 </ObjectView>

 <ObjectView type="Procedure">
 <DataView type="Columns" action="drop"/>
 <DataView type="Interface" label="Interface" viewer="form">
 <Command idref="getProcedureColumns">
 <Input>

 <Column name="catalogName" value="${catalog}"/>
 <Column name="schemaName" value="${sybase-ase.getObjects.owner}"/>
 <Column name="procedureName" value="${sybase-ase.getObjects.name}"/>
 </Input>
 </Command>
 </DataView>
 <DataView type="Source" label="Source" viewer="text">
 <Command idref="sybase-ase.getObjectSource">
 <Input>
 <Column name="database" value="${catalog}"/>
 <Column name="owner" value="${sybase-ase.getObjects.owner}"/>
 <Column name="name" value="${sybase-ase.getObjects.name}"/>
 </Input>
 </Command>
 </DataView>
 </ObjectView>

 <!-- === -->
 <!-- DBA Views -->
 <!-- === -->

 <ObjectView type="ServerInfo">
 <DataView type="Info" label="Server Info" viewer="grid">
 <Command idref="sybase-ase.serverInfo"/>
 </DataView>
 <DataView type="Info" label="Character Set" viewer="grid">
 <Command idref="sybase-ase.getCharSet"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Logins">
 <DataView type="Logins" label="Logins" viewer="grid">
 <Command idref="sybase-ase.getLogins"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Login">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Databases" label="Databases" viewer="grid">
 <Command idref="sybase-ase.getLoginDatabases"/>
 </DataView>
 <DataView type="Roles" label="Roles" viewer="grid">
 <Command idref="sybase-ase.getLoginRoles"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Devices">
 <DataView type="Devices" label="Database Devices" viewer="grid">
 <Command idref="sybase-ase.getDevices"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Device">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Databases" label="Databases" viewer="grid">
 <Command idref="sybase-ase.getDeviceDatabases"/>
 </DataView>
 </ObjectView>

 <ObjectView type="RemoteServers">
 <DataView type="RemoteServers" label="Remote Servers" viewer="grid">
 <Command idref="sybase-ase.getRemoteServers"/>
 </DataView>
 </ObjectView>

 <ObjectView type="ServerRoles">
 <DataView type="ServerRoles" label="Roles" viewer="grid">

 <Command idref="sybase-ase.getServerRoles"/>
 </DataView>
 </ObjectView>

 <ObjectView type="ServerRole">
 <DataView type="Info" label="Info" viewer="node-form"/>
 <DataView type="Logins" label="Logins" viewer="grid">
 <Command idref="sybase-ase.getRoleLogins"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Processes">
 <DataView type="Processes" label="Processes" viewer="grid">
 <Command idref="sybase-ase.getProcesses"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Transactions">
 <DataView type="Transactions" label="Transactions" viewer="grid">
 <Command idref="sybase-ase.getTransactions"/>
 </DataView>
 </ObjectView>

 <ObjectView type="Locks">
 <DataView type="Locks" label="Locks" viewer="grid">
 <Command idref="sybase-ase.getLocks"/>
 </DataView>
 </ObjectView>

 </ObjectsViewDef>

</DatabaseProfile>

