
1 of 445

DbVisualizer 13.0

Users Guide

DbVisualizer 13.0 Users Guide 2 of 445

Table of Contents

1 DbVisualizer 13.0 ..17

2 Getting Started...17
2.1 Downloading .. 17

2.2 Installing ... 17
2.2.1 Installing with a Setup Installer... 17

2.2.2 Installation from an archive file .. 17

2.2.3 Silent Install.. 18

2.2.4 Upgrading... 19

2.3 Starting DbVisualizer ... 19
2.3.1 EULA (End User License Agreement)... 19

2.3.2 Free or Pro Version... 19

2.3.3 Background Panel.. 20

2.4 Evaluating the Pro Edition... 20

2.5 Installing a Pro Edition License ... 21
2.5.1 Installing a License Key String... 21

2.5.2 Installing a License Key File... 21

2.5.3 Uninstalling the license key... 21

2.5.4 DbVisualizer Pro, license file location ... 21

2.6 Installing the Demo Database ... 22
2.6.1 Installing/Uninstalling ... 22

2.6.2 The Database.. 22

2.6.3 Samples .. 22

2.6.4 Sources ... 23

2.7 Creating a Connection - basics .. 23
2.7.1 Create a database connection... 23

2.8 Creating a Table - basics .. 25

2.9 Viewing a Table - basics ... 27

2.10 Editing a Table - basics .. 28

2.11 Executing SQL - basics ... 29

2.12 Checking for Updates... 30

2.13 Printing ... 32
2.13.1 Printer Setup .. 32

DbVisualizer 13.0 Users Guide 3 of 445

2.13.2 Printing a Grid, a Chart and Plain Text.. 33

2.13.3 Printing a Graph ... 33

2.13.4 Print Preview .. 33

3 Getting the Most Out of the GUI ..36
3.1 Main Window Layout.. 36

3.2 Tab Types ... 37
3.2.1 Navigation Tabs ... 37

3.2.2 Object View Tabs.. 39

3.2.3 SQL Commander Tabs ... 40

3.3 Opening a Tab .. 41
3.3.1 Database tree objects .. 41

3.3.2 Scripts and Monitors .. 41

3.4 Pinning a Tab.. 41

3.5 Closing a Tab .. 41

3.6 Listing Open Tabs... 42

3.7 Maximizing and Minimizing a Tab ... 42

3.8 Floating a Tab... 43

3.9 Rearranging Tabs ... 43

3.10 Changing the Tab Label ... 45

3.11 Selecting a Node for a Tab... 46

3.12 Preserving Tabs Between Sessions... 46

3.13 Using Tab Colors and Borders ... 47

3.14 Changing the GUI Appearance .. 47

3.15 Changing Keyboard Shortcuts .. 48

3.16 Internationalization and Localization (i18N and L10N) ... 51
3.16.1 Fonts and Character Sets... 52

3.16.2 Encoding... 52

4 Managing Database Objects ..53
4.1 Opening a Database Object ... 53

4.2 Perform Actions on Multiple Database Objects.. 53

4.3 Filtering Database Objects .. 54
4.3.1 Object Filtering... 57

4.3.2 Object Type Visibility ... 59

DbVisualizer 13.0 Users Guide 4 of 445

4.3.3 Temporarily Disable Filtering .. 61

4.3.4 Filter Sets.. 62

4.3.5 Show Only Default Database/Schema filter ... 63

4.3.6 Labels.. 63

5 Working with Tables ..65
5.1 Creating a Table ... 66

5.1.1 Opening the Create Table Dialog .. 66

5.1.2 Columns Tab .. 67

5.1.3 Primary Key Tab ... 68

5.1.4 Foreign Keys Tab.. 69

5.1.5 Unique Constraints Tab ... 70

5.1.6 Check Constraints Tab... 70

5.1.7 Indexes Tab .. 71

5.1.8 SQL Preview.. 72

5.1.9 Execute ... 72

5.2 Altering a Table .. 72
5.2.1 Opening the Alter Table Dialog ... 72

5.2.2 Columns Tab .. 73

5.2.3 Primary Key Tab ... 75

5.2.4 Foreign Keys Tab.. 76

5.2.5 Unique Constraints Tab ... 76

5.2.6 Check Constraints Tab... 77

5.2.7 Indexes Tab .. 78

5.2.8 SQL Preview.. 78

5.2.9 Execute ... 78

5.3 Creating a Trigger... 78
5.3.1 Opening the Create Trigger Dialog.. 79

5.3.2 Trigger Editor ... 79

5.4 Creating an Index ... 80

5.5 Viewing Table Data .. 81
5.5.1 Opening the Data tab... 81

5.5.2 Sorting .. 82

5.5.3 Formatting.. 83

5.5.4 Where Filter .. 83

5.5.5 Column Filter.. 84

DbVisualizer 13.0 Users Guide 5 of 445

5.5.6 Quick Filter ... 84

5.5.7 Max Rows/Max Chars ... 85

5.5.8 Max Rows at First Display .. 86

5.5.9 Column Header Tooltips.. 86

5.5.10 Highlight Primary Key Columns .. 86

5.5.11 Auto Resize Columns ... 87

5.5.12 Show Only Some Columns .. 87

5.5.13 Right-Click Menu Operations... 88

5.5.14 Creating Monitors... 91

5.5.15 Aggregation Data for Selection ... 91

5.6 Viewing BSON Document Data.. 91
5.6.1 Nested View .. 92

5.6.2 Tree View .. 93

5.6.3 Text View .. 94

5.7 Editing Table Data.. 95
5.7.1 Opening the Data tab... 95

5.7.2 Editing Data in the Grid.. 96

5.7.3 Copy/Paste ... 97

5.7.4 Updates and Deletes Must Match Only One Table Row ... 98

5.7.5 Key Column(s) Chooser ... 98

5.7.6 Editing Multiple Rows .. 99

5.7.7 Data Type checking.. 99

5.7.8 New Line and Carriage Return... 100

5.7.9 Using the Cell Editor/Viewer.. 100

5.7.10 Using the Form Editor/Viewer ... 103

5.7.11 Preview Changes .. 104

5.7.12 View and edit Binary/BLOB and CLOB Data.. 105

5.8 Working with Binary and BLOB Data... 105

5.9 Working with Large Text/CLOB Data... 105

5.10 Using Max Rows and Max Chars for a Table.. 106

5.11 Changing the Data Display Format ... 107
5.11.1 Date, Time and Timestamp formats ... 107

5.11.2 Number formats... 107

5.12 Exporting a Table ... 107
5.12.1 Output Format ... 109

DbVisualizer 13.0 Users Guide 6 of 445

5.12.2 Output Destination .. 110

5.12.3 Options ... 110

5.12.4 Using Variables in Fields .. 111

5.12.5 Exporting Binary/BLOB and CLOB Data.. 111

5.12.6 Saving And Loading Settings ... 112

5.12.7 Other Ways to Export Table Data .. 112

5.13 Importing Table Data... 112
5.13.1 Input File Format and Other Options.. 113

5.13.2 Data Formats and Data Type Per Column .. 115

5.13.3 Matching Columns and Data Types for an Existing Table .. 116

5.13.4 Adjusting Table Declaration for a New Table ... 118

5.13.5 Importing Binary/BLOB and CLOB Data (CSV and SQL Only) .. 119

5.13.6 Running the import.. 120

5.13.7 Saving And Loading Settings ... 120

5.13.8 Other Ways to Import Table Data.. 120

5.13.9 Known limitations.. 120

5.14 Comparing Tables .. 121

5.15 Viewing Table Relationships.. 121

5.16 Navigating Table Relationships... 123
5.16.1 Opening the Navigator... 123

5.16.2 Navigating Relationships... 124

5.16.3 Adding Context Information to the Graph .. 126

5.16.4 Arranging the Graph... 127

5.16.5 Exporting and Printing the Graph ... 127

5.16.6 Opening the Navigator from the Data tab .. 128

5.17 Viewing the Table DDL ... 128

5.18 Filtering Tables in the Tree .. 128

5.19 Showing Row Count in the Tree .. 128

5.20 Using Permissions for Table Data Editing... 128

5.21 Scripting a Table .. 129

5.22 Managing Table and Column Comments ... 129

6 Working with Views ..129
6.1 Creating a View... 129

6.2 Altering a View.. 130

DbVisualizer 13.0 Users Guide 7 of 445

6.3 Editing a View ... 130

6.4 Exporting a View... 130

6.5 Viewing the View DDL... 130

6.6 Filtering Views in the Tree ... 130

6.7 Scripting a View.. 130

7 Working with Procedures, Functions and Other Code Objects131
7.1 Creating a Function.. 131

7.2 Creating a Procedure ... 133

7.3 Creating Other Code Objects... 134

7.4 Editing a Code Object .. 134
7.4.1 Disable Error Markers in the SQL Editor.. 135

7.5 Executing a Code Object.. 136
7.5.1 Executing in the Code Editor ... 136

7.5.2 Executing in the SQL Commander .. 137

7.5.3 Using the Script Object Dialog... 138

7.6 Exporting a Code Object .. 139

7.7 Scripting a Code Object ... 139

8 Working with Schemas ..140
8.1 Creating a Schema ... 140

8.2 Comparing Schemas.. 140

8.3 Viewing Entity Relationships ... 140

8.4 Exporting a Schema ... 142
8.4.1 Output Format ... 142

8.4.2 Output Destination .. 143

8.4.3 Object Types... 143

8.4.4 Options ... 143

8.4.5 Using Variables in Fields .. 144

8.4.6 Saving And Loading Settings ... 144

8.5 Filtering Schemas in the Tree.. 145

9 Working with SQL...145
9.1 Selecting Database Connection, Catalog and Schema.. 145

9.1.1 Configuring the Initial Values .. 146

DbVisualizer 13.0 Users Guide 8 of 445

9.2 Editing SQL Scripts... 146
9.2.1 Font Settings .. 147

9.2.2 Editor Styles ... 148

9.2.3 Comments .. 149

9.2.4 Charsets and Fonts .. 150

9.2.5 Loading and Saving Scripts ... 150

9.2.6 Stale Files Warning... 151

9.2.7 Drag and Drop a File... 152

9.2.8 Drag and Drop Database Objects .. 152

9.2.9 Loading and Saving Bookmarks and Monitors... 152

9.2.10 Navigating Between History Entries ... 152

9.2.11 Navigating to Script location... 153

9.2.12 Confirming Overwriting Unsaved Changes... 153

9.2.13 SQL Formatting .. 153

9.2.14 Settings... 155

9.2.15 Auto Completion .. 157

9.2.16 Recording and Playing Edit Macros... 159

9.2.17 Folding Selected Text .. 160

9.2.18 Selecting a Rectangular Area... 161

9.2.19 Highlighting Matches ... 161

9.2.20 Tab Key Treatment... 161

9.2.21 Key Bindings... 162

9.3 Morph Selection ... 162
9.3.1 Introduction ... 162

9.3.2 Basic Examples... 163

9.3.3 Use Cases.. 192

9.4 Using Editor Templates ... 196
9.4.1 Using a Template ... 196

9.4.2 Creating a new Template... 196

9.4.3 Editing or Deleting a Template.. 197

9.4.4 Changing the Expand Keybinding ... 197

9.5 Executing SQL Statements .. 197
9.5.1 Execute a Script with Multiple Statements... 197

9.5.2 Execute Only the Current Statement .. 198

9.5.3 Execute Buffer .. 198

DbVisualizer 13.0 Users Guide 9 of 445

9.5.4 Control Execution after a Warning or an Error ... 198

9.6 Re-Executing SQL Statements... 198
9.6.1 Using Previous and Next in the SQL Commander .. 198

9.6.2 Using the SQL History Window.. 198

9.6.3 Using Quick Load ... 199

9.7 Executing Complex Statements .. 200
9.7.1 Using Execute Buffer.. 200

9.7.2 Using an SQL Dialect .. 201

9.7.3 Using an SQL Block .. 201

9.7.4 Using the @delimiter Command... 201

9.7.5 Calling a Function or Procedure.. 202

9.8 Executing an External Script.. 202

9.9 Locating SQL Errors ... 203
9.9.1 Disable Error Markers in the SQL Editor.. 203

9.10 Analyzing (explain) Query Performance ... 203

9.11 Auto Commit, Commit and Rollback .. 206

9.12 Managing Frequently Used SQL .. 207
9.12.1 Creating, Editing and Organizing Bookmarks .. 208

9.12.2 Executing Bookmarks .. 209

9.12.3 Adding a Bookmark as a Favorite.. 209

9.12.4 Sharing Bookmarks.. 209

9.12.5 Using Quick Load ... 210

9.13 Creating Queries Graphically... 210
9.13.1 Creating a Query .. 211

9.13.2 Testing the Query... 221

9.13.3 Loading a Query From the Editor .. 222

9.13.4 Properties for the Query Builder ... 223

9.13.5 Current Limitations.. 223

9.14 Formatting SQL .. 223
9.14.1 Settings... 225

9.15 Using Max Rows and Max Chars for Queries ... 227

9.16 Getting the DDL for an Object.. 228

9.17 Using the Log Tab... 228
9.17.1 Preprocessing Script .. 229

DbVisualizer 13.0 Users Guide 10 of 445

9.17.2 Executing .. 229

9.17.3 Auto resize row heights.. 230

9.17.4 Navigating to next/previous failed log entry .. 230

9.17.5 Highlight statement or error in the SQL editor... 230

9.17.6 Saving all Log entries to text file ... 230

9.17.7 Copy Log Entries to clipboard ... 230

9.17.8 Copy executed SQLs to the SQL Commander .. 230

9.17.9 Filter and search... 230

9.18 Writing to the Log Tab.. 232

9.19 Using the DBMS Output Tab .. 232

9.20 Comparing SQL Scripts.. 233

9.21 Using Permissions in the SQL Commander .. 233

9.22 Sending Comments to the Database with Statements.. 234

9.23 Using Client-Side Commands.. 235
9.23.1 Introduction ... 235

9.23.2 Commands reference .. 235

9.23.3 @export - Export query result ... 236

9.23.4 @mail - Send emails and attach files .. 242

9.23.5 @import - Importing data.. 250

9.24 Parameterized SQL - Variables and Parameter Markers .. 262
9.24.1 Using DbVisualizer Variables ... 264

9.24.2 Using Parameter Markers .. 269

10 Working with Result Sets ...274
10.1 Viewing a Result Set ... 274

10.1.1 Viewing as a Grid .. 275

10.1.2 Viewing as Text... 275

10.1.3 Merge Result Sets... 275

10.1.4 Viewing as a Graph ... 275

10.2 Editing a Result Set .. 275

10.3 Exporting a Result Set.. 276

10.4 Comparing Result Sets... 276

10.5 Pinning Result Sets .. 276

10.6 Show Result Sets in a Separate Window... 276

11 Working with Charts...276

DbVisualizer 13.0 Users Guide 11 of 445

11.1 Charting a Result Set.. 278
11.1.1 Selecting the Category... 279

11.1.2 Selecting the Series.. 280

11.1.3 Chart Type .. 280

11.2 Chart Configuration ... 282
11.2.1 Appearance Preferences.. 282

11.2.2 Series Preferences.. 284

11.2.3 Saving/Loading Preferences.. 284

11.3 Zooming ... 284

11.4 Export ... 284

12 Exporting a Grid..285
12.1 Settings... 286

12.2 Data page.. 288
12.2.1 Generating Test Data ... 288

12.3 Preview ... 290

12.4 Output Destination .. 290

12.5 Settings Menu... 291

13 Opening a Grid as Spreadsheet ...291
13.1 Output... 293

14 Comparing Data ...294
14.1 Selecting the Objects to Compare .. 294

14.2 Comparing Text Data ... 295

14.3 Comparing Grids .. 296

14.4 Comparing Cell Values ... 298

15 Monitoring Data Changes ..299
15.1 Creating a Monitored Query .. 299

15.1.1 Monitor table row count .. 301

15.1.2 Monitor table row count difference .. 302

15.2 Running a Monitored Query .. 303

16 Accessing Frequently Used Objects ..304
16.1 Keeping Tabs Open Between Sessions ... 304

16.2 Using Favorites... 304

DbVisualizer 13.0 Users Guide 12 of 445

16.3 Using Scripts... 307

17 Delimited Identifiers and Qualifiers ..307

18 Handling Transactions...307
18.1 Changing the Auto Commit Setting .. 307

18.1.1 Changing Auto-Commit for a Database Type ... 307

18.1.2 Changing Auto-Commit for a Connection... 308

18.1.3 Changing Auto-Commit for an SQL Commander tab... 308

18.1.4 Changing Auto-Commit for a Statement Block .. 308

18.2 Setting Transaction Isolation .. 308

19 Database Connection Options ..309
19.1 Create a New Database Connection.. 309

19.1.1 Create a database connection... 309

19.2 Configuring Connection Properties .. 311
19.2.1 Tool Properties... 311

19.2.2 Connection Properties... 312

19.3 Copying an Existing Connection.. 315

19.4 Edit Multiple Database Connections... 316
19.4.1 Changing the database driver ... 317

19.5 Removing a Connection... 317

19.6 Organizing Connections in Folders ... 317

19.7 Rearranging Connections and Folders.. 318

19.8 Setting Common Authentication Options .. 318
19.8.1 Authentication settings in Connection Properties ... 319

19.8.2 SSH Settings in Tool Properties .. 319

19.9 Setting a Master Password .. 321
19.9.1 Specifying a Master Password ... 321

19.9.2 Changing a Master Password .. 322

19.9.3 Resetting the Master Password ... 323

19.9.4 Connecting with a Master Password specified ... 323

19.9.5 Manually Requesting the Master Password for New Connections .. 323

19.9.6 Showing the Encrypted Password in Cleartext .. 323

19.9.7 Declaring a Master Password Rule .. 323

19.10 Using Connection Keep-Alive .. 323

DbVisualizer 13.0 Users Guide 13 of 445

19.11 Security... 324
19.11.1 Using an SSH Tunnel.. 324

19.11.2 Using SSL/TLS .. 326

19.11.3 Common problems .. 328

19.11.4 Single Sign-On (SSO).. 328

19.12 Read-Only Connections ... 328
19.12.1 Permission Mode.. 328

19.12.2 java.sql.connection.setReadOnly ... 330

19.12.3 Setting a Driver Property ... 330

19.12.4 Connection Hook ... 331

19.13 Using Oracle TNS Names ... 331

19.14 Changing an Oracle Password... 332

19.15 Using Variables in Connection Fields.. 333

19.16 Automatically Connecting at Startup ... 333

19.17 Executing SQL at Connect and Disconnect... 334

19.18 Using a Single Shared Physical Connection ... 334
19.18.1 Selecting the Single Shared Physical Connection Mode.. 334

19.18.2 Data Manipulation with a Single Shared Physical Connection.. 335

19.18.3 Transaction Handling with a Single Shared Physical Connection .. 335

19.19 JDBC-ODBC Bridge Driver Alternatives... 335
19.19.1 The UCanAccess Driver for MS Access... 336

19.19.2 Easysoft JDBC-ODBC Bridge Driver... 336

19.19.3 CData JDBC-ODBC Bridge.. 336

20 Finding Database Objects and Data..336
20.1 Finding and Replacing Text in the Editor.. 337

20.1.1 Regular Expression Example: .. 337

20.2 Finding Data in a Grid... 337

20.3 Locating an Object in an SQL Statement .. 337

20.4 Locating an Object in the Databases tab .. 338

20.5 Searching a Connection... 338

20.6 Synchronizing object tab selection and selection in the tree.. 339

20.7 Search in all open editors .. 339

21 Transfer DbVisualizer settings...340

DbVisualizer 13.0 Users Guide 14 of 445

21.1 Transfer DbVisualizer settings to new environment .. 340

21.2 Transfer the DbVisualizer Pro license to new machine.. 340

22 Exporting and Importing Settings...341
22.1 Export Settings... 341

22.2 Import Settings .. 343

23 Command Line Interface ...345
23.1 Command Line Options... 345

23.2 Examples .. 346
23.2.1 Executing single statements.. 346

23.2.2 Executing scripts .. 348

23.2.3 Controlling the output ... 348

23.2.4 Using variables - prompting for values ... 349

23.2.5 Combining OS scripts, the command line interface and DbVisualizer variables.. 350

23.3 Setting up the connection properties on the command line .. 351

23.4 Exit codes from dbviscmd ... 352

23.5 Generating a Command From SQL Commander.. 352

24 Database Profiles ...353
24.1 Understanding Database Profiles ... 354

24.1.1 Affected DbVisualizer features .. 355

24.1.2 How a Database Profile is loaded.. 357

24.2 Creating a Database Profile ... 357

24.3 Extending a Database Profile .. 357
24.3.1 Extending Commands.. 358

24.3.2 Extending Database Objects Tree ... 358

24.3.3 Extending Actions .. 362

24.3.4 Extending Object Views ... 363

24.3.5 Remove an Element ... 363

24.3.6 Complete sample Database Profile... 363

24.4 Top level XML Elements ... 366
24.4.1 XML template ... 366

24.4.2 XML element - DatabaseProfile ... 366

24.4.3 XML element - InitCommands ... 368

24.4.4 XML element - Commands... 370

DbVisualizer 13.0 Users Guide 15 of 445

24.4.5 XML element - ObjectsTreeDef .. 376

24.4.6 XML element - ObjectsViewDef.. 382

24.4.7 XML element - ObjectsActionDef ... 405

24.5 Icons.. 421
24.5.1 Introduction ... 421

24.5.2 icons.prefs file .. 421

24.5.3 Icons Search Path... 422

24.6 Conditional Processing.. 422
24.6.1 Introduction ... 422

24.6.2 Conditional processing when database connection is established .. 423

24.6.3 Conditional processing during command execution... 424

24.6.4 drop-on-condition attribute.. 424

24.7 Database Profile Utilities ... 425
24.7.1 Analyze Database Profile ... 425

24.7.2 Show All Type and Icon Attributes .. 426

24.7.3 Show Available Icons ... 426

24.7.4 Export Merged Profile .. 427

24.7.5 Configure Search Path ... 427

24.7.6 Reload Database Profiles List .. 427

24.8 Database Profile changes in 13.0 .. 428
24.8.1 New "node-text" viewer for DataView elements .. 428

24.9 Database Profile changes in 11.0 .. 428
24.9.1 Common attribute changes... 428

24.9.2 New attributes for the ProcessDataSet sub element for Command ... 428

24.9.3 New attributes for the ObjectView element ... 428

24.9.4 New "chart" viewer for DataView elements.. 428

24.10 Database Profile changes in 9.5 .. 428
24.10.1 New/changed attributes for Command.. 429

24.10.2 Action element improvements.. 429

24.10.3 Changes for DataNode and GroupNode ... 430

24.10.4 New utility class ... 430

24.10.5 Changed icons definition... 431

25 Troubleshooting...431
25.1 Debugging DbVisualizer... 431

DbVisualizer 13.0 Users Guide 16 of 445

25.2 Fixing Connection Issues ... 432

25.3 Handling Dropped Connections.. 433

25.4 Handling Memory Constraints... 434

25.5 Reporting Issues... 435
25.5.1 Contacting support .. 435

25.5.2 Encountering Errors... 436

25.6 Using special characters in passwords ... 436

26 Reference Material ...437
26.1 GUI Command Line Arguments ... 437

26.1.1 JAVA_EXEC.. 437

26.2 Installation Structure... 438

26.3 Installing a JDBC Driver ... 438
26.3.1 What is a JDBC Driver? ... 439

26.3.2 Get the JDBC driver file(s).. 439

26.3.3 Driver Manager ... 439

26.3.4 Using drivers depending on native API (Type 2 JDBC driver) .. 443

26.3.5 Maven and Maven Repositories... 444

26.4 Special Properties .. 444

DbVisualizer 13.0

DbVisualizer 13.0 Users Guide 17 of 445

1.
2.
3.
4.

•
•

•

•
•

•
•
•
•
•

•
•

1 DbVisualizer 13.0
Check the What's New page for an overview of the changes or the Release Notes for details.

2 Getting Started
DbVisualizer is a feature-rich, intuitive multi-database tool for developers and database administrators, providing a single powerful interface across a
wide variety of operating systems. DbVisualizer has proven to be one of the most cost-effective database tools available with its easy-to-use and clean
interface, yet to mention that it runs on all major operating systems and supports all major relational databases. Users only need to learn and master one
application. DbVisualizer integrates transparently with the operating system being used.

The screenshots throughout the users guide are produced on Windows 10 using the "light" theme, but DbVisualizer lets you choose the theme you prefer.

In addition to this Users Guide, the following online resources may be useful:

The home of DbVisualizer,
The Support Portal which hosts solution articles (knowledge base) and support ticketing
The Databases and JDBC Drivers online page. This page gives information about supported databases and JDBC drivers,
The DbVisualizer forums.

2.1 Downloading
DbVisualizer installers are available on the DbVis Software web site at https://www.dbvis.com/download/.

Download the installer for your operating system that fits your needs:

Without Java VM if you already have Java installed,
With Java VM if you do not have Java installed, or if you want to use the recommended Java version for DbVisualizer and another Java version
for other applications,
An Installer unless you must use an archive format for some reason.

2.2 Installing
There are two ways to install DbVisualizer: using an Installer or extracting files from an archive file.

Installing with a Setup Installer
Installation from an archive file

ZIP archives (Windows)
DMG archives (macOS)
TGZ archives (macOS)
TAR.GZ archives (Linux)
RPM archives (Linux)

Silent Install
Upgrading

2.2.1 Installing with a Setup Installer
To install DbVisualizer, just execute the Installer you have downloaded and follow the instructions in the screens. The setup installer optionally creates a
desktop shortcut used to launch DbVisualizer which is not the case for the other installers below.

2.2.2 Installation from an archive file

ZIP archives (Windows)
Unpack the distribution file with the built-in zip archive extraction utility in Windows.

The ZIP archive installer will not add any entries to the Start menu, add desktop launchers or register the software in the Windows registry. Start
DbVisualizer by running DbVisualizer\dbvis.

To uninstall, simply delete the DbVisualizer directory.

https://www.dbvis.com/whatsnew/13.0
https://www.dbvis.com/releasenotes/13.0
http://www.dbvis.com/
https://support.dbvis.com
http://www.dbvis.com/doc/database-drivers/
http://www.dbvis.com/forum/
http://www.dbvis.com/download/

Getting Started

DbVisualizer 13.0 Users Guide 18 of 445

DMG archives (macOS)
Open the installer file:

open dbvis_macos_<version>.dmg

In the mount window drag the DbVisualizer.app to the Applications folder.

To uninstall, remove /Applications/DbVisualizer.app.

TGZ archives (macOS)
Open the installer file:

open dbvis_macos_<version>.tgz

A DbVisualizer.app directory is created in the same directory. Start DbVisualizer:

open DbVisualizer.app

 To uninstall DbVisualizer installed via a TGZ archive, simply delete the DbVisualizer.app directory.

TAR.GZ archives (Linux)
All files are contained in an enclosing folder named DbVisualizer.

Unpack the distribution file in a terminal window with:

tar xvfz dbvis_linux_<version>.tar.gz

Start DbVisualizer by executing the command:

sh DbVisualizer/dbvis.sh

To uninstall DbVisualizer installed via a TAR archive, simply delete the complete DbVisualizer directory.

RPM archives (Linux)
Install the RPM package with:

sudo rpm -i dbvis_linux-<version>.rpm

Start DbVisualizer by either finding the application and double-clicking on its icon or by executing the dbvis command in a shell.

To uninstall DbVisualizer installed via an RPM archive, run:

sudo rpm -e dbvis

DEB archives (Linux)
Install the package with the following command in a terminal window (or use your favorite package manager):

sudo dpkg -i dbvis_linux_<version>.deb

Start DbVisualizer by either finding the application and double-clicking on its icon or by executing the dbvis command in a shell.

To uninstall DbVisualizer installed via an DEB archive, run sudo dpkg --remove dbvis.

2.2.3 Silent Install
In order to start a silent installation, the installer has to be invoked with the -q argument. The installer will perform the installation as if the user had
accepted all default settings.

There is no user interaction on the terminal. The installer will install the application to the default installation directory, unless you pass the -dir
parameter to the installer. The parameter after -dir must be the desired installation directory. Example:

dbvis_windows-x64_<version>_jre.exe -q -dir "d:\myapps\DbVisualizer"

Getting Started

DbVisualizer 13.0 Users Guide 19 of 445

•

•

•

The output of the installer is not printed to the command line for silent installation. If you pass the -console parameter after the -q parameter, a console
will be allocated that displays the output to the user. This is useful for debugging purposes.

If the installation was successful, the exit code of the installer will be 0, if no suitable JRE could be found it will be 83, for other types of failure it will be 1.

For more options check the command line options for the installer.

See the following for examples on respective operating system.

Windows

dbvis_windows-x64_<version>_jre.exe -q -console
echo %errorlevel%

macOS

DbVisualizer Installer.app/Contents/MacOS/JavaApplicationStub -q -console
echo $?

Linux

dbvis_linux_<version>.sh -q -console
echo $?

The -console argument may be used for debugging purposes. The echo command verifies the exit code from the installer which may be useful if
automating the installation.

2.2.4 Upgrading
When upgrading DbVisualizer from one major version to a new major version, user settings for the old version of DbVisualizer are migrated for use with
the new version.

2.3 Starting DbVisualizer
How to start DbVisualizer depends on the operating system you are using.

Windows
In the Start menu, select the DbVisualizer menu item.
Linux/Unix
Open a shell and change directory to the DbVisualizer installation directory. Execute the dbvis program. If DbVisualizer was installed using the
setup installer an optional desktop icon can be used to launch the app.
macOS
Double click on the DbVisualizer application or the DbVisualizer.app application bundle.

You can also start DbVisualizer with the bundled script files, please see the GUI Command Line Arguments page for details. For tasks that do not require a
GUI, such as tasks scheduled via the operating system's scheduling tool, you can also use the pure command-line interface.

2.3.1 EULA (End User License Agreement)
When you start DbVisualizer for the first time, or after upgrading to a more recent version, you are prompted to accept the End User License Agreement.

2.3.2 Free or Pro Version
If you start DbVisualizer without a valid license, you are presented with a dialog that prompts you to choose how to proceed; you can proceed and run the
Free version, request an Evaluation license, or register a license for the Pro version.

If you enter a license, you have to restart DbVisualizer to activate it. You can also proceed without entering a license and do that later using the Help
menu (see Evaluating the Pro Edition and Installing a Pro Edition License).

When upgrading from one major version to another major version, migration of the user settings is not performed when running the
command-line interface, dbviscmd. You must launch the DbVisualizer GUI to migrate your current settings for use with the new version.
dbviscmd can not be run until this is done.

https://resources.ej-technologies.com/install4j/help/doc/

Getting Started

DbVisualizer 13.0 Users Guide 20 of 445

1.

2.

2.3.3 Background Panel
When you first open DbVisualizer, or if you close all tabs at any time later, the backgrund panel becomes visible; this holds a few useful shortcuts and
links.

2.4 Evaluating the Pro Edition
The DbVisualizer Pro edition offers far more features than the Free edition. If you are using the Free edition, it is easy to activate a Pro edition evaluation
to see if suits your needs:

Open Help→Welcome...

Choose Evaluate DbVisualizer Pro and click the link to request an evaluation license.

Getting Started

DbVisualizer 13.0 Users Guide 21 of 445

3.

4.

•
•
•
•

1.
2.
3.
4.
5.
6.

1.
2.
3.
4.

5.
6.

Enter your email address and click Evaluate

Click Restart when prompted after the activation of the evaluation.

2.5 Installing a Pro Edition License
To enable the Pro edition features, you need to install the License Key String or License Key File that you received after purchasing the license.

Installing a License Key String
Installing a License Key File
Uninstalling the license key
DbVisualizer Pro, license file location

2.5.1 Installing a License Key String
Select and copy the License Key String included in the email,
Start DbVisualizer and select the Help->License Key main menu choice,
Select License Key String as the License Type,
Paste the key string into the text area,
Click Install License,
Restart DbVisualizer when prompted to do so.

The DbVisualizer main window should now say DbVisualizer Pro in the window title. You're ready to go.

2.5.2 Installing a License Key File
Save the dbvis.license file attached to the email to disk,
Start DbVisualizer and select the Help->License Key main menu choice,
Select License Key File as the License Type,
In the License Key File field, enter the path to the newly saved dbvis.license file or click the button to the right of the field to open a file browser
to locate the file,
Click Install License,
Restart DbVisualizer when prompted to do so.

The DbVisualizer main window should now say DbVisualizer Pro in the window title. You're ready to go.

2.5.3 Uninstalling the license key
If you ever need to uninstall the license key, you can do so by removing the license file. Its path is listed in DbVisualizer Pro, license file location.

2.5.4 DbVisualizer Pro, license file location
The license key file for DbVisualizer Pro is located in the following paths depending on used operating system:

Operating System Filename

Windows C:\Users\<user>\.dbvis\dbvis.license

UNIX/Linux /home/<user>/.dbvis/dbvis.license

macOS /Users/<user>/.dbvis/dbvis.license

If you start DbVisualizer with one of the bundled scripts rather than with the launcher, you need to manually restart DbVisualizer after the
activation.

An option to saving the dbvis.license file to disk is to drag it from you mail application (or elsewhere) into the License Key File field in the
Help->License Key window.

Getting Started

DbVisualizer 13.0 Users Guide 22 of 445

2.6 Installing the Demo Database
The quickest way to get started and explore the DbVisualizer features is probably to install the demo database.

The demo database is based on the Sakila Sample Database, adapted for use with the H2 database engine, and adjusted to better illustrate DbVisualizer
features.

Note: The available features are restricted by the capabilities of the H2 engine; in order to get the full picture, you should connect DbVisualizer to the
database(s) that you intend to use.

2.6.1 Installing/Uninstalling
You can install, uninstall or reinstall the demo database from the background panel (visible when all tabs are closed) or from the Help menu. The
installation dialog shows you the details, but in essence, you will get a local file for the database (initialized with the sample data), a connection for the
database, and a set of sample scripts. You can use this database as you please to experiment; if you mess things up, you can always reinstall it to get a
clean start.

2.6.2 The Database
The demo database represents a DVD rental store with fictitious actors, movies, customers, etc. Besides tables and views, the sample includes code
objects (triggers and functions). You can view the schema and DDL, both graphically and textually, and add/edit/delete objects.

The demo database is installed with its own driver, the sakila-dbvis.jar file with the triggers and functions, and an open connection to the database. The
driver is actually the standard H2 driver, but we keep it separate to ensure that the version is compatible with the demo database, and to avoid conflicts
with any other H2 connections.

If you open the References tab on Tables node, you get a graphical view of the schema:

2.6.3 Samples
In addition to the database, you also get a number of scripts in the Bookmarks/DbVisualizer Demo Scripts folder; most of them are based on the demo
database and were used to create the screenshots and examples in the Users Guide.

The Sakila folder holds a few variants of the Sakila database, ported to a few different database engines; you should be able to install them on your own
database.

Disclaimer: Please note that the Sakila scripts were downloaded from various open source repositories and provided for your convenience; only the H2
scripts are developed and supported by the DbVisualizer team.

https://dev.mysql.com/doc/sakila/en/
https://www.h2database.com

Getting Started

DbVisualizer 13.0 Users Guide 23 of 445

1.

2.6.4 Sources
Finally, in the .dbvis/DEMO folder, you find the actual database file (sakila-dbvis.mv.db) and the Java™ source code for the triggers and functions used
in the demo database (the code that is compiled into sakila-dbvis.jar).

The driver used for the demo is the driver named DbVisualizer Demo Driver which is a h2 driver.

2.7 Creating a Connection - basics
To access a database with DbVisualizer, you must first create and setup a Database Connection.

2.7.1 Create a database connection
Create a new connection from Database->Create Database Connection and select a driver for your database from the popup menu.

Getting Started

DbVisualizer 13.0 Users Guide 24 of 445

2.

3.
4.
5.

6.
7.
8.

An Object View tab for the new connection is opened:

Enter a name for the connection in the Name field, and optionally enter a description of the connection in the Notes field,
Leave the Database Type as Auto Detect,
If the selected driver in Driver Type is marked with a green checkmark then it is ready to use. If it is not marked with a green checkmark, you
may have to configure the driver in the Driver Manager (see Installing a JDBC Driver how to install a JDBC driver),
Enter information about the database server in the remaining fields (see below for details),
Verify that a network connection can be established to the specified address and port by clicking the Ping Server button,
If the result from Ping Server shows that the server can be reached, click Connect to connect to the database server.

Alternatively, you can set the Settings Format to Database URL (this is the only choice for some JDBC drivers). This replaces the fields for information
about the database server with a single Database URL field, where you can enter the JDBC URL.

The information about the database server that needs to be entered depends on the which JDBC driver you use. For most drivers, you need to specify:

See Fixing Connection Issues for some tips if you have problems connecting to the database.

Getting Started

DbVisualizer 13.0 Users Guide 25 of 445

Field Description

Database Server The IP address or DNS name for the server where the database runs.

Database Port The TCP/IP port used by the database.

Database Userid The database user account name. Enter (null) to not send an account name.

Database Password The database user account password. Enter (null) to not send a password.

For some database such as Oracle, you may use a TNS name instead of specifying the server and port. Other drivers may add more fields that are driver
specific.

You may also optionally specify SSH tunneling information and Options, such as:

Option Description

Auto Commit Check if you want to enable auto commit in the SQL Commander by default for the
connection.

Save Database Password Check if you want the password to be saved (encrypted) during the session, between
sessions, or cleared when you disconnect.

Permission Mode One of Development, Test or or Production to select which set of Permissions to use.

See the Configuring Connection Properties page for related topics.

2.8 Creating a Table - basics

To create a new table:

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Getting Started

DbVisualizer 13.0 Users Guide 26 of 445

1. Expand nodes in the Databases tab tree under the connection node until you reach the Tables node, select the Tables node and launch the
Create Table dialog from the right-click menu:

Getting Started

DbVisualizer 13.0 Users Guide 27 of 445

2.

1.

Add columns and constraints in the different tabs, then click the Execute button to create the table.

You can learn more about the Create Table dialog in the Creating a Table page.

2.9 Viewing a Table - basics
To view details about a database table:

Expand nodes in the Databases tab tree under the connection node until you find the table,

Getting Started

DbVisualizer 13.0 Users Guide 28 of 445

2.

1.

Double-click on the table node to open its Object View tab.

The Object View has a number of sub tabs. Exactly which sub tabs are available depends on the database type, but these are common for all types:

Subtab Description

Info Brief information about the table.

Columns Information about all table columns, e.g. data types and sizes.

Data Then table data. Here you can view and edit the data.

Row Count The number of rows in the table.

Primary Key Information about the table's primary key columns, if any.

Indexes Information about the table's indexes, if any.

Grants Information about granted privileges for the table.

DDL Shows the CREATE statement for the table.

References Shows declared primary/foreign key relationships to other tables. Please read more in Viewing
Table Relationships.

Navigator Navigate through the declared relationships. Please read more in Navigating Table Relationships.

2.10 Editing a Table - basics

To edit table data:

Expand nodes in the Databases tab tree under the connection node until you find the table,
Double-click on the table node to open its Object View tab,

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Getting Started

DbVisualizer 13.0 Users Guide 29 of 445

2.
3.

1.

Open the Data sub-tab

Edit column values directly in the grid, add and remove rows by clicking on the buttons in the toolbar,
Save the edited data by clicking on the Save button in the toolbar.

You can learn more about the editing features in Editing Table Data.

2.11 Executing SQL - basics
To execute SQL statements:

Open an SQL Commander window from SQL Commander->New SQL Commander or by clicking the New SQL Commander button in the main
toolbar,

Note that if the table does not have any declared Primary Key, you will be prompted to select the column(s) that uniquely identify a row.

Getting Started

DbVisualizer 13.0 Users Guide 30 of 445

2.
3.
4.
5.

Select the database connection, catalog and schema to use,
Enter the SQL statements in the editor area,
Execute the statements by clicking the Execute button in the toolbar or choosing SQL Commander->Execute,
The execution log and possible result sets are shown as tabs in the results area below the editor.

You can learn more about editing, saving and executing SQL statements in the Working with SQL section.

2.12 Checking for Updates
By default, DbVisualizer checks for new versions on a weekly basis. To change the interval or manually check for updates:

Getting Started

DbVisualizer 13.0 Users Guide 31 of 445

1.

2.

Open Help->Check for Updates

Change the interval to one of Every Start-Up, Daily, Weekly, Monthly, or Never, or click the Check Now button to see if there is a new version
available right now.

If a newer version is available, a dialog is displayed from where you can install the new version, read release notes, or in case your license is not valid for
the new version, open our purchase page in your web browser.

Upgrading the currently used version is done by clicking the Upgrade link in the above dialog and then following the instructions.

If you are interested in getting information about Beta versions to help us fine-tune upcoming versions, check the corresponding checkbox.
By default, Beta versions are not considered when checking for updates (unless you are already running a Beta version).

Getting Started

DbVisualizer 13.0 Users Guide 32 of 445

•
•
•
•

•
•

2.13 Printing
DbVisualizer supports printing of grids, graphs, charts and plain text, such as the content of an SQL Editor. The print dialog looks somewhat different
depending on what is printed. In all cases, you launch the print dialog by clicking on the Print button in the toolbar for the object you want to print, or by
choosing Print from the right-click menu. The right-click menu also contains a Print Preview choice, if you want to see what the printout will look like
before you actually print.

Printer Setup
Printing a Grid, a Chart and Plain Text
Printing a Graph
Print Preview

Grid
Graph

2.13.1 Printer Setup
If you want to set the page orientation (e.g., portrait or landscape) and paper size, you must launch the Printer Setup dialog, using the File->Printer
Setup main menu option, before you print. Printing varies widely between platforms, so even though the Print dialog (as opposed to the Printer Setup
dialog) on some platforms also lets you choose a page orientation and other options, they may be ignored if specified in that dialog. The only supported
way to specify the page orientation and other options is via the Printer Setup dialog.

In some organizations, decisions about software versions and installation is handled as a centralized process and individual users are not
allowed to upgrade or install software. The Check for Update feature and auto-update of new versions can be disabled by adding the
following row in the DBVIS-HOME/resources/dbvis-custom.prefs:
dbvis.url.checkforupdate=
With this setting, the Check for Update will still appears in the Help menu but selecting it displays a message saying that the feature is
disabled.

Getting Started

DbVisualizer 13.0 Users Guide 33 of 445

2.13.2 Printing a Grid, a Chart and Plain Text
For a grid, chart and plain text, DbVisualizer launches the platform's native Print dialog, so it looks different on different platforms. The two options
available on all platforms are a choice of printer and the page range. On some platforms, the dialog may offer additional options, but they may be
ignored by DbVisualizer. Use the Printer Setup dialog to set other options besides which printer to use and the page range, as described above

When you print a grid in DbVisualizer, the grid is printed as it is shown on the screen, i.e., with the table headers, sort and primary key indicator, etc. It is
printed as a screenshot that may span several pages, depending on the number of rows and columns that are printed. For a grid, the right-click menu
contains a Print Selection choice that you can use if you just want to print selected rows and columns.

Printing a chart scales the chart to the size of the paper. Plain text is printed as-is and may span multiple pages, both in height and width.

2.13.3 Printing a Graph
Printing a graph adds a custom dialog before the native Print dialog is displayed. You can specify the number of rows (pages) and columns (pages) that
the complete image will be split into. You can also select whether the view as it appears on the screen or the complete graph should be printed. If you run
a dark theme, you are presented with an option to Use Light Theme (good for printing on white paper).

When you click OK, the native Print dialog is displayed, where you can select the printer.

2.13.4 Print Preview
Use the File->Print Preview feature to preview what the printout will look like before you actually print it.

An alternative to printing a grid as a screenshot is to export the grid to HTML and then use a web browser to print it.

Getting Started

DbVisualizer 13.0 Users Guide 34 of 445

Grid

Getting Started

DbVisualizer 13.0 Users Guide 35 of 445

Graph

If you run a dark theme, you may want to Use Light Theme for printing the graph (good for printing on white paper).

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 36 of 445

3 Getting the Most Out of the GUI
DbVisualizer has a tab-based user interface that gives you a lot of control over the layout and how to work with your database objects. This section
describes how you can open as many tabs as you need, arrange them to focus on what is important to you, and more.

3.1 Main Window Layout
The DbVisualizer GUI main window contains a navigation area to the left and an area for working with database objects and scripts to the right.

At the top of the window, you find the main menus and a toolbar.

Tooltips are used to provide more details about a component throughout the GUI. They are also used to express status information. An example is the
grid column header tooltip that shows information about the column. To see a tooltip, let the mouse hover over an area of the user interface, e.g., a
button or grid header. If there is a tooltip for the area, it will pop up in about a second.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 37 of 445

•
•
•

3.2 Tab Types
There are three main types of tabs in DbVisualizer:

Navigation Tabs
Object View Tabs
SQL Commander Tabs

3.2.1 Navigation Tabs
The left part of the DbVisualizer window holds a navigation area with three tabs: Databases, Scripts and Favorites. They all contain an object tree where
you can select the objects you want to work with and optionally filter and/or sort the nodes (right-click any node and select Sort ...).

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 38 of 445

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 39 of 445

The Databases tab tree contains you database connections at the top and, when connected, the database objects they contain. If you have many
database connections, you can also create folder objects in this tree to organize them.

The Scripts tab tree contains Bookmarks and Monitors, see the Managing Frequently Used SQL and the Monitoring Data Changes pages for details.

Finally, the Favorites tab tree contains objects that you want to have easy access to, either database objects (such as tables, views, or procedures) or
scripts. You can read more about Favorites in the Favorites page.

3.2.2 Object View Tabs
An Object View tab shows information about a database object, such as the data and DDL for a table, or the source code for a stored procedure. The
different types of information are shown as sub tabs within the Object View tab.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 40 of 445

3.2.3 SQL Commander Tabs
An SQL Commander tab contains an editor for editing SQL scripts, controls for executing the script and a results area with a Log tab and possibly Result
Set tabs showing results from queries, and a DMBS Output tab for databases such as Oracle and Db2 LUW.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 41 of 445

3.3 Opening a Tab

3.3.1 Database tree objects
You can open an object by double-clicking on the object node, or by pressing Enter with the node selected, in all navigation tab trees. This opens either
an Object View tab or an SQL Commander tab, depending on the object type: database object or script.

By default, a database object is opened in an Object View tab that is "available," meaning it is not pinned, busy running a task, or contains pending edits.
The current tab is chosen if it is available, otherwise any other available tab is used. If none of the tabs is available, a new tab is created for the object. You
can change this behavior in the General/Tabs category in Tools->Tool Properties, so that a new tab is always used instead of using an available tab.

If a tab is already open for the object, it is made the active tab. An alternative to double-clicking a database object is to use the Open in Tab choice from
the node's right-click menu. Open in Tab is also available in the Open Object drop-down menu button in the Databases tab toolbar.

If you want to open a database object in a new tab instead of an available tab, hold down the Alt key when you double-click the node, use the Open in
New Tab choice from the node's right-click menu or from the Open Object drop-down menu button in the Databases tab toolbar. The drop-down
button keeps the last choice as the default, so once you have selected Open in New Tab once, you only need to click the button to do the same.

Both Open in Tab and Open in New Tab can also be used when multiple nodes are selected in the tree to open multiple tabs in one go.

To replace the content in a specific Object View tab with information for another object, drag the node for the new object from the object tree and drop
it on the Object View tab header.

The behaviour when double clicking a Database object can be configured in Tools->Tool Properties and in General / Database Objects Tree.

3.3.2 Scripts and Monitors
Scripts (Bookmarks and Monitors) are always opened in a new SQL Commander tab unless the script is already opened in a tab. If so, that tab is
activated instead. An alternative to double-clicking the node is to use Open in SQL Commander in the right-click menu or the corresponding button in
the Scripts tab toolbar. The right-click menu also holds an Open in SQL Commander and Execute choice.

A new, empty SQL Commander tab is created by clicking the Create SQL Commander button in the main toolbar or using the corresponding File menu
item. You can use this kind of SQL Commander tab for ad-hoc statement execution or to create a new script.

SQL Commander tabs can also be opened for files in the file system. Click the Open File button in the main toolbar or choose File->Open to open the file
chooser window and select one of more files. Alternatively, you can drag files from your platform's file browser and drop them in the main toolbar area.

In addition see also Synchronizing object tab selection and selection in the tree which shows how to set up DbVisualizer to automatically select the
database tree node when the corresponding object view tab is selected and vice versa.

3.4 Pinning a Tab
To prevent an Object View tab to be reused for another object or to prevent any tab to be removed unless you explicitly asks for it, you can "pin" it. In the
right-click menu for a tab you find a Pin Tab toggle to accomplish this. A red pin icon is added to the icon when pinned.

You can also click on the icon in the tab header as a shortcut for toggling between the "pinned" and "unpinned" states.

3.5 Closing a Tab
A top level tab and a Result Set tab in an SQL Commander tab can be closed by clicking the cross to the right of the tab label, or clicking the tab header
with the middle mouse button.

If you want to close a number of tabs at the same time, you can use the tab header menu choices:

Close Tab Close just the current tab.

Close Other Tabs Close all tabs except the current tab.

Only in DbVisualizer Pro

 Multiple SQL Commander tabs are only available in the DbVisualizer Pro edition.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 42 of 445

Close Closeable Tabs Close all tabs that are in a state where they can be closed with no action required by the
user, e.g. not pinned and no pending edits.

Close All Pinned Tabs Close all pinned tabs.

Close All Tabs Close all tabs, regardless of state

You can also hide Object View sub tabs that you are not interested in. Use the Close Tab right-click menu choice to do so. To see the hidden tabs again,
use Restore Hidden Tabs in the right-click menu.

3.6 Listing Open Tabs
If you have many tabs opened, there may not be room enough to show them all at the same time. In this case, you can scroll through them using
the arrow buttons that appear to the right of the tabs. It is, however, often faster to locate the tab you want to work with by clicking the list icon next to
the arrow buttons. This brings up a list of all open tabs so you can select the one you want directly.

3.7 Maximizing and Minimizing a Tab
The three Navigation tabs can be minimized either by double-clicking on the tab header or using Minimize Tab in the tab's right-click menu. Clicking on a
minimized tab brings it back to its regular place and size again.

All other tabs can be maximized by double-clicking on the tab header or using Maximize Tab in the tab's right-click menu. When you maximize a tab, the
Navigation tabs are minimized to make as much room as possible available and the tab you maximized fills all available space. Double-clicking on the the
tab again restores all tabs back to their original size. The latter can also be accomplished by deselecting the Maximize Tab right-click item.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 43 of 445

An icon in the main status bar indicates when a tab is maximized. An alternative for restoring the original size of all tabs is to double-click on this icon.

3.8 Floating a Tab
Sometimes it is handy to break up the user interface in multiple freestanding windows. Every tab in DbVisualizer can be placed in a separate window by
"floating" the tab. Use the Floating menu choice in the tab header right-click menu to float the tab in a separate window. An alternative is to drag the tab
outside of the window. To dock the tab with the original location, right-click the tab and deselect Floating.

Closing a top level floating window will for Object View and SQL Commander tabs ask whether to really close the tab as it is then closed permanently
and will not be restored in the DbVisualizer window. Closing an Object View sub tab, will hide the tab. To restore it, right-click another sub tab and select
Restore Hidden Tabs.

3.9 Rearranging Tabs
You can move the tabs around by drag and drop. This allows you to see the content of multiple tabs at the same time

When you drag a tab, an outline of the tab borders shows what will happen when you drop it: place it in above, below or next to another tab, or simply
move it to another location among its siblings.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 44 of 445

The tab header right-click menu also has a couple of choices for arranging all tabs at the same level as either "tiled" (the content of all tabs visible side-
by-side) or "collapsed" (only the content of the active tab visible).

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 45 of 445

You can save your rearranged layout of an Object View tab so that it is applied for all objects of the the same type for the same database type. In the sub
tab header right-click menu, just select Save as Default Layout. To restore the default layout, use Reset to Factory Layout.

3.10 Changing the Tab Label
The tab labels are set based on a pattern that you can change in Tools->Tool Properties, in the General/Tabs category. The pattern can also be changed
by selecting the Modify Tab Labelling right-click menu for Object View, SQL Commander, and Result Set tabs.

You can also manually change the label for a single Object View, SQL Commander, and Result Set tabs, using the Rename menu choice in the tab right-
click menu.

You can select one of the predefined patterns or create your own by editing the pattern. The variables available for these patterns are:

Variable Available For Description

${connectionname} All Connection name

${index} All A unique index for the tab in the tab group

${userid} All Userid used for the connection

${filename} SQL Commander Tabs Script filename, or "Untitled" if no file is loaded. The nofile
option can be used to change "Untitled" to something else, e.g.
${filename|nofile=No File}. Set it to blank to only show a label
when a file is loaded, i.e. ${filename|nofile=}

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 46 of 445

1.
2.
3.
4.

Variable Available For Description

${longfilename} SQL Commander Tabs Absolute path for the script, or "Untitled" if no file is loaded.
The nofile option can be used to show something else, see the
${filename} variable for details

${objectname} Object View Tabs Object name

${objecttype} Object View Tabs Object type, e.g. Table, View etc.

${catalog} Object View Tabs The database (if any) for the currently open object

${schema} Object View Tabs The schema (if any) for the currently open object

${editorindex} Result Set Tabs The index for the parent SQL Commander tab

${rows} Result Set Tabs Number of rows in the result set

${sql} Result Set Tabs Part of the SQL statement that produced the result set

${table} Result Set Tabs Name of the table (first if more than one) the result set comes
from

${time} Result Set Tabs Time when the result set was produced

${vendor} Result Set Tabs Database vendor name

3.11 Selecting a Node for a Tab
To quickly navigate to and select the node in the Databases tab tree that an Object View tab belongs to, you can click on the object path in the Object
View header area. Alternatively, you can use Select in Databases Tab in the tab right-click menu.

Similarly, you can navigate to the object represented by a Favorite object using its Select Target Object right-click menu choice. It selects the object in
the Databases or Scripts tab, depending on the Favorite type.

For an SQL Commander tab that is associated with a connection, you can use Select in Databases Tab in the tab right-click menu to select the
connection node.

It is also possible to automatically select the Node whenever its object view tab is clicked. This is done in Tools->Tool Properties under the General /
Database Objects Tree category.

An alternative is by selecting the Autoscroll FROM Object View tab in the Open selected object(s) drop down in the toolbar of the Databases tab tree.

3.12 Preserving Tabs Between Sessions
If you often work with the same objects and a few scripts, you can ensure that the Object View and SQL Commander tabs for these objects remain open
between DbVisualizer sessions.

Open Tools->Tool Properties,
Select the Tabs category,
Enable one or both of Preserve SQL Commander tabs between Sessions and Preserve Object View tabs between Sessions,
Click Apply or OK to apply the new settings.

This feature is enabled by default for SQL Commander tabs but not for Object View tabs.

The content of the SQL Commander tabs is saved at regular intervals so when you restart DbVisualizer, the content is the same as where you left off.

For Object View tabs, you can also enable Preserve Object View tabs at Disconnect. By default, Object View tabs for objects that belong to a connection
are closed when it is disconnected.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 47 of 445

1.
2.

3.13 Using Tab Colors and Borders

If you like to distinguish tabs and other GUI components for a specific connection from those of others, you can specify a tab background color and/or
border to use for a connection. If you set these in the Tools->Tool Properties under the Database / <database type> / Color and Borders category, they
apply to all connections with the corresponding database type. Therefore these properties are typically set in the Properties tab for a specific connection
instead.

For the border, you can either select one of the predefined styles or specify a small image file to use for the border.

The selected color and border are also shown in the connection tab node in the Databases tab and in the Database Connection list in the SQL
Commander.

3.14 Changing the GUI Appearance
To change how the DbVisualizer GUI is displayed:

Open Tools->Tool Properties,
Select the Appearance category under the General tab.

Under Appearance you can choose theme and adjust the size and use of icons.

In the subcategories Fonts, Editor Styles and Colors you can adjust the fonts used for different parts of the GUI and the colors used to highlight grid
elements. Color choices are saved for the currently used theme.

The main View menu also contains a number of toggle controls for showing or hiding GUI elements, such as toolbars and status bars.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 48 of 445

3.15 Changing Keyboard Shortcuts
You can define key bindings for almost all operations and editor commands in DbVisualizer. Key bindings are defined in Tools > Tool Properties under
the General / Key Bindings category. Key bindings are grouped in Key Maps, each with an action list organized in folders; the Editor Commands folder
lists all actions available in the SQL Commander editor and their current key bindings (in the Key Bindings list), the Main Menu folder contains
subfolders, each representing a main window menu and other folders group feature specific actions, such as actions to control the references graph,
form editor, etc.

DbVisualizer includes a set of predefined keymaps targeted for the supported operating systems. These keymaps cannot be deleted or modified. To
customize key bindings, copy an existing keymap and make your changes.

For instance, the Main Menu folder contains actions in subfolders, each representing a main window menu, and the Editor Commands folder lists all
actions available in the SQL editor. For each action, the key binding(s) are defined in the Key Bindings column.

All user-defined keymaps are stored in your $HOME/.dbvis/config130/keymaps directory. A keymap file contains only the differences between the copied
keymap and the current. To create a new keymap, select the map you want to copy and click the Make Copy button. The name of the copied keymap is

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 49 of 445

suffixed with _copy and is activated automatically. Set a name on the new keymap if you like. The newly created keymap now has the exact same key
bindings as the parent keymap.

To modify the key bindings for an action, select the action from the action list. The current key bindings are listed in the Key Bindings list, and you can
search for mappings by action or key binding.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 50 of 445

The modifier keys Shift, Alt, Ctrl and Command can be used to define the key binding. The keystroke dialog controls whether a key binding is already
assigned somewhere else. If there is a conflict with another binding, the Conflicts area shows the names of the actions that are conflicting.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 51 of 445

3.16 Internationalization and Localization (i18N and L10N)
DbVisualizer is currently available in US English and supports user data in more or less any language or character encoding; DbVisualizer leverages the
character sets supported by the Java VM, the fonts supported by the operating system, and the character encoding capabilities of the database to read,
write, and render user data. You can also set your own preferences for date and time formats (see Changing the Data Display Format).

Menu items and tooltips show the first defined key binding in the list.

Getting the Most Out of the GUI

DbVisualizer 13.0 Users Guide 52 of 445

•
•
•

3.16.1 Fonts and Character Sets
Depending on which platform you run (Windows, Unix/Linux, macOS) and what character set you want to use, you may have to change the font settings.

DbVisualizer offers three settings for fonts:

Application: controls the font for the application components such as titles, buttons, menus, etc.
Grids: controls the font for GUI components where a proportional font is usually preferred (see Changing the GUI Appearance).
Text Editors: controls the font for editors, log files, and other components where a monospaced font is usually preferred (see Editing SQL
Scripts - Font Settings).

Example:

If you run Microsoft Windows and want to name your database connections using simplified Chinese (or any other language not supported by the default
font), you will have to change the font for Grids and/or the Application to one that supports this character set. In this example, we use Microsoft YaHei UI
for the grids and Microsoft YaHei UI Light for the application.

3.16.2 Encoding
Even if the font is capable of rendering the characters, data may be scrambled in DbVisualizer if the encoding between the JDBC driver and the database
is wrong.

You may also need to specify the encoding of text in binary data types, either for a specific connection or for all all connections of a specific database
type. In this example we specify UTF-8 encoding for all SQL Server connections:

•
•

When text results fetched from the database are scrambled there are a few areas that needs to be verified:
The font selected in DbVisualizer must be capable to show the characters.
The encoding used to pass information from the database to the JDBC driver must match.
Encoding depends on the capabilities of the JDBC driver. Check the driver documentation what options are available. Once
determined, encoding changes are most often applied as driver properties in DbVisualizer.

Managing Database Objects

DbVisualizer 13.0 Users Guide 53 of 445

4 Managing Database Objects

4.1 Opening a Database Object
To open an Object View tab with the details for a database connection or for a specific database object, the simplest way is to double-click the object
node in the Databases tab. For more information about opening tabs, check the Opening a Tab section.

4.2 Perform Actions on Multiple Database Objects
The actions menu for a database object in the Databases tab consists of actions that are available for the selected object type. Some of the operations
are common for any currently selected object while others are only available for the current object. Sometimes it is convenient to run a single action on
multiple nodes at once. To do this, select the nodes (make sure all are of the same object type) and then right-click in the object list. The menu will now
highlight those actions that are valid to use.

Managing Database Objects

DbVisualizer 13.0 Users Guide 54 of 445

Choosing for example the Drop Table action shows the following window in which the drop can then be performed on multiple tables.

4.3 Filtering Database Objects

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Managing Database Objects

DbVisualizer 13.0 Users Guide 55 of 445

•
•

•
•
•

•
•
•

1.

2.

•
•
•

Object Filtering
Inline Objects Filtering

Object Type Visibility
Temporarily Disable Filtering
Filter Sets

Switching Filter Set
Show Only Default Database/Schema filter
Labels

Managing what database objects are listed in the Databases tab is done at two levels:

Objects Filtering
Defines what individual object nodes are listed for a specific object type. This allows filtering on for example Table objects so that only tables
matching a condition are listed.
Object Type Visibility
Defines what object types such as views, tables, indexes, procedures, etc. are listed. Every database in DbVisualizer supports all sorts of
database objects. Having the ability to hide some object types makes it easier to locate the database objects that are of primary interest.

The Filter Editor is used to manage object type visibility, object filters, and labels. The Filter Editor is opened from one of:

Database main menu and the Database Objects Filters->Open Filter Editor
Right-click somewhere in the Databases tab and choose Database Objects Filters->Open Filter Editor
Click the drop-down button on the funnel icon in the Databases tab toolbar and choose Open Filter Editor.

Managing filters and opening the filter editor requires that a node is selected in the Databases tab tree and that the related database
connection is connected.

Managing Database Objects

DbVisualizer 13.0 Users Guide 56 of 445

Managing Database Objects

DbVisualizer 13.0 Users Guide 57 of 445

The upper list shows all available object types for the actual database connection. The leading check mark controls whether the object type should be
visible in the Databases tab. Read more in the Object Type Visibility section. The Filter(s) column shows any filters defined for each object type. A
green check mark symbol indicate that at least one filter is active while a yellow cone symbol indicate that all filters for the object type are deactivated.

Selecting an object type enables the objects filtering area in the lower part of the window. Here individual filters are defined for an object type.

4.3.1 Object Filtering
Object filtering can be made on any database object (Table, Function, Procedure, User) except for grouping objects such as Tables, Functions,
Procedures, Users. Grouping objects in DbVisualizer are often labeled with the related object type name in plural.

To setup a filter, select the object type in the objects list and in the filter area, click the button with a plus sign to insert a new row.

A filter entry consists of a field (e.g Label), a condition and a value to match against. Click the condition field to select the condition to use. In the Value
field, enter the value that should be matched. For multi value conditions, such as is in and isn't in, the list of values are separated with a semicolon or
edited in separate window that is opened by pressing the right-most icon in the input field.

Each individual filter can be deactivated using the check mark. Uncheck it and the corresponding filter will not be used unless reactivated. The currently
defined filters are listed in the upper object type list for each object type. The leading symbol shows either a green check mark which indicates that some
of its filters are active or a yellow cone symbol that shows that no filter is active.

You can define more than one filter. Just click the green plus or yellow star (to duplicate an existing row) buttons. If you have more than one active filter,
you must also select if the filter should match Any or All filter entries.

Filter entries (rows) can be moved up/down to arrange the filters, just select one ore more rows and use the popup menu Move Up/Move Down. You can
also use Drag&Drop to move the rows.

Inline Objects Filtering
The filter area can also be displayed just below the objects tree in the Databases tab. This is convenient as you can then quickly manage and verify the
effect of certain filters. To toggle the display of the filtering area, either click the left part of the funnel icon in the Databases tab toolbar or click the right
menu arrow and select Database Objects Filter->Show/Hide Filter Area.

Object Filters for Database and Schema objects also apply to the corresponding drop-down lists in SQL Commander tabs, but only after a
reconnect.

Managing Database Objects

DbVisualizer 13.0 Users Guide 58 of 445

In this example, the filter area is displayed with the filters for the Tables object type listed. When filters have been modified, you need to manually apply
the filters using one of the reload buttons in the filter area toolbar or in the Databases tab toolbar. If a filter results in all object nodes being filtered, "(all
filtered)" is displayed next to the parent object node in the tree. Since the filtered object type is now invisible as a result of the current filter, you need to
disable the filter to refine it. Do this by selecting the parent node with the "(all filtered)" label and then click the "Disable Filters" link just below the
objects tree:

Managing filters and opening the filter editor requires that a node is selected in the Databases tab tree and that the related database
connection is connected.

Managing Database Objects

DbVisualizer 13.0 Users Guide 59 of 445

Clicking "Disable Filters" deactivates all filters for the object type and you are now able to modify the filter to get the matches you want.

4.3.2 Object Type Visibility
Object type visibility is the functionality used to define what object types should be visible in the Databases tab. For some databases, the tree of object
types can be really long and many objects are rarely used or of minor interest. By hiding object types, the tree is compressed to only show what you are
really interested in. To control the visibility of object types, open the Filter Editor.

Managing Database Objects

DbVisualizer 13.0 Users Guide 60 of 445

The previous image shows the object types available under a Catalog in SQL Server. As you can see, there are plenty of them (sub object types are
collapsed in the example for better illustration). The following example shows the database tree in the Databases tab before and after the visibility has
been set based on the previous screenshot.

Managing Database Objects

DbVisualizer 13.0 Users Guide 61 of 445

All Schema objects displayed With hidden Schema objects

4.3.3 Temporarily Disable Filtering
While browsing the objects in the Databases tab, it may be convenient to quickly toggle between the standard non filtered view and the filtered view of
objects and types. This is easily accomplished with the Disable Filtering action in the funnel drop-down menu. While filtering is disabled, the funnel
symbol in the toolbar shows a red indicator and text in the inline filtering area shows the current status.

Managing Database Objects

DbVisualizer 13.0 Users Guide 62 of 445

While filtering is disabled it is not possible to manage filters at all and the related actions are disabled.

4.3.4 Filter Sets
When you apply an object filter or hide an object type, that configuration is saved in a Filter Set that is saved between sessions. For every database
connection, there is always a default filter set. If you are happy with the basic filtering capability you can stop reading here. If you however are
interested in having multiple filter sets that can optionally be shared between multiple database connections and easily be switched between, keep on
reading.

Filter sets are managed in the filter editor. Here you can create and delete filter sets and merge from another. Filter sets are either associated with a
specific database connection, its name is then default for <database connection name> or a custom filter set that can be enabled for many
connections, named as you like. A custom filter set is always associated with the database type currently being used for your database connection. The
latter means that you are able to share filters sets that are all associated with the same database type. If you create a filter set for MySQL then this will
never show up if you are working with an Oracle database.

The Filter Set drop-down in the filter editor shows the currently used filter set, and when clicked, the available filter sets that you may switch to.

Disabling filters is applied per database connection. This means that if you disable the current filter set on a MySQL connection it wont affect
any filters defined for other database connections.

Managing Database Objects

DbVisualizer 13.0 Users Guide 63 of 445

The merge functionality (the blue merge arrow button) can merge not only from custom filter sets but also from the default filter sets associated with
other database connections with the same database type.

Switching Filter Set
In the filter editor, you switch filter set by selecting one from the Filter Set drop-down. In the Databases tab, there is the funnel symbol which when
clicked is used to toggle the display of the inline filter area. Clicking on the funnel drop-down symbol opens a menu:

At the top of the menu, the default filter set for the database connection is displayed first with any custom filter sets below it. An entry that is check
marked indicates that it is active.

4.3.5 Show Only Default Database/Schema filter
There is a special filter used to filter any database and schema objects to show only the default for the session. It is listed as Show Only Default Database/
Schema in the filter menu. When selected, a special filter is applied on the corresponding Database and/or Schema object type and the effect is what its
name implies.

4.3.6 Labels
The label displayed for an object in the Databases tab is composed from variables associated with the database object. These labels can be modified in
the Filter Editor (Database Objects Filters->Open Filter Editor in the Database main menu). Here is an example how the object label look for a column
object type in the Databases tab:

Managing Database Objects

DbVisualizer 13.0 Users Guide 64 of 445

In the Filter Editor click the Labels button in the top right corner of the window. Two columns, label and label1 now shows how each object type should
be labelled. The selected row for the Column object type shows that the first label should be rendered with the value from $
{getColumnDefinitions.COLUMN_NAME} and the label1 is ${getColumnDefinitions.TYPE_NAME}.

Working with Tables

DbVisualizer 13.0 Users Guide 65 of 445

•
•
•
•
•
•
•
•
•
•
•

The variables used in the Label column should rarely be altered. Label1 on the other hand can be modified to show for example the column comment (if
any), i.e. ${getColumnDefinitions.COMMENT}. For the Column object type and its getColumnDefinition variable scope these are available:

COLUMN_NAME
SIZE
SCALE
TYPE_NAME
NULLS
AUTO_INCREMENT
ENCODING
COMMENT
IS_INVISIBLE
COLUMN_DEFAULT
IS_PRIMARY_KEY

5 Working with Tables
DbVisualizer provides many ways to work with tables.

Note that the variables are not documented as these are all database specific and obtained dynamically in the database profile for each
database.

Working with Tables

DbVisualizer 13.0 Users Guide 66 of 445

•
•
•
•
•
•
•
•
•

1.
2.

5.1 Creating a Table

The Create Table dialog helps you create a table without writing SQL.

Opening the Create Table Dialog
Columns Tab
Primary Key Tab
Foreign Keys Tab
Unique Constraints Tab
Check Constraints Tab
Indexes Tab
SQL Preview
Execute

5.1.1 Opening the Create Table Dialog
To create a new table:

Expand nodes in the tree under the connection node in the Databases tab tree until you reach the Tables node,
Select the Tables node and open the Create Table dialog from the right-click menu.

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Working with Tables

DbVisualizer 13.0 Users Guide 67 of 445

•

•

•

1.
2.

3.

4.

The Create Table dialog is organized in three areas from the top:

General Table Info
Specifies the owning database connection, database and/or schema. These are picked up from the selection in the tree when the dialog is
opened. Table name is set to a default name that you should change to the real table name.
Table Details
A number of tabs where you specify information about the columns and, optionally, various constraints. The Columns, Primary Key and
Foreign Key tabs are available for all databases. The remaining tabs are database-specific and depends on the features supported by the
database engine.
SQL Preview
The SQL previewer shows the SQL statement for creating the table based on your input.

5.1.2 Columns Tab
The Columns tab lists all table columns along with their attributes. The actual columns of the Columns tab is dependant on database. Additional
columns may be shown for other databases. An example is Oracle and MariaDB which supports invisible columns and thus a column for setting this is
shown.

To add a column:

Click the Add button,
Enter the name of the column in the first field and select a data type from a drop down list in the second field, or start typing the data type name
to find it and select it with the Enter key. The list contains the names of all data types the database supports,
For some data types, such as character types, you may also specify a size, i.e., the maximal length of the value. For others, like the decimal types,
you can may specify both a size and a scale (the maximal number of decimals),
In the last two fields, specify if the table is nullable and a default value to use for rows inserted into the table without specifying a value for the
column.

You may find additional fields depending on the features supported by the database you are working with and the data type for the current
column. The Collation field is shown for character columns if the database supports the declaration of a collation for textual data.

Working with Tables

DbVisualizer 13.0 Users Guide 68 of 445

1.
2.

1.
2.

Settings for generated fields are shown if the database supports automatically inserted values, typically to insert the next available sequence number in a
numeric column.

The Create/Alter Table dialog uses database metadata to try to enable only the fields that apply to the selected data type, but please note that it is not
always possible. For instance, there is no metadata available to tell if a data type requires, or allows, a size. If you don't enter a required attribute or enter
an attribute that is unsupported for a data type, you will get an error message when you click Execute to create/alter the table.

To remove a column:

Select a cell in the column row,
Click the Remove button.

To move a column to another location (Only supported for Create Table):

Select a cell in the column row,
Click the Up or Down buttons.

5.1.3 Primary Key Tab
The Primary Key tab contains information about an optional primary key for the table. A primary key is a column, or a combination of columns, that
uniquely identifies a row in a table.

Working with Tables

DbVisualizer 13.0 Users Guide 69 of 445

1.
2.

•

To declare a Primary Key:

Optionally enter a constraint name for the primary key constraint in the Constraint Name field,
Select the column(s) to be part of the primary key by clicking the checkboxes in the Include field in the columns list.

5.1.4 Foreign Keys Tab
In the Foreign Keys tab, you can declare one or more foreign keys for the table. A foreign key is a column, or a combination of columns, that refer to the
primary key of another table. Foreign keys are used by the database to enforce integrity, i.e., that there is a row in the referenced table with a primary key
that matches the foreign key value when a new row is inserted or updated, and you can optionally declare rules for what to do when a referenced primary
key is removed or updated in the referenced table.

The tab has the following sections:

A list of foreign keys,

Working with Tables

DbVisualizer 13.0 Users Guide 70 of 445

•
•

1.
2.
3.

4.
5.

1.
2.

1.
2.

3.

1.
2.

Controls for selecting the table the currently selected foreign key refers to, including the database (catalog) and/or schema for the table,
A list of all columns for the table being created/altered.

To declare a new foreign key constraint:

Click the Add button next to the list of foreign keys,
Optionally enter a name for the foreign key in the first field in the list,
Select On Delete and On Update actions from the pull-down menus. The pull-down lists include all actions that the database support, typically
CASCADE, RESTRICT, NO ACTION and SET NULL. The Columns field is read-only and gets its value automatically when you select which columns
to include in the key later,
Use the Referenced Table controls to select the table that the foreign key refers to,
Check the Include checkbox for all columns in the column list that should be part of the foreign key and then select the corresponding column
in the referenced table from the pull-down menu in the Referenced Column field.

You can change the column order for the key with the Up and Down buttons.

To remove an existing foreign key:

Select the foreign key in the list in the top section,
Click the Remove button.

5.1.5 Unique Constraints Tab
The Unique Constraints tab is only available for databases that support this constraint type. A unique constraint declares that the columns in the
constraint must have unique values in the table.

The top portion of the tab holds a list of all unique constraints, and the lower portion holds a list of all table columns.

To create a constraint:

Click the Add button,
Optionally enter a constraint name in the Constraint Name field. The Columns field in the constraints list is read-only, filled automatically as
you include columns in the constraint,
Select the columns to be part of the constraint by clicking the checkboxes in the Include field in the columns list.

You can change the column order for the constraint with the Up and Down buttons.

To remove an existing constraint:

Select the constraint in the list in the top section,
Click the Remove button.

5.1.6 Check Constraints Tab
The Check Constraints tab is only available for databases that support this constraint type. A check constraint declares that a column value fulfills a
certain condition when a row is inserted or updated. Some databases uses check constraints to enforce nullability rules, so when you alter a table, you
may see auto-generated check constraints for columns that you marked as not allowing null values in the Columns tab.

Working with Tables

DbVisualizer 13.0 Users Guide 71 of 445

1.
2.
3.

1.
2.

1.
2.

3.
4.

1.
2.

To create a check constraint:

Click the Add button,
Optionally enter a constraint name in the Constraint Name field.
Enter the condition for the column in the Condition field. You can use the same type of conditions as you use in a SELECT WHERE clause.

To remove an existing constraint:

Select the constraint in the list,
Click the Remove button.

5.1.7 Indexes Tab
The Indexes tab is only used for the MySQL database, as a replacement for the Unique Constraints tab. The reason is that for MySQL, the CREATE TABLE
statement can be used to declare both unique and non-unique indexes. MySQL also does not make a clear distinction between a unique constraint (a
rule, most often enforced and implemented as an index by the database) and a unique index (primarily a database structure for speeding up queries,
with the side-effect of ensuring unique column values), as most other databases do.

The top portion of the tab holds a list of all indexes, and the lower portion holds a list of all table columns.

To create an index:

Click the Add button,
Optionally enter a name in the Constraint Name field. The Columns field in the constraints list is read-only, filled automatically as you include
columns in the constraint,
If you want the index columns to have unique values for all rows in the table, click the checkbox in the Unique field,
Select the columns to be part of the index by clicking the checkboxes in the Include field in the columns list.

You can change the column order for the index with the Up and Down buttons.

To remove an existing index:
Select the index in the list in the top section,
Click the Remove button.

Working with Tables

DbVisualizer 13.0 Users Guide 72 of 445

•
•
•
•
•
•
•
•
•

1.
2.

5.1.8 SQL Preview
The SQL Preview area is updated automatically to match the edits made in the assistant. To show the SQL Preview area check the Show SQL checkbox.
The preview is read only, but you can copy the SQL to the SQL Commander and flip between formatted and unformatted views using the corresponding
choices in the preview area right-click menu.

5.1.9 Execute
When you are satisfied with the table declaration, click the Execute button to create it.

5.2 Altering a Table

The Alter Table dialog helps you alter a table without writing SQL.

Opening the Alter Table Dialog
Columns Tab
Primary Key Tab
Foreign Keys Tab
Unique Constraints Tab
Check Constraints Tab
Indexes Tab
SQL Preview
Execute

5.2.1 Opening the Alter Table Dialog
To alter an existing table:

Locate the table node in the Databases tab tree,
Select the table node and open the Alter Table dialog from the right-click menu.

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Working with Tables

DbVisualizer 13.0 Users Guide 73 of 445

•

•

•

The Alter Table dialog is organized in three areas from the top:

General Table Info
Specifies the owning database connection, database and/or schema, and table name. These are picked up from the selection in the tree when
the assistant is started.
Table Details
A number of tabs where you specify information about the columns and, optionally, various constraints. The Columns, Primary
Key and Foreign Key tabs are available for all databases. The remaining tabs are database-specific and depends on the features supported by
the database engine.
SQL Preview
The SQL previewer shows the SQL statements for altering the table based on your input.

5.2.2 Columns Tab
The Columns tab lists all table columns along with their attributes. The actual columns of the Columns tab is dependant on database. Additional
columns may be shown for other databases. An example is Oracle and MariaDB which supports invisible columns and thus a column for setting this is
shown.

The controls, such as the fields, pull-down menus and buttons, in the assistant are only enabled if the ALTER TABLE statement for the
database holding the table provides a way to alter the corresponding table attribute. For instance, for a database that only allows the size of a
VARCHAR column to be altered, the Size field in the Columns tab is disabled for all columns with other data types. If you find that you can not
make the change you want, it is because the ALTER TABLE statement does not allow that change to be made.

Working with Tables

DbVisualizer 13.0 Users Guide 74 of 445

1.
2.

3.

4.

To add a column:

Click the Add button,
Enter the name of the column in the first field and select a data type from a drop down list in the second field, or start typing the data type name
to find it and select it with the Enter key. The list contains the names of all data types the database supports,
For some data types, such as character types, you may also specify a size, i.e., the maximal length of the value. For others, like the decimal types,
you can may specify both a size and a scale (the maximal number of decimals),
In the last two fields, specify if the table is nullable and a default value to use for rows inserted into the table without specifying a value for the
column.

You may find additional fields depending on the features supported by the database you are working with and the data type for the current
column. The Collation field is shown for character columns if the database supports the declaration of a collation for textual data.

Settings for generated fields are shown if the database supports automatically inserted values, typically to insert the next available sequence number in a
numeric column.

Working with Tables

DbVisualizer 13.0 Users Guide 75 of 445

1.
2.

1.
2.

1.
2.

The Create/Alter Table dialog uses database metadata to try to enable only the fields that apply to the selected data type, but please note that it is not
always possible. For instance, there is no metadata available to tell if a data type requires, or allows, a size. If you don't enter a required attribute or enter
an attribute that is unsupported for a data type, you will get an error message when you click Execute to create/alter the table.

To remove a column:

Select a cell in the column row,
Click the Remove button.

To move a column to another location (Only supported for Create Table):

Select a cell in the column row,
Click the Up or Down buttons.

5.2.3 Primary Key Tab
The Primary Key tab contains information about an optional primary key for the table. A primary key is a column, or a combination of columns, that
uniquely identifies a row in a table.

To declare a Primary Key:

Optionally enter a constraint name for the primary key constraint in the Constraint Name field,
Select the column(s) to be part of the primary key by clicking the checkboxes in the Include field in the columns list.

Working with Tables

DbVisualizer 13.0 Users Guide 76 of 445

•
•
•

1.
2.
3.

4.
5.

1.
2.

5.2.4 Foreign Keys Tab
In the Foreign Keys tab, you can declare one or more foreign keys for the table. A foreign key is a column, or a combination of columns, that refer to the
primary key of another table. Foreign keys are used by the database to enforce integrity, i.e., that there is a row in the referenced table with a primary key
that matches the foreign key value when a new row is inserted or updated, and you can optionally declare rules for what to do when a referenced primary
key is removed or updated in the referenced table.

The tab has the following sections:

A list of foreign keys,
Controls for selecting the table the currently selected foreign key refers to, including the database (catalog) and/or schema for the table,
A list of all columns for the table being created/altered.

To declare a new foreign key constraint:

Click the Add button next to the list of foreign keys,
Optionally enter a name for the foreign key in the first field in the list,
Select On Delete and On Update actions from the pull-down menus. The pull-down lists include all actions that the database support, typically
CASCADE, RESTRICT, NO ACTION and SET NULL. The Columns field is read-only and gets its value automatically when you select which columns
to include in the key later,
Use the Referenced Table controls to select the table that the foreign key refers to,
Check the Include checkbox for all columns in the column list that should be part of the foreign key and then select the corresponding column
in the referenced table from the pull-down menu in the Referenced Column field.

You can change the column order for the key with the Up and Down buttons.

To remove an existing foreign key:

Select the foreign key in the list in the top section,
Click the Remove button.

5.2.5 Unique Constraints Tab
The Unique Constraints tab is only available for databases that support this constraint type. A unique constraint declares that the columns in the
constraint must have unique values in the table.

Working with Tables

DbVisualizer 13.0 Users Guide 77 of 445

1.
2.

3.

1.
2.

1.
2.
3.

1.
2.

The top portion of the tab holds a list of all unique constraints, and the lower portion holds a list of all table columns.

To create a constraint:

Click the Add button,
Optionally enter a constraint name in the Constraint Name field. The Columns field in the constraints list is read-only, filled automatically as
you include columns in the constraint,
Select the columns to be part of the constraint by clicking the checkboxes in the Include field in the columns list.

You can change the column order for the constraint with the Up and Down buttons.

To remove an existing constraint:

Select the constraint in the list in the top section,
Click the Remove button.

5.2.6 Check Constraints Tab
The Check Constraints tab is only available for databases that support this constraint type. A check constraint declares that a column value fulfills a
certain condition when a row is inserted or updated. Some databases uses check constraints to enforce nullability rules, so when you alter a table, you
may see auto-generated check constraints for columns that you marked as not allowing null values in the Columns tab.

To create a check constraint:

Click the Add button,
Optionally enter a constraint name in the Constraint Name field.
Enter the condition for the column in the Condition field. You can use the same type of conditions as you use in a SELECT WHERE clause.

To remove an existing constraint:

Select the constraint in the list,
Click the Remove button.

Working with Tables

DbVisualizer 13.0 Users Guide 78 of 445

1.
2.

3.
4.

1.
2.

•

5.2.7 Indexes Tab
The Indexes tab is only used for the MySQL database, as a replacement for the Unique Constraints tab. The reason is that for MySQL, the CREATE TABLE
statement can be used to declare both unique and non-unique indexes. MySQL also does not make a clear distinction between a unique constraint (a
rule, most often enforced and implemented as an index by the database) and a unique index (primarily a database structure for speeding up queries,
with the side-effect of ensuring unique column values), as most other databases do.

The top portion of the tab holds a list of all indexes, and the lower portion holds a list of all table columns.

To create an index:

Click the Add button,
Optionally enter a name in the Constraint Name field. The Columns field in the constraints list is read-only, filled automatically as you include
columns in the constraint,
If you want the index columns to have unique values for all rows in the table, click the checkbox in the Unique field,
Select the columns to be part of the index by clicking the checkboxes in the Include field in the columns list.

You can change the column order for the index with the Up and Down buttons.

To remove an existing index:
Select the index in the list in the top section,
Click the Remove button.

5.2.8 SQL Preview
The SQL Preview area is updated automatically to match the edits made in the assistant. To show the SQL Preview area check the Show SQL checkbox.
The preview is read only, but you can copy the SQL to the SQL Commander and flip between formatted and unformatted views using the corresponding
choices in the preview area right-click menu.

5.2.9 Execute
When you are satisfied with the alterations, click the Execute button to create it.

5.3 Creating a Trigger

The Create Trigger dialog helps you create a trigger for a table.

Opening the Create Trigger Dialog

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Working with Tables

DbVisualizer 13.0 Users Guide 79 of 445

•

1.
2.

3.
4.

5.

1.

Trigger Editor

5.3.1 Opening the Create Trigger Dialog
To create a trigger for a table:

Locate the table in the Databases tab tree,
Select the table node and open the Create Trigger dialog from the right-click menu,

Enter the required info in the fields, e.g. trigger name. The fields are database dependent so the figure is just an example,
The Source area contains stub code that you can later edit in the Trigger Editor. For most databases you can leave it as is, but for some
databases, you must adjust the stub code to match your database objects.
Click the Execute button to create the trigger

5.3.2 Trigger Editor
To edit the trigger code:

Expand the Trigger node for the table in the Databases tab tree,

Working with Tables

DbVisualizer 13.0 Users Guide 80 of 445

2.
3.
4.

1.
2.

3.

4.
5.
6.
7.

Double-click the trigger node to open its Object View tab,
Open the Trigger Editor tab and edit the code in the editor,
Click the Save toolbar button to save (and for some databases, compile) the trigger.

If the database reports any errors, the location of the errors are highlighted with curly red underlines in the editor for most databases. Hovering the
mouse over such an underline shows the error message.

The Log tab in the results area also lists all errors. Clicking on the icon next to an error message selects the corresponding line and positions the caret at
the error location, if the database reports error locations.

5.4 Creating an Index

The Create Index dialog helps you create an index for a table without writing SQL.

To create an index for a table:

Locate the table in the Databases tab tree,
Select the table node and open the Create Index dialog from the right-click menu,

Enter the required info in the fields, e.g. index name. The fields are database dependent so for some databases there are additional fields
compared to the figure,
Click the Add button in the Columns area to add an index column,
Select the column to index from the Column Name drop down list,
Select the sort order for the index column from the Sort Order radio buttons,
Click the Execute button to create the index.

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Working with Tables

DbVisualizer 13.0 Users Guide 81 of 445

1.
2.

1.
2.

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

1.
2.
3.

To remove an index column:

Select the column row,
Click the Remove button.

To move an index column

Select the column row,
Click the Up and Down button to move it.

5.5 Viewing Table Data

A table's data can be viewed in in various ways in the Data tab in its Object View tab.

Opening the Data tab
Sorting
Formatting
Where Filter
Column Filter
Quick Filter
Max Rows/Max Chars
Max Rows at First Display
Column Header Tooltips
Highlight Primary Key Columns
Auto Resize Columns
Show Only Some Columns
Right-Click Menu Operations

Script to SQL Commander
Creating Monitors
Aggregation Data for Selection

5.5.1 Opening the Data tab
To open the Data tab for a table:

Locate the table in the Databases tab tree,
Double-click the table node to open its Object View tab,
Open the Data sub tab.

Some of the features and screenshots in this section are for the DbVisualizer Pro edition.

Check Editing Table Data for information about the table data editor in DbVisualizer.
Check Viewing BSON Document Data for information about the document data viewer in DbVisualizer.

Working with Tables

DbVisualizer 13.0 Users Guide 82 of 445

1.
2.
3.

Each column width is automatically resized to match the column width, including the column header, by default. You can disable this behavior in the the
Tool Properties dialog, in the Grid category under the General tab.

If Auto Resize Column Widths is enabled, the Max Column Width setting can be used to limit the column width so that an extremely wide column does
not take up all space.

In the same Tool Properties category, you can also disable Show Grid Row Header, i.e. the row number shown to the left of the data rows, for read-only
grids such as the Data tab in the DbVisualizer Free edition and result sets from joined tables.

The column headers correspond to the column names by default, but you can specify in the Tool Properties dialog, in the Grid category under the
General tab, that you like to use the column alias instead. This is mostly useful for grids representing SQL Commander result sets, but may also be useful
in the Data tab grid for some databases.

The Data tab contains a number of features for locating and focusing on just the data of interest as described in the following sections.

5.5.2 Sorting
You can sort the data grid based on the values in one or more columns:

Click on a column header to sort the grid in ascending order on the values in that column, indicated by an up-arrow in the column header.
Click the same column header again to sort in descending order, indicated by a down-arrow in the column header.
Click a third time to show the data in the order it was received from the database. This removes the sort indicator.

To sort on more than one column, Ctrl-click (keep the Ctrl key pressed when clicking) on additional columns. The grid is then sorted on the values in the
first column you clicked on (indicated with a 1 next to the arrow), and then all rows with the same value in the first column are sorted on the values in the
second sort column (indicated with a 2 next to the arrow), and so on.

Working with Tables

DbVisualizer 13.0 Users Guide 83 of 445

1.

2.
3.
4.

5.5.3 Formatting
Note that when a cell is selected, the format pattern used to display the cell value is visible at bottom of the grid. By clicking the blue link, the Data
Formats section of Tool Properties will be opened.

5.5.4 Where Filter
You can use the filter capability in the Data tab to limit the number of rows shown in the grid, using the same syntax as for an SQL WHERE clause. The
Filter menu button in the grid toolbar contains all operations related to using a filter.

The top entries in the menu are previously used filters for the table, if any. The checkbox is selected for the filter that is currently in use. The filters are
saved between DbVisualizer sessions, and you can toggle between them by selecting them from the menu. The maximum number of filters to save is
specified in the Tool Properties dialog, in the Table Data category under the General tab.

You use the Use No Filter choice to disable all filters for the table, and the Clear Filter List to permanently remove all filters for the table.

To create a new filter:

Select Open Filter Editor to launch the Filter & Sort Configuration dialog,

Select a column name, an operation and the value for the condition using the controls in the Filter area,
Add the condition to the filter by clicking the AND or OR button, and create additional conditions in the same way if needed,
Click the Use Filter button to apply the filter, save it and close the dialog, or close the dialog without applying and saving the filter by clicking
the Close button.

You can use Ctrl-Enter while editing the value field to reload the grid with that single condition applied, or in the editor to reload the grid based on all
filter conditions created so far.

Working with Tables

DbVisualizer 13.0 Users Guide 84 of 445

The Sort area is similar to the Filter area. You can select column names and sort order from the two lists, and click the Add button to add the sort criteria
for the single column to the complete criteria.

If you often need to tweak the filter conditions and want a more compact user interface, you can use the inline filter view. Use the Show/Hide Filter
Area choice in the Filter menu to toggle the visibility of the inline filter.

5.5.5 Column Filter

The Column Filter acts on the data that is already loaded in the grid, as opposed to a Where Filter which is used to limit the number of rows fetched from
the database. With a Column Filter, you can easily list only those rows having a column value matching the Column Filter. By customizing the filter it is
possible to add more complex filters such as only listing rows where the column value does not contain a certain value or substring.

A Column Filter is added by clicking the right part of the column header. A column having a Column Filter is indicated by the presence of a filter icon in
the column header.

It is possible to to add Column Filters to multiple columns. For cases where you don't care which column has a specific value we recommend the Quick
Filter

5.5.6 Quick Filter

The Quick Filter acts on the data that is already loaded in the grid, as opposed to a Where Filter which is used to limit the number of rows fetched from
the database. With a Quick Filter, you can easily list only those rows in the grid that match the entered search string.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with Tables

DbVisualizer 13.0 Users Guide 85 of 445

1.
2.

•

•

Use the Quick Filter pull-down menu (click on the magnifying glass) to choose if the filter should match cells in all columns or just one selected
column, case or case insensitive matching, and where in the cell the value must match.

For the Use wild cards option the following characters have special meaning:

? - The question mark indicates there is zero or one of the preceding element. For example, colou?r matches both "color" and "colour".
* - The asterisk indicates there are zero or more of the preceding element. For example, ab*c matches "ac", "abc", "abbc", "abbbc", and so on.
+ - The plus sign indicates that there is one or more of the preceding element. For example, ab+c matches "abc", "abbc", "abbbc", and so on, but not
"ac".

5.5.7 Max Rows/Max Chars
DbVisualizer limits the number of rows shown in the Data tab to 1000 rows, by default. This is done to conserve memory. If this limit prevents you from
seeing the data of interest, you should first consider:

Using a Where Filter to only retrieve the rows of interest instead of all rows in the table,
Exporting the table to a file

If you really need to look at more than 1000 rows, you can change the value in the Max Rows field in the grid status bar. Use a value of 0 or -1 to get all
rows, or a specific number (e.g. 5000) to set a new limit.

Character data columns may contain very large values that use up lots of memory. If you are only interested in seeing a few characters, you can set
the Max Chars field in the grid status bar to the number of characters you want to see.

You can define how to deal with columns that have more characters than the specified maximum in the Tool Properties dialog, in the Grid category under
the General tab. You have two choices: Truncate Values or Truncate Values Visually.

Truncate Values truncates the original value for the grid cell to be less then the setting of Max Chars.

Truncate Values Visually truncates the visible value only and leave the original value intact. This is the preferred setting since it will not harm
the original value. The disadvantage is that more memory is needed when dealing with large text columns.

When the grid data is limited due to either the Max Rows or Max Chars value, you get an indication about this in the rows/columns field in the grid status
bar and in the corresponding limit field. The color is also changed for the affected controls.

This affects any subsequent edits and SQL operations that use the value since it's truncated. This setting is only useful to save memory when
viewing very large text columns.

Working with Tables

DbVisualizer 13.0 Users Guide 86 of 445

Along with the highlighted field, a warning pops up close to the field. You can disable this behavior in the Tool Properties dialog, in the General / Grid
category.

5.5.8 Max Rows at First Display
By default, opening the Data tab for a table loads all rows, unless there is a Max Rows limit. If you have very large tables and don't want to risk memory
issues if you accidentally open the Data tab and have no Max Rows limit, you can specify a Max Rows at First Display limit. You do this in the Tool
Properties dialog, in the Table Data category under the General tab.

The default is -1, which means no limit. If you set it to a positive number, only the specified number of rows are loaded when the Data tab is first opened
for a table. To load more rows, click the Reload button in the Data tab toolbar.

5.5.9 Column Header Tooltips
The column header tooltip shows data type information about the column. To see the tooltip, let the mouse hover over the column header. The tooltip
pops up in about a second.

5.5.10 Highlight Primary Key Columns
By default, a Primary Key column is shown with an icon in the column header. You can disable this in the Tool Properties dialog, in the Table Data
category under the General tab.

Working with Tables

DbVisualizer 13.0 Users Guide 87 of 445

5.5.11 Auto Resize Columns
The column header right-click menu contains a number of options for automatic resizing of column widths.

5.5.12 Show Only Some Columns
The Grid Column Chooser dialog controls which columns you want to appear in a grid. Open the dialog by the right-click menu on the column header or
the button above the vertical scrollbar in the grid. See the screenshot below.

Grid Column Chooser with the default layout.
The icon in the top right corner of the grid indicates the standard layout.

Grid Column Chooser with a custom layout.
The icon in the top right corner of the grid indicates that the layout is
changed.

The Grid Column Chooser dialog shows all columns that are available in the grid. The checkmark in front of a column name indicates that the column is
visible in the grid, while an unchecked box indicates that it is excluded from the grid. Click the checkmark to change the visibility of a column. You can
change the visibility for all columns at once using the two visibility buttons in the dialog.

The order of the columns can also be adjusted in this dialog. Just select one or several rows and use the Up and Down buttons to move the rows up (left
in the grid) or down (right in the grid). You can also use Drag&Drop to move the rows.

If you want to revert your changes, you can click on the Default Layout button to reset the grid, i.e., making all columns visible and putting them in their
default locations.

Modifications of column visibility, size, and order are saved between invocations of DbVisualizer for the Log tab and all grids in the various
Object View tabs except for the Data tab.

Working with Tables

DbVisualizer 13.0 Users Guide 88 of 445

5.5.13 Right-Click Menu Operations
The right-click menu for the grid contains a lot of operations for working with the data without changing it. In addition to the common select, copy, and
print operations, some operations that may require a bit of an explanation are described below. Examples are based on the following simple grid that
contains 9 cells on 3 rows with 3 columns, where the first two rows are selected:

Operation Description

Copy Selection Copy all selected cells onto the system clipboard.

Example:
1 A c3
2 B c3

Copy Selection with Column Header Copy all selected cells including column header onto the system clipboard.

Example:
col1 col2 col3
1 A c3
2 B c3

Copy Selection as Formatted Text Copy all selected cells including column header in fixed width columns onto the system clipboard.

Example:
col1 col2 col3
---- ---- ----
1 A c3
2 B c3

Copy Selection as Comma List Copy all selected cells onto the system clipboard, formatted as Comma Separated Values (CSV), one row
for each column.

Example:
1, 2
A, B
c3, c3

Copy Selection as IN Clause Copy all selected cells onto the system clipboard, formatted as an IN clause.

Example:
(col1 IN (1, 2))
and (col2 IN ('A', 'B'))
and (col3 IN ('c3'))

If you modify the column visibility in the Data tab, the changes persist throughout the session. For instance, if you remove the
ACTOR_ID column in the Data tab for the table Actor, the ACTOR_ID column remains excluded when you reload the table or come back to the
Data tab for that table later in the same session. You must manually make it visible again to bring it back. The changes are, however, reset
when you restart the application.
If you modify the column visibility in the Log tab in the SQL Commander, the changes will affect the Log tab immediately and other SQL
Commander Log tabs the next time they are opened or refreshed by running a query. Any custom column setups are saved individually for the
Log tab in SQL Commander, Actions, Export (all but export grid), Import, and Procedure Editor.

Working with Tables

DbVisualizer 13.0 Users Guide 89 of 445

Operation Description

Copy Selection as IN Clause with AND
(ALL)

Copy all selected cells onto the system clipboard, formatted as a clause to select rows where ALL selected
values match .

Example:
(col1 = 1 and col2 = 'A' and col3 = 'c3')
or (col1 = 2 and col2 = 'B' and col3 = 'c3')

This is different from Copy Selection as IN Clause with OR(ANY) since the clause matches all column
values on each row; it will not select a row with column values 1, B, c3.

Copy Selection as IN Clause with OR
(ANY)

Copy all selected cells onto the system clipboard, formatted as a clause to select rows where ANY of the
selected values match.

Example:
(col1 IN (1, 2))
and (col2 IN ('A', 'B'))
and (col3 = 'c3')

This is similar to Copy Selection as IN Clause, but is slightly more efficient in some situations; in this
example, col3 is matched using equals (=) rather than IN since the selected rows have the same value in
this column.

This is different from Copy Selection as IN Clause with AND (ALL) since the clause matches any column
value on each row; it will select a row with column values 1, B, c3.

Copy Selection as HTML Table Copy all selected cells onto the system clipboard, formatted as HTML code. Paste this into an HTML-
capable editor to get a nicely formatted table.

Example:

Copy Selection as JIRA Table Copy all selected cells onto the system clipboard, formatted as markup code suitable for JIRA and similar
tools. Paste this into a suitable editor to get a nicely formatted table.

Example:

Save Selected Cell Save the value of the selected cell to a file, selected with a file chooser dialog

Compare Compare the data in this grid to the data in other open grids.

Compare Selected Cells Compare the data in the two cells as text

Reset Grid Reset the visual state of the grid (does not affect the column settings or the actual data in the grid).

Browse Row in Window Display all data for the selected row in a separate window.
Note: for a read/write grid, this entry is named Edit Row in Window.

Browse Cell in Window Display the cell value in a separate window. This is especially useful for BLOB/CLOB data.
Note: for a read/write grid, this entry is named Edit Cell in Window.

Working with Tables

DbVisualizer 13.0 Users Guide 90 of 445

Operation Description

Show in Navigator Open the Navigator tab with the current selections and sorting.

Describe Data Show detailed information about the columns in the grid.

Aggregation Data for Selection Displays aggregation data for the current selection. Read more in Aggregation Data for Selection below.

Generate Filter & Sort The operations in this submenu help you create common Where Filters.

Create Row Count Data Monitor Creates a monitor for tracking the row count in the table over time.

Create Row Count DIff Data Monitor Creates a monitor for tracking the number of added or removed rows in the table over time.

Script to SQL Commander
There are also a set of operations for generating SQL statements based on the current selection. Choosing any of these creates the appropriate SQL and
then switches the view to a new SQL Commander tab. You must use these operations to edit table data in the DbVisualizer Free edition. With the
DbVisualizer Pro edition, you can instead use inline and form based editing.

Operation SQL Example

Script: SELECT ALL SELECT * FROM COUNTRY;

Script: SELECT ALL WHERE select * FROM SAKILA.COUNTRY
where COUNTRY = 'Brazil'

Script: SELECT ALL WITH FILTER select *
from SAKILA.COUNTRY
where COUNTRY_ID = 15 // If this is the filter, see above

Script: INSERT INTO TABLE insert into SAKILA.COUNTRY
(COUNTRY_ID, COUNTRY)
values (15, 'Brazil')

Script: INSERT COPY INTO TABLE insert into SAKILA.COUNTRY
(COUNTRY_ID, COUNTRY)
values (15, 'Brazil')

Script: UPDATE WHERE update SAKILA.COUNTRY
set COUNTRY_ID = 15,
 COUNTRY = 'Brazil'
where COUNTRY = 'Brazil'

Script: DELETE WHERE delete from SAKILA.COUNTRY
where COUNTRY = 'Brazil'

You can generate SQL with either static values as they appear in the grid, or with DbVisualizer variables. A variable is essentially a placeholder for a value
in an SQL statement. When the statement is executed, DbVisualizer locates all variables and presents them in a dialog where you can enter or modify
values for the variables. DbVisualizer replaces the variable placeholders with the new values before executing the statement.

Variables are used in the generated SQL statements by default. You can disable the Include Variables in SQL setting in the Tool Properties dialog, in
the Table Data category under the General tab, to use literal values are instead.

Here is an example of the SQL generated for Script: SELECT ALL WHERE with the Include Variables in SQL setting enabled, assuming the table is named
SAKILA.COUNTRY and has a column named COUNTRY with the value 'Brazil' on the selected row:

SELECT * FROM COUNTRY WHERE COUNTRY = ${COUNTRY (where)||Brazil||String||where ds=50 dt=VARCHAR}$;

And here is the same example with the Include Variables in SQL setting disabled:

SELECT * FROM COUNTRY WHERE COUNTRY = 'Brazil';

Working with Tables

DbVisualizer 13.0 Users Guide 91 of 445

5.5.14 Creating Monitors
A monitor in DbVisualizer is an SQL query executed at a specified frequency so you can track changes in data over time. The result can be viewed either as
a grid or a graph. The right-click menu for the grid in the Data tab contains operations for creating two common types of monitors for the table: a Row
Count Data monitor or a Row Count Diff Data monitor. The first tracks the number of rows in the table over time and the second tracks the number of
added or removed rows over time. Please read more about monitors in Monitoring Data Changes.

5.5.15 Aggregation Data for Selection

The Aggregation Data for Selection feature presents aggregation data organized per data type on the current selection in a grid. It provides information
about cells holding numbers, text, date/time information and more. The following is an example of what it shows:

With Auto Update checked, the data is updated automatically when you change the selection in the grid. For very large selections, you may prefer to
disable this feature and instead click Update when you want to refresh the data. Click a link (blue underlined text) in the aggregation table to locate and
highlight the actual value in the source data grid. The Handle Number Values in Text Types as Numbers setting simply treats all valid numbers in text
data types as numbers and include them in the Number Count summary.

5.6 Viewing BSON Document Data
When connected to data sources that return structured document data (such as JSON or BSON), a regular two-dimensional grid is not ideal for viewing
the data. For this type of data, you get a panel that contains three different views where you can choose the one that serves your purpose best based on
what data you're looking at. As a rule of thumb, the Nested View will yield the best overview, the Tree View will be the most flexible and efficient when
viewing complex structures and/or large data sets, and the Text View will present the most details.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with Tables

DbVisualizer 13.0 Users Guide 92 of 445

•

•

•

•

5.6.1 Nested View
Click the nested view button (A) to show a view that organizes data in expandable column header groups based on the data structure. You can expand/
collapse headers (B) to focus on the data you are interested in, either by double-clicking the header or via the popup menu (right-click the header). Select
a cell in the grid (C) to show the details as a key-value tree representation in the right-hand panel. Click any cell in the tree to show its details in the text
panel below (D).

Choose how to show the details in the tree view:

Collapsed Rows (E)
Choose to see collapsed rows as the number of elements it contains, the JSON representation (abridged), or nothing (blank).
Scope (F)
Choose if you want to see the entire row, all columns belonging to the same root column group, or all columns belonging to the closest singular
column group. If you choose the closest group, the actual group varies with the structure; the root of the tree will be the closest column group
that is not part of an array. In the picture below, the tree starts at the root column (location).
Auto Expand (F)
Choose to automatically expand the tree to the level of the grid cell you selected.
Auto Filter (G)
Choose to filter on the selected cell, the tree will only show the cell you selected. If the cell is part of an array, you will see all occurrences of the
cell.

In the text panel (D), a leaf cell is presented as plain text and you can choose to word-wrap the text to make it readable, whereas a container cell (a JSON
structure) is automatically formatted based on the JSON syntax. You cannot word-wrap the formatted data.

In both cases, you can view the hexadecimal representation of the data.

In the first release, some of the features of the regular data grids are missing. In particular, you cannot reorder columns or export data from
the grid. We hope to provide these capabilities in the near future.

Showing complex structures in the nested view may be slow since it places a heavy load on the algorithm for calculating row and column
sizes.
You may have to confirm the action before opening this view on some data.

Working with Tables

DbVisualizer 13.0 Users Guide 93 of 445

5.6.2 Tree View
Click the tree view button (A) to show the data in a vertical fashion where each row represents an element. This view is the most efficient way to browse
complex data since the structure adapts to each row. Like the details tree in the nested view, you can expand/collapse the rows (B), choose how to
present collapsed rows (C), and select a cell in the tree to show its contents in the text panel to the right (D).

Working with Tables

DbVisualizer 13.0 Users Guide 94 of 445

5.6.3 Text View
Click the text view button (A) to view the data as returned by the database, one row for each document.

Click the format button (B) to format/unformat the data based on JSON syntax.

A document data set is often larger than an average relational table; loading a complete data set may consume a lot of memory, and
formatting/unformatting a large data set may be slow.

Working with Tables

DbVisualizer 13.0 Users Guide 95 of 445

•
•
•
•
•
•
•
•
•
•
•
•

1.
2.

5.7 Editing Table Data

With the DbVisualizer Pro edition, you can edit table data in the Data tab grid; just click a cell value and edit. Edits are saved in a single database
transaction which ensures that all or no changes are committed. The editing feature supports saving binary and large text data and it even presents
common data formats in their respective viewers, such as image viewer, PDF, XML, HEX, etc.

Opening the Data tab
Editing Data in the Grid
Copy/Paste
Updates and Deletes Must Match Only One Table Row
Key Column(s) Chooser
Editing Multiple Rows
Data Type checking
New Line and Carriage Return
Using the Cell Editor/Viewer
Using the Form Editor/Viewer
Preview Changes
View and edit Binary/BLOB and CLOB Data

5.7.1 Opening the Data tab
To open the Data tab for a table:

Locate the table in the Databases tab tree,
Double-click the table node to open its Object View tab,

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Working with Tables

DbVisualizer 13.0 Users Guide 96 of 445

3.

1.
2.
3.

Open the Data sub tab.

Each column width is automatically resized to match the column width, including the column header, by default. You can disable this behavior in the the
Tool Properties dialog, in the Grid category under the General tab.

If Auto Resize Column Widths is enabled, the Max Column Width setting can be used to limit the column width so that an extremely wide column does
not take up all space.

5.7.2 Editing Data in the Grid
To edit a column value:

Select the column cell,
Type the new value, or double click to edit the current value,
Click the Save toolbar button to update the database.

Working with Tables

DbVisualizer 13.0 Users Guide 97 of 445

1.
2.
3.
4.

1.
2.
3.
4.

1.
2.
3.

1.
2.

You can also use the Set Selected Cells drop down menu to set a number of column values to things like null or the current date or time.

To add a new row:

Select the row above where you want to insert the new row,
Click the Add Row toolbar button,
Enter values for the columns,
Click the Save toolbar button to update the database.

To duplicate a row:

Select the row you want to duplicate,
Click the Duplicate Row toolbar button,
Edit at least the key column(s) value(s),
Click the Save toolbar button to update the database.

To delete one or more rows:

Select the rows to delete,
Click the Delete Rows toolbar button,
Click the Save toolbar button to update the database.

If you change your mind, you easily can undo edits:

Select the cell(s) you want to revert,
Click the Undo toolbar button.

Reverting all cells in a row that are marked as Insert or Duplicate removes the complete row from the grid while a Delete marked row is cleared from its
delete state. Undoing updated cells simply reverts the changes to the original values.

5.7.3 Copy/Paste
You can copy selected cell values with the Copy Selection right-click menu choice or the corresponding key binding (Ctrl-C or Command-C by default).
The data on the clipboard may then be pasted either into DbVisualizer or any external application. The column and newline delimiter used for copy and
paste operations in the grid editor are defined by the Copy Grid Cells in CSV Format settings in the Grid category in the Tool Properties dialog, under the
General tab. The default setting are sufficient for most uses.

The grid editor supports pasting data from the major spreadsheet applications, such as Excel and OpenOffice. The grid editor supports pasting single
data as well as block of data. Copy/paste of binary data is transparent between grids or in the same grid. Binary files may also be copied in an external
application and pasted in a cell in DbVisualizer (target cell must be a binary type).

Copy from spreadsheet Paste into DbVisualizer grid

A single cell is copied Paste into selected target cell

A single cell is copied Paste and fill the single column target selection

Working with Tables

DbVisualizer 13.0 Users Guide 98 of 445

1.
2.
3.

Copy from spreadsheet Paste into DbVisualizer grid

Multiple cells in a single row is copied Paste and fill the target selection

A block of cells is copied The block is pasted into the selected region

A block of cells is copied The block cannot be pasted into a different number of target
cells

5.7.4 Updates and Deletes Must Match Only One Table Row
When you update or delete rows, DbVisualizer ensures that only one row in the table will be affected. This is to prevent changes in one row to silently
affect data in other rows. DbVisualizer uses the following strategies to determine the uniqueness of the edited row:

Primary Key,
Unique Index,
Manually Selected Columns.

The Primary Key concept is widely used in databases to uniquely identify the key columns in tables. If the table has a primary key, DbVisualizer uses it.
There are situations when primary keys are not supported by a database or when primary keys are supported but not used. If no primary key is defined,
DbVisualizer checks if there is a unique index. If there are several unique indexes, DbVisualizer picks one of them. If there is no primary key or any unique
indexes defined for the table, you need to manually choose what columns to use. The Key Column Chooser is automatically displayed if the key columns
can't be determined automatically.

5.7.5 Key Column(s) Chooser
Normally database tables have a primary key or at least one unique index. If this is the case, editing is no problem. If there is no way to uniquely identify
rows in the table, you need to manually define what columns DbVisualizer should use. While saving the changes, DbVisualizer checks that there is a way
to identify unique rows in the table. If it cannot be accomplished, the following window is displayed.

Working with Tables

DbVisualizer 13.0 Users Guide 99 of 445

The key column chooser can also be manually opened via the Edit Table Data->Key Column Chooser right-click menu choice.

If the database request to save the edits cannot uniquely identify the single row that should be changed, an error dialog is displayed and the editing state
is kept for that row in the grid editor.

5.7.6 Editing Multiple Rows
The grid editor supports editing multiple rows and saving all changes in one database transaction. Edited rows are indicated with an icon in the row
header:

 Cell(s) in the row has been edited

 Row is new

 Row is duplicated from another row

 Row is marked for deletion (edit is not allowed)

5.7.7 Data Type checking
When leaving an edited cell, the new value is validated with the data type for the column. If there is an error, the following dialog is displayed.

Working with Tables

DbVisualizer 13.0 Users Guide 100 of 445

5.7.8 New Line and Carriage Return
If a cell in the grid editor or form editor contains new line, carriage return or tab characters, these are not visually represented in the grid. Instead a
warning will be displayed whenever you try to edit such value:

You may choose to edit the value in the Cell Editor, which we recommend, as the control characters will then be preserved. Alternatively, you can edit the
value in the grid anyway but you then risk loosing the control characters.

5.7.9 Using the Cell Editor/Viewer
The Cell Editor/Viewer is available in the right-click menu (Edit Cell in Window or View Cell in Window if the data is read-only) and on the toolbar for all
grids in DbVisualizer. It presents the data for a single cell (column in a row) in a window. If the data is of a recognized type, it is presented by a
corresponding editor that allows you to view, edit and/or format the content, and also to save or load the data to/from a file.

The Text Editor can be used for viewing and editing textual data, including JSON and XML. It does not offer any syntax coloring or validation; it is a plain
text editor.

Working with Tables

DbVisualizer 13.0 Users Guide 101 of 445

The Hex Viewer shows the content in hexadecimal format.

The JSON Formatter can transform the JSON structure to a human readable multi-line format (sometimes called "pretty printed") or to a compact
single line format where insignificant whitespace is trimmed. The formatting will fail if the text does not comply with JSON syntax.

Working with Tables

DbVisualizer 13.0 Users Guide 102 of 445

•
•
•
•
•
•

The XML Viewer is shown if the cell value is recognized as well-formed XML, or if you manually select to open the XML Viewer (which, for obvious reasons,
may fail). The viewer presents data in a structured way but does not allow editing; you need to switch to the Text Editor to edit.

The Image Viewer displays full size images for binary data that conforms to a supported image format:

GIF (Graphics Interchange Format)
JPG/JPEG (Joint Photographic Experts Group)
PNG (Portable Networks Graphics)
TIFF (Tagged Image File Format)
BMP (Bitmap Image File)
PDF (Portable Document Format)

Working with Tables

DbVisualizer 13.0 Users Guide 103 of 445

Opening the Cell Viewer for binary data will automatically render the content if a supported image type or if a PDF document.

5.7.10 Using the Form Editor/Viewer
The Row Viewer is available in the right-click menu (Browse/Edit Row in Window) for all grids in DbVisualizer. It is used to either browse or edit
information and to present binary data in viewers.

The Row Editor adds editing capability to the form viewer. This editor is useful when inserting new rows and when it is important to get a more balanced
and transposed overview of all the data.

The form editor transpose or "rotate" the data in one row and presents it as a vertical form with the column name as a label. All edits made in the form
editor are reflected in the grid with the edited state icon being updated along with new values. Saving edits in the database is always done with the Save
button in the grid editor toolbar, just as for data edited directly in the grid.

Open the form editor via the Edit Row in Window right-click menu choice, via the corresponding button in the toolbar or by double-clicking the row
number header.

The same row looks like this in the row form window:

Working with Tables

DbVisualizer 13.0 Users Guide 104 of 445

The Key field contains an icon for primary key columns and the Name field corresponds to the column name in the grid. None of Key or the Name fields
can be edited. You can edit the values in the form in the same way as you edit values in the grid editor.

The form viewer presents images as thumbnails. The size of these is controlled by the Image Thumbnail Size setting in the Tool Properties dialog, in the
General / Form Viewer category under the General tab. To see the original size of an image, open the cell in the cell viewer either by selecting Edit in
Cell Window in the grid right-click menu, the toolbar button or by double-clicking on the image.

If you want numbers to be right-aligned in the viewer/editor, enable Right Aligned Numbers in the Tool Properties dialog, in the Form Viewer category
under the General tab.

5.7.11 Preview Changes
You may preview the SQL statements that will be executed when choosing to Save the edits via the Edit Table Data->SQL Preview right-click menu
choice.

Working with Tables

DbVisualizer 13.0 Users Guide 105 of 445

•
•
•
•

•
•
•

•
•
•

5.7.12 View and edit Binary/BLOB and CLOB Data
Due to the nature of binary/BLOB and CLOB data, cells of these types can only be fully modified and viewed in the Cell Editor (there is partial support in
the Form Editor to view image data and to load from file).

In the grid, Binary/BLOB and CLOB data is by default presented by an icon and the size of the value. You can select another presentation format in the
Tools Properties dialog, in the General/Data Formats category under the General tab. Selecting By Value results in performance penalties and the
memory consumption increases dramatically.

In the same Tool Properties category, you can also specify how to handle Copy/Paste and Drag and Drop when pasting binary data in a target
component that doesn't support binary data.

Editing binary data can be done by importing from a file or via the text editor in the Cell Editor. You can also copy the file in the operating system's file
browser and paste it into a BLOB/CLOB cell.

Binary data in DbVisualizer is the generic term for several common binary database types:

LONGVARBINARY
BINARY
VARBINARY
BLOB

5.8 Working with Binary and BLOB Data
DbVisualizer provides special support for working with Binary/BLOB data in a number of areas, such as:

Viewing and Editing Binary/BLOB data,
Exporting Binary/BLOB data,
Importing Binary/BLOB data

5.9 Working with Large Text/CLOB Data
DbVisualizer provides special support for working with Large Text/CLOB data in a number of areas, such as:

Viewing and Editing Large Text/CLOB data,
Exporting Large Text/CLOB data,
Importing Large Text/CLOB data

The listed SQL statements may not be 100% identical to what is sent to the database, as the save process uses variable binding to pass values
to the database.

Working with Tables

DbVisualizer 13.0 Users Guide 106 of 445

1.
2.

•

•

5.10 Using Max Rows and Max Chars for a Table
DbVisualizer limits the number of rows shown in the Data tab to 1000 rows, by default. This is done to conserve memory. If this limit prevents you from
seeing the data of interest, you should first consider:

Using a Where Filter to only retrieve the rows of interest instead of all rows in the table,
Exporting the table to a file

If you really need to look at more than 1000 rows, you can change the value in the Max Rows field in the grid status bar. Use a value of 0 or -1 to get all
rows, or a specific number (e.g. 5000) to set a new limit.

Character data columns may contain very large values that use up lots of memory. If you are only interested in seeing a few characters, you can set
the Max Chars field in the grid status bar to the number of characters you want to see.

You can define how to deal with columns that have more characters than the specified maximum in the Tool Properties dialog, in the Grid category under
the General tab. You have two choices: Truncate Values or Truncate Values Visually.

Truncate Values truncates the original value for the grid cell to be less then the setting of Max Chars.

Truncate Values Visually truncates the visible value only and leave the original value intact. This is the preferred setting since it will not harm
the original value. The disadvantage is that more memory is needed when dealing with large text columns.

When the grid data is limited due to either the Max Rows or Max Chars value, you get an indication about this in the rows/columns field in the grid status
bar and in the corresponding limit field. The color is also changed for the affected controls.

Along with the highlighted field, a warning pops up close to the field. You can disable this behavior in the Tool Properties dialog, in the General / Grid
category.

This affects any subsequent edits and SQL operations that use the value since it's truncated. This setting is only useful to save memory when
viewing very large text columns.

Working with Tables

DbVisualizer 13.0 Users Guide 107 of 445

1.
2.
3.

•
•
•
•
•
•
•

5.11 Changing the Data Display Format
Some data, like numeric and date/time data, can be displayed in many different ways.

To define how to display and enter data in grids and forms in DbVisualizer:

Open Tools->Tool Properties,
Select the General / Data Formats node under the General tab,
Select or enter your preferred format for the different data types.

5.11.1 Date, Time and Timestamp formats
The lists for date, time and timestamp format contain collections of standard formats. If these formats are not suitable, you can enter your own format in
the appropriate field. The tokens used to define the format are listed in the right-click menu when the field has focus and a sample is shown after the
field.

The complete documentation for these tokens is available at the following web page: SimpleDateFormat.

5.11.2 Number formats
The lists for number and decimal number contain collections of standard formats. If these formats are not suitable, you can enter your own format in the
appropriate field. The tokens used to define the format are listed in the right-click menu when the field has focus, and complete documentation for these
tokens is available at the following web page: DecimalFormat.

The Unformatted format for numbers and decimal number allows no grouping character. For Unformatted and decimal numbers a dot (".") is used as
the decimal number separator.

5.12 Exporting a Table

You can export an individual table using the Export Table assistant.

Output Format
Output Destination
Options
Using Variables in Fields
Exporting Binary/BLOB and CLOB Data
Saving And Loading Settings
Other Ways to Export Table Data

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html

Working with Tables

DbVisualizer 13.0 Users Guide 108 of 445

1.
2.
3.
4.

To export a table:

Select a table node in the Databases tab tree,
Open the Export Table dialog from the right-click menu,
Select an Output Format, Output Destination, and Options,
Click Export.

Below is an example of what the Export Table window looks like. There may be different options based on what database type the table is exported from.

Working with Tables

DbVisualizer 13.0 Users Guide 109 of 445

5.12.1 Output Format
You can export tables in one of these formats: CSV, HTML, SQL, XML, Excel, or JSON.

Working with Tables

DbVisualizer 13.0 Users Guide 110 of 445

•
•
•

For the SQL and XML formats, you can choose to export the DDL and the table data; the other formats only export table data.

You can control whether to use delimited identifiers and/or qualified names by default in the DDL and INSERT statements generated for the SQL format,
and you can override the defaults in the Export dialog for a single export operation.

Excel export do not support formatted date, time or timestamp. To get the correct date format in Excel you either have to export dates as text (check the
Export Date/Time as Text) or set the format explicitly in Excel.

5.12.2 Output Destination
The destination can be one of:

a file,
an open or new SQL Commander tab, with options for where in an open SQL Commander to insert the result,
the system clipboard.

5.12.3 Options
The Options section contains options common to all Output Formats at the top, followed by options for the selected format.

Example of the options for SQL:

Example of the options for Excel:

Working with Tables

DbVisualizer 13.0 Users Guide 111 of 445

For the SQL and XML formats, you can choose to export the DDL, the DDL for indexes for a table and the table data: as INSERT statements for the SQL
statement or in one of three XML formats.

For the Excel format, you can choose to export table data as either in the XLSX (default) or the legacy XLS format.

Most formats also let you specify other options, such as delimiters, title and descriptions. Just select an Output Format to see which options are
available. All options are described in the context of the @export command, as the Export dialog is just a GUI for the command.

You can adjust the Data Formats specifically for the exported table data. By default, the formats defined in Tool Properties are used, but sometimes you
need to export dates and numbers in a different format because you intend to import the data into a different type of database.

In the Data Format Settings dialog you can also specify how to quote text data and how to handle quotes within the text value.

5.12.4 Using Variables in Fields
You can use some of the pre-defined DbVisualizer variables (${dbvis-date}$, ${dbvis-time}$, ${dbvis-timestamp}$, ${dbvis-connection}$, $
{dbvis-database-type}$ and ${dbvis-object}$) in all fields that hold free text (e.g. title and description fields) and as part of the file name field.

5.12.5 Exporting Binary/BLOB and CLOB Data
You can use the export assistant to export Binary/BLOB and CLOB data. You enable this by choosing File as the data format for Binary/BLOB and/or
CLOB data. Optionally, you can specify the directory or filename pattern for the data files. If you do not specify a directory or filename pattern, the
operating system's default directory for temporary files (e.g. C:\TEMP or /tmp) is used.

A pattern is a path with fixed and variable parts, where the variable parts are expressed as DbVisualizer variables, e.g. C:\Users\wti\exp\${dbvis-date}$\$
{COUNTRY_NAME}$.txt. You can select variables to insert at the current caret position in the path field from the dropdown. The variables that can be used
are the predefined DbVisualizer variables plus variables for each column in the table, e.g. ${COUNTRY_NAME}$ in the example above. Another special
variable that can be helpful here is ${dbvis-column-name}$. If a table has multiple BLOB or CLOB columns, you can use it in the pattern to export the
columns to separate files, e.g. C:\Users\wti\exp\${dbvis-column-name}$.txt. All variables that can be used are listed in the menu that is displayed when
you click the blue arrow to the right of the field. You can select a variable from the menu to insert it in the pattern field at the caret position.

The data for each individual value of this type is then exported to a separate file and a DbVisualizer variable referencing the file is inserted in the main
export file.

Example:

If you are exporting table data in the SQL format from one database type (e.g. Oracle) to import it in a database of a different type (e.g.
PostgreSQL) by executing the generated script, you need to be aware of differences in the literal formats for Date, Time and Timestamp data.
If you connect to the other database using a JDBC client like DbVisualizer, you can select the JDBC escape format for these data format. This
generates literals that the JDBC driver converts into a format the target database can interpret.

Working with Tables

DbVisualizer 13.0 Users Guide 112 of 445

•
•
•
•

•

•

•

•

•

•

•

•
•
•

•
•
•

•
•
•
•
•
•
•
•

Assume you have a table with multiple pictures and want them exported in individual files, for instance a BOOK table with the columns ISBN and pictures
of FRONT and BACK:

ISBN FRONT BACK
---------- ------------------- -------------------
0345391802 BINARY, 4,998 Bytes BINARY, 4,998 Bytes
0345391810 BINARY, 4,998 Bytes BINARY, 4,998 Bytes
If you specify the output as D:\tmp\${ISBN}$-${dbvis-column-name}$.png, you will get the following image files:

D:\tmp\0345391802-FRONT.png
D:\tmp\0345391802-BACK.png
D:\tmp\0345391810-FRONT.png
D:\tmp\0345391810-BACK.png

5.12.6 Saving And Loading Settings
If you often use the same settings, you can save them as the default settings for this assistant. If you use a number of common settings, you can save
them to individual files that you can load as needed. Use the Settings drop-down button menu to accomplish this:

Save as Default Settings
Saves all format settings as default. These are then loaded automatically when open an Export Schema dialog
Use Default Settings
Use this choice to initialize the settings with default values
Remove Default Settings
Removes the saved defaults and restores the regular defaults
Load...
Use this choice to open the file chooser dialog, in which you can select a settings file
Save As...
Use this choice to save the settings to a file
Copy Settings to Clipboard
Copies the settings to the system clipboard

Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL Commander to define the settings for
the @export editor commands.

5.12.7 Other Ways to Export Table Data
Export all or selected tables with the Export Schema assistant
Export a subset of the table data with the @export command
Export query results by exporting the grid with the query results

5.13 Importing Table Data

You can import data using the Import Table Data wizard.

Input File Format and Other Options
CSV format page
Excel format page

Data Formats and Data Type Per Column
Matching Columns and Data Types for an Existing Table
Adjusting Table Declaration for a New Table
Importing Binary/BLOB and CLOB Data (CSV and SQL Only)
Running the import
Saving And Loading Settings
Other Ways to Import Table Data
Known limitations

You can import data from a file into an existing table or to a new table. The import source can be either a CSV file or an Excel file (.xls or .xlsx). The
steps are almost identical:

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with Tables

DbVisualizer 13.0 Users Guide 113 of 445

1.
2.
3.
4.
5.
6.
7.
8.

Select the table node for the table you want to import to, or the Tables node if you are importing to a new table, in the Databases tab tree,
Open the Import Table Data wizard from the right-click menu,
Specify the input file on the first wizard page (CSV or Excel file),
[Excel only]: If the input file is an Excel file, you are asked to choose the Excel sheet to import on the next page.
Specify file format and other options,
Specify data formats and the data type per column,
Adjust details about the destination table,
Click Import on the last page.

How many INSERT statements to execute during the import process before committing the changes can be specified in the Properties tab for the
connection, in the Transaction category.

5.13.1 Input File Format and Other Options
On the File Format page, you specify what and how the data in the source file should be imported. This includes specifying what row to start the import
from and if empty rows should be skipped.

DbVisualizer supports import of CSV and Excel files (both the .xslx and the legacy .xsl file formats).

Instead of choosing Import Table Data from the right-click menu, you can drag and drop a file from the operating system's file manager on
the Tables node or a table node.

Working with Tables

DbVisualizer 13.0 Users Guide 114 of 445

•
•
•
•
•
•

CSV format page

In the Delimiters section, define the character that separates the columns in the file. If you enable Auto Detect, DbVisualizer tries to auto detect which
delimiter is used. Examples of auto detected delimiters are:

comma ","
tab "TAB"
semicolon ";"
percent "%"
pipe "|"
Using Unicode Code Points such as \u2656.

Working with Tables

DbVisualizer 13.0 Users Guide 115 of 445

You can use the Options area to further specify how to read the input file, for instance if certain rows should be skipped and how text data is quoted. If
you leave Values Quoted Between empty, data will be imported as is (which may cause problems if you have text strings that include the column
delimiter).

The Data section at the bottom of the page shows a preview of the parsed data in the Grid tab and the original source file in the File tab. If a row in the
Grid tab is red, it indicates that the row will be ignored during the import process. This happens if any of the Options settings result in rows not being
qualified.

If the checkbox Detect Data Type for Quoted Values is checked the data type is also detected for that value. E.g a value "1" will be detected as a Number
and not a String.

Excel format page
The Excel format page is very much like the CSV format page.

As Excel is from start organized in columns and rows the Column delimiter setting is not applicable to Excel files. The Skip Rows Starting With and the
Text Quoted Between options are also not supported for Excel.

As shown in the snapshot below there is no File tab for Excel files.

The Grid tab shows a preview of the data, just as in the CSV case.

5.13.2 Data Formats and Data Type Per Column
The Data Formats page is used to define formats for some data types. The first row in the preview grid contains a data type drop-down lists. DbVisualizer
tries to determine the data type for each column by looking at the value for the number of rows specified as Preview Rows. If this data type is incorrect
for a column, use the drop-down lists to select the appropriate type.

You can specify any character sequence as a delimiter, but it must not contain more than four characters.

Working with Tables

DbVisualizer 13.0 Users Guide 116 of 445

If you import to an existing table, there is yet another way to adjust the data types for the file columns, described in the next section.

5.13.3 Matching Columns and Data Types for an Existing Table
When you are importing to an existing table, the Import Destination page provides two options: Grid and Current Database Table. You can use the Grid
choice to import the data into a grid that is presented in its own window in DbVisualizer if you just want to just process the data in some way without
saving it in the database.

When the Current Database Table choice is selected, the page shows information about the table into which the data will be imported in the Map Table
Columns with File Columns grid shows the columns in the selected database table and the columns in the source file.

If you need to change the data type for a number of columns, e.g. set them all to String, you can Copy/Paste the data type. First change it for
one of the columns using the drop-down, select and copy that new data type value and then select the data type for all other columns and use
paste to change them all at once. If you make a mistake, you can change the Preview Rows value to let DbVisualizer determine the types
again.

Working with Tables

DbVisualizer 13.0 Users Guide 117 of 445

DbVisualizer automatically associates the columns in the source file with the columns in the target table in the order they appear. If the columns appear
in a different order in the file than in the table, but they are named the same, you can use the auto-mapping menu in the upper right corner of the Map
Table Columns with File Columns grid to automatically map the columns by name. Map by Column Name and Map by Column Index do exactly what it
sounds like. Map File Data Type = Table Data Type sets the File Data Type for each column to the type of the corresponding table column.

If the column names are different between the file and the table and also appear in different order, you can manually map them using the drop-down lists
in the File Column Name field. Choose the empty choice in the columns drop-down to ignore the column during import.

Working with Tables

DbVisualizer 13.0 Users Guide 118 of 445

•

•

•

•

There are two checkboxes at the bottom of the page:

Use Delimited Identifiers: check this if you want the SQL statements for importing the table to use delimited identifiers; in other words, if you
want to use table and column names with special characters, mixed case, or anything else that requires delimited (quoted) identifiers.
Empty Table First: check this if you want to clear/empty the table before import. Choose between Truncate or Delete. Truncate is faster as it
usually will clear the data without occupying the rollback management in the database.

5.13.4 Adjusting Table Declaration for a New Table
When you import into a new table, the Import Destination page provides two options: Grid and New Database Table.

Use the Grid choice to import the data into a grid if you just want to just process the data in some way without saving it in the database. The
data is presented in its own window in DbVisualizer and can be formatted, filtered, viewed and exported again.
Use the New Database Table choice to import into a table; you are presented with a field for the table name and a number of tabs for column
and constraint declarations. The Columns tab is filled out based on the source data and the data types from the Data Formats page.

You can use copy/paste of the values in the File Column Name and File Data Type fields to quickly fill the selection of cells instead of
manually selecting the correct data in the drop-downs.

Working with Tables

DbVisualizer 13.0 Users Guide 119 of 445

Note that it is not always possible to find a database specific type for the data format specified on the Data Format page. You must then pick the correct
type from the Data Type drop-down menu. The size for string column types may also need to be adjusted. By default, the size is set to the maximum
number of characters found for the column in the number of rows specified as Preview Rows, adjusted up to the next power of ten. You can ignore
certain columns by removing them in the Columns tab. Keys and other constraints can be created using the other tabs.

You can go back to the Data Format page and increase the Preview Rows value if you believe that it will help DbVisualizer to pick better defaults. If you
do so, you need to click the Reload button when you come back to this page to rescan the source data and get new default values.

If you make a mistake or if the import fails and you have to go back and make adjustments before you import again, make sure you enable Drop Existing
Table, if any. It is disabled by default to prevent you from accidentally dropping an existing table when you intend to import to a new table, but if the
import fails, the new table may already have been created so it needs to be dropped before a new table with your adjusted input can be created.

There is also a Use Delimited Identifiers checkbox. Check this box if you want the SQL statements for importing the table to use delimited identifiers; in
other words, if you want to use table and column names with special characters, mixed case, or anything else that requires delimited (quoted) identifiers.

5.13.5 Importing Binary/BLOB and CLOB Data (CSV and SQL Only)
If you have exported data to a CSV file using DbVisualizer, use the Import Table Data feature to import it. On the Data Format page, ensure that the format
for the source file column is set to BLOB or CLOB.

Working with Tables

DbVisualizer 13.0 Users Guide 120 of 445

•
•
•
•

•

•

•

•

•

•

•
•

If you have exported Binary/BLOB and CLOB data as an SQL script, you just run the script in the SQL Commander to import it. When the SQL Commander
encounters a variable that refers to a file, it reads the file and inserts the content as the column value.

5.13.6 Running the import
The last wizard page contains some basic settings for the import.

Import All rows/Import Used to limit the number of rows to import
Keep Window After import If checked the Import window will remain open after import. If the import fails the window will always remain open.
Stop On Error If checked the import will stop if an error occurs.
Batch Import: If checked the import will be performed using batch import. Using batch import may improve performance of the import
considerably making the import faster. Note that different databases/drivers may have different level of support for batch import.
The number of rows to include in each batch can be controlled by the Commit Batch Size (rows) setting in in the Properties tab for the
connection, in the Transaction category.

5.13.7 Saving And Loading Settings
If you often use the same settings, you can save them as the default settings for this assistant. If you use a number of common settings, you can save
them to individual files that you can load as needed. Use the Settings drop-down button menu to accomplish this:

Save as Default Settings
Saves all format settings as default. These are then loaded automatically when open an Export Schema dialog
Use Default Settings
Use this choice to initialize the settings with default values
Remove Default Settings
Removes the saved defaults and restores the regular defaults
Load...
Use this choice to open the file chooser dialog, in which you can select a settings file
Save As...
Use this choice to save the settings to a file
Copy Settings to Clipboard
Copies the settings to the system clipboard

5.13.8 Other Ways to Import Table Data
If you have a script containing INSERT statements for all data, you can execute it in the SQL Commander.

5.13.9 Known limitations
Excel files cannot contain CLOB/BLOB type of data (e.g. images etc). Cells with this kind of data are imported as empty.
There is a size limitation when importing Excel files with the .xls filename extension. The size limitation is roughly 20 megabytes, depending on
your configuration and how much memory is used for other things. Increasing DbVisualizer max memory may allow you to import larger files.

Working with Tables

DbVisualizer 13.0 Users Guide 121 of 445

1.
2.
3.

1.
2.
3.

•
•
•

1.
2.
3.

5.14 Comparing Tables

You can compare different aspects of a table to other tables and/or result set grids.

For instance, to compare the DDL for a table to the DDL for another table:

Open the DDL tab for the table,
Open the DDL tab for the other table,
Select Compare from the right-click menu in one of the DDL tabs to compare their text content.

To compare the table data to the data of another table or a result set:

Open the Data tab for the table,
Open the Data tab for another table or execute an SQL query to open a result set tab,
Select Compare from the right-click menu in one of the tabs to compare their grid content.

You can do the same for all the other Object View sub tabs containing a grid, such as the Primary Key or Columns tab.

5.15 Viewing Table Relationships
Use the References graph to see how a table is related to other tables through Foreign Keys. This is done by selecting the References sub tab of the
Database object view, as further described below

You can view relations to/from one or more tables in different graph layouts: Hierarchical, Organic, Orthogonal, or Circular.
Layout settings can be changed in the Graph Control area, which is shown or hidden with the settings toggle button in the toolbar. For instance, you can
select how much information to include for each table in the graph: just the Table Name, the Primary Key column(s) or all Columns, which links to
include, and whether or not to highlight links for selected tables. Settings vary slightly depending on whether you are viewing relations for a single table
or multiple tables, and some settings (e.g. Links to Columns) are only available in Hierarchical layout.

If you choose the Hierarchical layout and select Links to Columns and Highlight Links, the graph will for all selected table nodes color code links and
columns to indicate usage:

foreign key columns and outbound links are green
primary key columns and inbound links are red
bidirectional columns (used for both inbound and outbound links) and bidirectional links (where both source and target tables are selected) are
orange

The graph can be Exported to a file in JPG, GIF, PNG, SVG, PDF or EMF. It can also be saved s a GML (Graph Modeling Language) file that you can then
open in the yEd tool from yWorks for further manipulation. The GML format is saved using Save As in the right-click menu. You can also control whether
the table names should be qualified with the schema/catalog in the graph.

When opened on a single table, the graph will only show links to/from this table. You can choose which links to show: Inbound, Outbound, All, or None.

You can also view entity relationships to get an overview of multiple tables.

Locate the desired table in the Databases tab tree
Open the table's Object View tab (right-click -> Open in Tab)
Select the References sub tab

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

http://www.yworks.com/en/products_yed_about.html

Working with Tables

DbVisualizer 13.0 Users Guide 122 of 445

By selecting one or more tables, links and columns are highlighted using colors to indicate usage.

By selecting (clicking on) a specific relation, the corresponding table columns are highlighted:

Working with Tables

DbVisualizer 13.0 Users Guide 123 of 445

•
•
•
•
•
•

1.
2.
3.

Check Viewing Entity Relationships section for information about the references graph showing all tables in a schema.

5.16 Navigating Table Relationships

A powerful way to study database data is to navigate between the tables in a schema by following table relationships declared by Primary and Foreign
Keys. DbVisualizer includes a Navigator feature for this purpose, visualizing the relationships graphically while making the data for each navigation case
easily accessible in a data grid.

Opening the Navigator
Navigating Relationships
Adding Context Information to the Graph
Arranging the Graph
Exporting and Printing the Graph
Opening the Navigator from the Data tab

5.16.1 Opening the Navigator
To launch the Navigator:

Locate the table you want to start the navigation from in the Databases tab tree,
Double-click the table node to open its Object View tab,
Select the Navigator sub tab.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with Tables

DbVisualizer 13.0 Users Guide 124 of 445

The Navigator tab has two parts: a graphical view and a data grid. Initially, the graphical view shows just the selected start table, and the data grid shows
the data for the start table.

The data grid is of the same type as you encounter in other parts of DbVisualizer, such as in the Data tab, but extended with a Related Table list and a
Tag button.

5.16.2 Navigating Relationships
Data navigation in DbVisualizer means following table relationships declared by Primary and Foreign Keys, using a unique key value. In the example
schema shown in the screen shots in this section, there is a table named STORE with a primary key named STORE_ID. Another table named CUSTOMER
has a foreign key constraint, declaring that values in its STORE_ID column refer to primary key values in the column with the same name in the STORE
table.

Working with Tables

DbVisualizer 13.0 Users Guide 125 of 445

If you use STORE as you start table, you can easily navigate to the CUSTOMER table for different STORE_ID values. In the data grid, select one or more
columns in the row that holds the STORE_ID you want to use for navigation. In the figure above, the store where STORE_ID = 1 is selected.

Next, bring up the Related Table list. It lists all tables the STORE table is related to through Primary and Foreign Keys, with the key columns within
parenthesis. A forward arrow (->) between the table names means that the STORE table has a foreign key relation to the named table. A backward arrow
(<-) means that the named table has a foreign key relation to the STORE table.

When you select "STORE(STORE_ID) <- CUSTOMER(CUSTOMER_ID)" in the Related Table list, a node is added to the graph for the CUSTOMER table, with
an arrow from the STORE table node to show the navigation direction. We call this a navigation case.

The CUSTOMER node contains the key columns (just one in this example) and their values.

The arrow between the nodes is labeled with the key column name. In addition, the arrow label also shows the name and value of the column that you
selected in the STORE table when you created this navigation case, i.e., the STORE_ID column. If you select multiple columns when you create a
navigation case, all non-key column names and values are included in the arrow label. This can make it easier to see at a glance what a navigation case
represents.

The grid is also updated when you create a navigation case, to show all rows in the table you navigated to that has a key value corresponding to the
selected key value in the table you navigated from. In this case, it shows all rows in the CUSTOMER table with STORE_ID equal to 1.

You can edit the grid values, but be aware that if you change the value of a key in the grid for a navigation case, the row will disappear from
the grid since the grid only shows rows with keys matching the navigation case key value.

Working with Tables

DbVisualizer 13.0 Users Guide 126 of 445

You can continue to create more navigation cases from any node in the graph. For instance, if the schema contains a table with job history information
for employees, you can navigate to the rental history for an employee from the CUSTOMER node. Or, you can select the STORE node in the graph to
navigate to the CUSTOMER table for a different store. Just click on the STORE node, select another row in the data grid and then the same Related Table
list entry.

Every time you select a node in the graph, the data grid is updated to show the corresponding data. The grid settings for one node are independent of the
settings for another node. For instance, if you define a filter for one node, the filter is only associated with the grid for that node.

5.16.3 Adding Context Information to the Graph
The navigation node always shows the key columns and their values, but sometimes you may want to add other columns to the node to better describe
what it represents. This is called tagging the node.

There are two ways to do so: drag and drop cells from the grid to any node, or use the Tag button in the grid toolbar to tag the currently selected node
with the currently selected cells in the grid.

To drag and drop cells to a node, select one or more cells in the grid. With the left mouse button pressed and the mouse positioned over one of the
selected cells, drag the cells over a node in the graph and release the mouse button. The cells are added to the node.

If you want to create multiple navigation cases from one table to another using the same relationship, you can select columns in multiple
rows in the first table. When you make a selection in the Related Table list, one navigation case per row is created.

Working with Tables

DbVisualizer 13.0 Users Guide 127 of 445

5.16.4 Arranging the Graph
As you add navigation cases, you may find that you need to move nodes around, remove some nodes, zoom and move around in the graph, etc.

You can rearrange the layout of the graph by selecting a node and, with the left mouse button pressed, drag it around. The arrow and its label move with
the node.

The toolbar for the graph offers a number of tools to help you with other tasks.

5.16.5 Exporting and Printing the Graph
You can also export the graph to an image file or print it. Use the corresponding toolbar buttons to do this

When you print the graph, you are prompted for information about what to print (the Graph or the View, i.e., just the portion visible in the display area)
and how many rows and columns to split the printing over (one page is used for each row/column).

Working with Tables

DbVisualizer 13.0 Users Guide 128 of 445

1.
2.
3.

5.16.6 Opening the Navigator from the Data tab
Sometimes, you may realize that you want to analyze the relationships for a table when you are working with it in the Data tab. If you have configured the
Data tab to show only filtered data, sorted in a specific way, etc. opening the Navigator tab and making all the same configurations there may be a bit of
a hassle. A more convenient way is to just pick Show in Navigator in the right-click menu in the Data tab. It opens the table in the Navigator tab with all
the same configurations as you made in the Data tab.

5.17 Viewing the Table DDL

To see the DDL (CREATE statement) for a table:

Locate the table node in the Databases tab tree,
Double-click the table node to open its Object View tab,
Select the DDL sub tab.

The DDL shown is based on metadata retrieved from the database, and will not not include some database-specific information, such as storage clauses.
For some databases, there is an additional sub tab named Native DDL (or similar) that shows the DDL as generated by the database itself, including all
clauses.

5.18 Filtering Tables in the Tree

If you have many tables in the tree, it may be hard to find the ones of most interest. You can then define a filter so that only a few tables are shown, as
described in Filtering Database Objects.

5.19 Showing Row Count in the Tree
You can use the Database->Show/Hide Table Row Count menu choice to see the number of rows within parenthesis next to the table name in the
Database tab tree.

5.20 Using Permissions for Table Data Editing

The Permission functionality is a security mechanism, where you can specify that certain database operations must be confirmed. You configure
permissions in the Tool Properties dialog, in the Permissions category of the General tab, per connection mode (Development, Test and Production).

You specify which connection mode to use for a connection in the Properties tab of the Object View tab for the connection. By default a connection
mode is specified to be Development.

For table grid edits, you can pick the permission type from a drop-down list for each operation:

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Enabling this property results in a performance degradation.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The permission feature is part of DbVisualizer and does not replace the authorization system in the actual database.

Working with Views

DbVisualizer 13.0 Users Guide 129 of 445

1.
2.

1.
2.
3.

1.
2.
3.

Permission Type Description

Confirm A confirmation window is displayed, and you can accept the operation or cancel it

No Confirm The SQL operation is performed without any confirmation

5.21 Scripting a Table
To open the Script Table dialog, where you can insert generated text for a table in an SQL Commander editor:

Select one or more table nodes in the Databases tab tree,
Choose Script Table from the right-click menu.

You can also launch the dialog by dragging and dropping one or more nodes of the same type in an SQL Commander editor.

The Script dialog provides a choice of which type of statement to generate, options for formatting, use of delimited identifiers, qualified names and
statement delimiters. You can also pick an open SQL Commander or a new as the destination, and where in the SQL Commander editor to insert the text.

5.22 Managing Table and Column Comments

Many databases support adding comments for various database objects, such as tables and columns. How this is done is database-dependent, but for
some of the databases with specific support in DbVisualizer, you can enter and edit comments using an action in the right-click menu for the object node
selected in the Databases tab. For instance, for an Oracle database, you can manage table comments like this:

Select the table node in the tree,
Choose Comment Table in the right-click menu,
Add or edit the comment.

For Oracle, you can manage comments for other database object types, such as columns and views, in the same way. An Oracle Tables node also has a
Table Comments tab in its Object Views tab, listing then comments for all tables in a schema.

6 Working with Views
DbVisualizer provides many ways to work with views.

6.1 Creating a View
There is no GUI dialog for creating a view, but you can:

Use the Query Builder to create the SELECT statement graphically,
Load the generated SELECT statement into the SQL Editor by clicking the corresponding button in the toolbar,
Add CREATE VIEW name AS before the SELECT statement,

If you just want to insert the object names in the editor, hold down the Ctrl key (or the Alt key on macOS) while dragging and dropping. This
behavior can be reversed in Tool Properties, in the SQL Commander category, so that dropping without pressing a key inserts the names
and pressing the key launches the dialog.

This feature is only available for some databases. Please execute the corresponding SQL in the SQL Commander if it is not available for your
database.

Working with Views

DbVisualizer 13.0 Users Guide 130 of 445

4.

1.
2.
3.
4.
5.
6.
7.
8.

1.
2.
3.

1.
2.

Execute the CREATE VIEW statement.

6.2 Altering a View
Views can typically not be altered; they must be dropped and recreated. You can:

Select the view in the Databases tree,
Double-click the view node to open its Object View tab,
Open the DDL sub tab,
Select Copy to New Editor from the DDL tab's right-click menu, which opens an SQL Commander tab with the DDL,
Remove the CREATE VIEW part in the SQL Commander editor so you are left with just the SELECT statement,
Load the SELECT statement into the Query Builder and alter it graphically,
Launch the Drop View assistant from the view node's right-click menu, and click Execute to drop it,
Create the new view from the altered SELECT statement.

6.3 Editing a View
You can edit view data the same as you edit table data.

6.4 Exporting a View
You can export a view the same way as you export a table.

6.5 Viewing the View DDL

To see the DDL (CREATE statement) for a view:

Locate the view node in the Databases tab tree,
Double-click the view node to open its Object View tab,
Select the DDL sub tab.

6.6 Filtering Views in the Tree

If you have many views in the tree, it may be hard to find the ones of most interest. You can then define a filter so that only a few views are shown, as
described in Filtering Database Objects.

6.7 Scripting a View

To open the Script View dialog, where you can insert generated text for a view in an SQL Commander editor:

Select one or more view nodes in the Databases tab tree,
Choose Script View from the right-click menu.

You can also launch the dialog by dragging and dropping one or more nodes of the same type in an SQL Commander editor.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

This feature may only be available for some databases.

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 131 of 445

1.
2.

The Script dialog provides a choice of which type of statement to generate, options for formatting, use of delimited identifiers, qualified names and
statement delimiters. You can also pick an open SQL Commander or a new as the destination, and where in the SQL Commander editor to insert the text.

7 Working with Procedures, Functions and Other Code Objects
Many databases offer the capability to store custom code in the database, primarily as functions and procedures, where a function has a return value but
a procedure does not (a procedure may instead have output parameters). In addition, some databases offer a package concept, which means that a
collection of functions and/or procedures are grouped together in one unit. A package is the interface describing the functions and procedures, while the
package body contains the implementation. Many databases also support triggers: code that is executed when triggered by an event such as deleting a
row in a table.

You can use DbVisualizer actions to create and drop procedural object of these types, and use the code editor to browse, edit and compile these object
types. Procedures and functions can also be executed in the SQL Commander, with return values and parameters bound to DbVisualizer variables.

7.1 Creating a Function

To create a new function:

Expand nodes in the tree under the connection node in the Databases tab tree until you reach the Functions node,
Select the Functions node and open the Create Function dialog from the right-click menu.

If you just want to insert the object names in the editor, hold down the Ctrl key (or the Alt key on macOS) while dragging and dropping. This
behavior can be reversed in Tool Properties, in the SQL Commander category, so that dropping without pressing a key inserts the names
and pressing the key launches the dialog.

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 132 of 445

1.
2.
3.

The details of the dialog depends on the database, but typically you need to:
Enter an object name,
Click the Add button in the Parameters area to add parameters,
Enter a name and data type for each parameter. For some databases you can also enter a direction (typically IN, OUT, or INOUT) and a default
value.

You can use the other buttons to the right of the parameter list to remove and move a parameter.

The dialog uses this information together with a simple sample body to compose a CREATE statement. For most databases, you can not enter the real
code in the dialog. The real code is often complex and large, so DbVisualizer provides a more powerful editing environment than would fit in a dialog via
the Code Editor. What you create with the dialog should be seen as a template that you then complete and work with in the Code Editor.

For some databases the sample code is editable because there is no way to write a generic sample that compiles. You must then modify the template to
something that is syntactically correct, but we still recommend that you finish the real code in the Code Editor instead.

Click Execute in the dialog to create the new function.

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 133 of 445

1.
2.

1.
2.
3.

7.2 Creating a Procedure

To create a new procedure:

Expand nodes in the tree under the connection node in the Databases tab tree until you reach the Procedures node,
Select the Procedures node and open the Create Procedure dialog from the right-click menu.

The details of the dialog depends on the database, but typically you need to:

Enter an object name,
Click the Add button in the Parameters area to add parameters,
Enter a name and data type for each parameter. For some databases you can also enter a direction (typically IN, OUT, or INOUT) and a default
value.

You can use the other buttons to the right of the parameter list to remove and move a parameter.

The dialog uses this information together with a simple sample body to compose a CREATE statement. For most databases, you can not enter the real
code in the dialog. The real code is often complex and large, so DbVisualizer provides a more powerful editing environment than would fit in a dialog via
the Code Editor. What you create with the dialog should be seen as a template that you then complete and work with in the Code Editor.

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 134 of 445

1.
2.

1.
2.
3.

1.
2.

For some databases the sample code is editable because there is no way to write a generic sample that compiles. You must then modify the template to
something that is syntactically correct, but we still recommend that you finish the real code in the Code Editor instead.

Click Execute in the dialog to create the new procedure.

7.3 Creating Other Code Objects

Some databases support other code object types in addition to function, stored procedure and trigger, e.g. Package in Oracle and Module in Mimer.

To create a new database-specific code object:

Expand nodes in the tree under the connection node in the Databases tab tree until you reach the group node for the code type, e.g. Packages,
Select the group node and open the Create dialog from the right-click menu.

The details of the dialog depends on the database, but typically you need to:

Enter an object name,
Click the Add button in the Parameters area to add parameters,
Enter a name and data type for each parameter. For some databases you can also enter a direction (typically IN, OUT, or INOUT) and a default
value.

You can use the other buttons to the right of the parameter list to remove and move a parameter.

The dialog uses this information together with a simple sample body to compose a CREATE statement. For most databases, you can not enter the real
code in the dialog. The real code is often complex and large, so DbVisualizer provides a more powerful editing environment than would fit in a dialog via
the Code Editor. What you create with the dialog should be seen as a template that you then complete and work with in the Code Editor.

For some databases the sample code is editable because there is no way to write a generic sample that compiles. You must then modify the template to
something that is syntactically correct, but we still recommend that you finish the real code in the Code Editor instead.

Click Execute in the dialog to create the new code object.

7.4 Editing a Code Object

To edit the code for an object, such as a function, stored procedure or database-dependent code object:

Expand nodes in the tree under the connection node in the Databases tab tree until you reach the node for the object you want to edit,
Double-click the node to open an Object View tab for it, and select the editor sub tab (e.g., the Procedure Editor tab).

The editor has a toolbar with various actions to save/compile the procedure, save and load the source to/from file and perform common editing
operations. The Status indicator shows whether the procedure is valid or invalid based on last compilation (not available for all databases).

Edit the source code and save/compile the procedure when you are happy with the code, using the Save toolbar button.

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding SQL in the SQL Commander.

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 135 of 445

If errors occur, the corresponding text is underlined with a red wavy line. Hovering the mouse over the error indication shows the corresponding error
message. The right margin contains markers for each error as well, and clicking on a marker scrolls the editor to the corresponding error. Alternatively,
you can click the FAILED link in the Log tab grid to move the caret to the error location.

If you prefer to navigate between errors using the keyboard, you can use the defined key bindings for the Insertion Point to Next Marker and Insertion
Point to Previous Marker actions in the Tool Properties dialog, in the Key Bindings category, in the Editor Commands group. Alternative is to use the
Goto Next Failed and Goto Previous Failed in the right click menu of Log tab grid, and then click the link for the FAILED entries.

7.4.1 Disable Error Markers in the SQL Editor
From DbVisualizer 10.0.5 it is possible to disable error markers in the SQL Commander->SQL Commander Options menus. With Show Error Position
Markers turned on it shows markers only for databases that specifically report positions of errors in a statement. With Show Error Statement
Markers turned on the complete statement is highlighted if it fails during execution, but only if either the Show Error Position Markers is turned off or if
the driver/database doesn't report positions of errors.

If you re looking to minimize the amount of error markers when executing scripts, turn off Show Error Statement Markers and keep the Show Error
Position Markers checked (turned on). DbVisualizer will then report errors reported by the JDBC driver only.

To set default values for these settings visit Tools->Tool Properties and the General / SQL Commander category.

In addition to the Status indicator in the editor, the object icon in the tree shows a little red cross for invalid procedures, for databases that provide this
information. You can see this for the UPDATE_STATUS procedure node in the screenshot above.

The figure below shows the result after correcting the errors and recompiling the procedure:

Error location information is not available for some databases. In that case the complete statement is underlined in the editor.

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 136 of 445

•
•
•

The status indicator now shows that the procedure is VALID.

7.5 Executing a Code Object

You can execute a code object, such as a function or stored procedure, either in the Code Editor or in the SQL Commander.

Executing in the Code Editor
Executing in the SQL Commander
Using the Script Object Dialog

7.5.1 Executing in the Code Editor
In the Code Editor, click the Execute button. DbVisualizer then generates a script for executing the code object, using variables for all parameters, and
executes it.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 137 of 445

Since the script contains variables, the Variable Prompt dialog pops up. Enter values for all parameters and click Continue to execute the procedure.
The result is shown in the results area below the editor.

In the example shown in the figure, all parameters are input parameters but DbVisualizer also supports the execution of procedures with output
parameters and functions returning a value. In this case, the generated script includes @echo statements to write the result in the Log tab. Please see
below for more details.

7.5.2 Executing in the SQL Commander
The scripts generated and executed by the Code Editor can also be included in a script and executed in an SQL Commander. Here's an example of a script
calling a function and writing the result in the SQL Commander Log tab:

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 138 of 445

@call ${STATUS||(null)||String||noshow dir=out}$ = "HR"."GET_STATUS"(1002);
@echo STATUS: ${STATUS}$;

In this example, the result value from the GET_STATUS function is assigned to a variable named STATUS. Note that is has an option dir=out. This is a
requirement for a variable that is assigned a value at runtime, whether it is used for a return value from a function call or for an output parameter in a
procedure call. It also has the noshow option, to avoid getting prompted for a value for the variable. The value of the STATUS variable is then written to
the log using the @echo command.

You can also use the output from one function or procedure as input to another, or even as a value in a SELECT or other SQL statement:

@call ${STATUS||(null)||String||noshow dir=out}$ = "HR"."GET_STATUS"(1002);
@call "HR"."UPDATE_STATUS"(1000, 2000, ${STATUS||||String||noshow dir=in}$);

Note that dir=in is specified for the STATUS variable when it is used in the UPDATE_STATUS procedure call. When you use a variable first for output and
then as input with another @call command, you must change the direction option like this.

More formally, the @call command has this syntax when calling a function:

@call <OutVariable> = <FunctionName>(<ParamList>)

where the <FunctionName> may need to be fully qualified with a schema (and/or catalog/database) and the <ParamList> is a comma separated list of
literal values or variables. Here's an example:

@call ${return_value||(null)||String||dir=out noshow}$ = get_some_value();

For a procedure, use this syntax:

@call <ProcedureName>(<ParamList)

where the <ProcedureName> may need to be fully qualified with a schema (and/or catalog/database) and the <ParamList> is a comma separated list of
literal values or variables. Here's an example:

@call my_process('literal input',
 ${var_in||(null)||String||dir=in}$,
 ${var_out||(null)||String||dir=out noshow}$,
 ${var_inout||'in_value'||String||dir=inout}$);

As shown in these examples, you must use the dir option to specify how the variable is to be used (in, out or inout) and you may use the noshow option
to prevent being prompted for a value for an output variable.

You can use the @echo command to write the value assigned to an output variable to the log.

7.5.3 Using the Script Object Dialog
Instead of writing a @call script by hand in an SQL Commander, you can use the Script Object (e.g. Script Procedure or Script Function) right-click
menu choices for the object node in the tree.

This opens the Script Object dialog where you select that you want to generate a CALL script and can adjust settings for using delimiters and qualifiers, as
well as the destination for the generated script. This is how the Script Dialog will look like when opened for a Procedure.

Working with Procedures, Functions and Other Code Objects

DbVisualizer 13.0 Users Guide 139 of 445

1.
2.
3.
4.

1.
2.

7.6 Exporting a Code Object

To export a code object:

Select the object node in the Databases tab tree,
Open the Export Object dialog (e.g. Export Procedure or Export Function) from the right-click menu,
Select an Output Format, Output Destination, and Options,
Click Export.

For these object types, you can select either the SQL (CREATE statement) or XML Output Format and which delimiters to use in the Options area.

You can control whether to use delimited identifiers and/or qualified names in the DDL and INSERT statements generated for the SQL format.

7.7 Scripting a Code Object
To open the Script Function/Procedure dialog, where you can insert generated text for a code object in an SQL Commander editor:

Select one or more code object nodes in the Databases tab tree,
Choose Script Function/Procedure from the right-click menu.

You can also launch the dialog by dragging and dropping one or more nodes of the same type in an SQL Commander editor.

The Script dialog provides a choice of which type of statement to generate, options for formatting, use of delimited identifiers, qualified names and
statement delimiters. You can also pick an open SQL Commander or a new as the destination, and where in the SQL Commander editor to insert the text.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

If you just want to insert the object names in the editor, hold down the Ctrl key (or the Alt key on macOS) while dragging and dropping. This
behavior can be reversed in Tool Properties, in the SQL Commander category, so that dropping without pressing a key inserts the names
and pressing the key launches the dialog.

Working with Schemas

DbVisualizer 13.0 Users Guide 140 of 445

1.
2.
3.
4.

1.
2.
3.

•
•
•

1.

8 Working with Schemas
DbVisualizer provides many ways to work with schemas.

8.1 Creating a Schema
To create a new schema:

Locate the Schemas node in the Databases tab tree,
Open the Create Schema dialog from the right-click menu,
Enter all required information (database dependent),
Click Execute to create the schema.

8.2 Comparing Schemas

While DbVisualizer does not provide a way to fully show the differences between two schemas in terms of objects and data, you can compare different
aspects of a schema to another schema one by one.

For instance, to compare the list of tables in one schema with the list of tables in another schema:

Expand the schema node for the first schema and select its Tables node and open it in a new Object View tab, select the Tables tab,
Do the same for the second schema,
Select "Compare..." from the right-click menu in one of the Tables grids to compare their grid content, or select Tools->Compare.

You can do the same for all the other schema object types, such as views and stored procedures. You can also dig deeper and compare the individual
objects, such as comparing individual tables.

8.3 Viewing Entity Relationships
Use the References graph to see how tables are related to other tables through Foreign Keys.

You can view relations to/from one or more tables in different graph layouts: Hierarchical, Organic, Orthogonal, or Circular.

Layout settings can be changed in the Graph Control area, which is shown or hidden with the settings toggle button in the toolbar. For instance, you can
select how much information to include for each table in the graph: just the Table Name, the Primary Key column(s) or all Columns, which links to
include, and whether or not to highlight links for selected tables. Settings vary slightly depending on whether you are viewing relations for a single table
or multiple tables, and some settings (e.g. Links to Columns) are only available in Hierarchical layout.

If you choose the Hierarchical layout and select Links to Columns and Highlight Links, the graph will for all selected table nodes color code links and
columns to indicate usage:

foreign key columns and outbound links are green
primary key columns and inbound links are red
bidirectional columns (used for both inbound and outbound links) and bidirectional links (where both source and target tables are selected) are
orange

The graph can be Exported to a file in JPG, GIF, PNG, SVG, PDF or EMF. It can also be saved s a GML (Graph Modeling Language) file that you can then
open in the yEd tool from yWorks for further manipulation. The GML format is saved using Save As in the right-click menu. You can also control whether
the table names should be qualified with the schema/catalog in the graph.

When opened on multiple tables, the graph shows all links between the tables; you cannot choose to show inbound or outbound relations since all links
are both outbound (from one table) and inbound (to some other table). You can however exclude unreferenced tables and/or manually select which
tables to include on the graph.

To zoom in on a specific table, you can also view table relationships for a specific table.

Locate the Tables node in the Databases tab tree

This feature is only available for some databases. Please execute the corresponding SQL in the SQL Commander if it is not available for your
database.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

http://www.yworks.com/en/products_yed_about.html

Working with Schemas

DbVisualizer 13.0 Users Guide 141 of 445

2.
3.

Open the Object View tab (right-click -> Open in Tab)
Select the References sub tab

Removing details and turning on highlighting to focus on certain aspects of the schema can be quite useful, especially if you choose to export the graph
to discuss it with someone else.

Changing the layout, reducing the number of tables and suppressing some information makes it easier to focus on structure.

Working with Schemas

DbVisualizer 13.0 Users Guide 142 of 445

•
•
•
•
•
•

1.
2.
3.
4.

Check Viewing Table Relationships section for information about the references graph showing references for a specific table.

8.4 Exporting a Schema

You can export all or selected objects in a schema using the Export Schema assistant.

Output Format
Output Destination
Object Types
Options
Using Variables in Fields
Saving And Loading Settings

To export a schema:

Select the schema node in the Databases tab tree,
Launch the Export Schema assistant from the right-click menu,
Select an Output Format, Output Destination, Objects to export and Options,
Click Export.

8.4.1 Output Format
You can export objects in one of these formats: CSV, HTML, SQL, XML, XLS (Excel), or JSON.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with Schemas

DbVisualizer 13.0 Users Guide 143 of 445

•
•
•

The CSV, HTML, XSL and JSON formats are specifically for table data and are not supported for any other type of objects.

The SQL and XML formats can be used for all objects to export the DDL, and for tables you can also choose to include the table data in these formats.

You can control whether to use delimited identifiers and/or qualified names in the DDL and INSERT statements generated for the SQL format, using the
controls in the Options area.

8.4.2 Output Destination
The destination can be one of:

a file,
an open or new SQL Commander tab, with options for where in an open SQL Commander to insert the result,
to the system clipboard.

8.4.3 Object Types
In the Object Types area you select what to export. You can check the checkbox for an object type to export all objects of that type, or expand a type
node and select individual objects. To select all objects, just check the checkbox for the schema itself at the top of the tree.

8.4.4 Options
The Options section contains options common to all Output Formats at the top, followed by options for the selected format.

Example of the options for SQL:

Example of the options for Excel:

Working with Schemas

DbVisualizer 13.0 Users Guide 144 of 445

•

•

•

•

•

•

For the SQL and XML formats, you can choose to export the DDL, the DDL for indexes for a table and the table data: as INSERT statements for the SQL
statement or in one of three XML formats.

For the Excel format, you can choose to export table data as either in the XLSX (default) or the legacy XLS format.

Most formats also let you specify other options, such as delimiters, title and descriptions. Just select an Output Format to see which options are
available. All options are described in the context of the @export command, as the Export dialog is just a GUI for the command.

You can adjust the Data Formats specifically for the exported table data. By default, the formats defined in Tool Properties are used, but sometimes you
need to export dates and numbers in a different format because you intend to import the data into a different type of database.

In the Data Format Settings dialog you can also specify how to quote text data and how to handle quotes within the text value.

8.4.5 Using Variables in Fields
You can use some of the pre-defined DbVisualizer variables (${dbvis-date}$, ${dbvis-time}$, ${dbvis-timestamp}$, ${dbvis-connection}$, $
{dbvis-database-type}$ and ${dbvis-object}$) in all fields that hold free text (e.g. title and description fields) and as part of the file name field.

Use the ${dbvis-object}$ variable as part of the filename if you want to export the DDL and/or data to a separate file for each object. The variable is
replaced with the object type and object name, e.g. ${dbvis_object}$.sql becomes table_COUNTRIES.sql for a table named COUNTRIES.

8.4.6 Saving And Loading Settings
If you often use the same settings, you can save them as the default settings for this assistant. If you use a number of common settings, you can save
them to individual files that you can load as needed. Use the Settings drop-down button menu to accomplish this:

Save as Default Settings
Saves all format settings as default. These are then loaded automatically when open an Export Schema dialog
Use Default Settings
Use this choice to initialize the settings with default values
Remove Default Settings
Removes the saved defaults and restores the regular defaults
Load...
Use this choice to open the file chooser dialog, in which you can select a settings file
Save As...
Use this choice to save the settings to a file
Copy Settings to Clipboard
Copies the settings to the system clipboard

If you are exporting table data in the SQL format from one database type (e.g. Oracle) to import it in a database of a different type (e.g.
PostgreSQL) by executing the generated script, you need to be aware of differences in the literal formats for Date, Time and Timestamp data.
If you connect to the other database using a JDBC client like DbVisualizer, you can select the JDBC escape format for these data format. This
generates literals that the JDBC driver converts into a format the target database can interpret.

Working with SQL

DbVisualizer 13.0 Users Guide 145 of 445

• Copy Settings to Clipboard
Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL Commander to define the settings for
the @export editor commands.

8.5 Filtering Schemas in the Tree

If you have many schema in the tree, it may be hard to find the ones of most interest. You can then define a filter so that only a few schemas are shown, as
described in Filtering Database Objects.

9 Working with SQL
With DbVisualizer, you can use a powerful SQL editor or a graphical Query Builder to create and edit your scripts, save them as Bookmarks for easy
access, and execute all or just a few of the statements, and lots more.

DbVisualizer depends on the JDBC Driver and the connected database to read meta data and execute SQL commands and will work with any type of SQL
that the database supports. When you run a script, DbVisualizer parses the script to find statement delimiters, variables and client-side processing
commands, everything else is passed as-is to the database for processing. The connected database defines what you can and cannot do and will report
errors if it does not understand your SQL script.

DbVisualizer adapts to the database based on what Database Type you specify on the connection, this drives what objects you see, what keywords the
editor recognizes, etc. The database type is usually automatically detected, but you can also specify it manually - see Create a New Database Connection
for more info.

9.1 Selecting Database Connection, Catalog and Schema
You use the Database Connection and Database (or Catalog) lists above the editor to specify which connection and database to use when executing the
SQL in the SQL Commander. The list of connections shows all connections as they are ordered in the Databases tab tree, except that all currently active
connections are listed first.

The screenshot shows the Sakila database being selected. When hovering over the name, its full path including any folders is listed in a tooltip.

If you check the Sticky box above the Database Connection, the current connection selection will not change automatically when passing SQL
statements from other parts of DbVisualizer, for instance, when opening a Bookmark. Consider a Bookmark defined for database connection Prod. If the
Sticky checkbox is not checked (i.e., disabled), the database connection is automatically changed to Prod when you open the Bookmark in the SQL
Editor. However, if the Sticky checkbox is checked (i.e. enabled), the current database connection setting is unchanged. You can specify if you want to
have Sticky enabled by default in the Tool Properties dialog, in the SQL Commander category under the General tab.

The Database list (or Catalog) defines which catalog in the connection is the target for the execution. Since not all databases use catalogs, this list may
be disabled.

For most databases, the schema selected in the Schema list is used only to limit the tables the Auto-Completion feature shows in the completion pop-
up; it does not define a default schema for tables referenced in the SQL since most databases do not allow the default schema to be changed during a
session.

For databases that allow the default schema to be changed*, the selected schema is also used as the default schema, i.e., the schema used for
unqualified table names in the SQL. If the Database Type is set to Generic for a connection, DbVisualizer tries to set the default schema (if Use Schema is
chosen) but it depends on the JDBC driver if this works or not.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 146 of 445

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

If you don't want the selected schema to be used as the default schema for a database, you can disable this behavior in the Properties tab for the
connection, in the SQL Commander category.

* Examples of databases that support setting a default schema include Db2 LUW, Db2 z/OS, Db2 iSeries, Greenplum, H2, JavaDB/Derby, Oracle, NuoDB, PostgreSQL, Vertica, and

Yellowbrick.

9.1.1 Configuring the Initial Values
When a new Database Connection is selected, the initial values for the Database and Schema lists are by default based on the default values for the
connection. You can change this behavior in the Properties tab for the connection, in the SQL Commander category. The initial value for each list that is
applicable for the database type can be set to one of The Connection Default, None or The Most Recently Used.

9.2 Editing SQL Scripts
The SQL Commander contains an SQL editor, used to edit SQL scripts.

Font Settings
Editor Styles
Comments
Charsets and Fonts
Loading and Saving Scripts
Stale Files Warning
Drag and Drop a File
Drag and Drop Database Objects
Loading and Saving Bookmarks and Monitors
Navigating Between History Entries
Navigating to Script location
Confirming Overwriting Unsaved Changes
SQL Formatting
Settings
Auto Completion
Recording and Playing Edit Macros
Folding Selected Text
Selecting a Rectangular Area
Highlighting Matches
Tab Key Treatment
Key Bindings

The editor area looks like this:

Working with SQL

DbVisualizer 13.0 Users Guide 147 of 445

1.

2.

3.

4.

5.

6.

7.

Above the editor is a toolbar with buttons related both to execution of scripts and to editing. The editing related buttons are covered below.

The left margin shows the line numbers.

Below the editor, you see a Status Bar with the following fields, from left to right:

Position:
the current caret position in the format: <line>:<column> [<position from top>]
The last figure, within square brackets, is the caret position from the top. This can be useful when you get an error message executing a script
that contains this information rather than a line/column location.
Insert/Overwrite Mode:
INS if characters you type will be inserted at the caret position or OVR if they will overwrite the current text at the caret position. You can toggle
this mode using the Toggle Typing Mode keyboard shortcut, by default bound to the Insert key.
Macros:
this field is only visible when working with macros, as described in the Recording and Playing Edit Macros section.
File Format:
the format of the file as detected when the file was loaded (if any). Click it to select which format to use when saving the file; Windows, Unix/
Linux/macOS, or Old MacOS.
Auto Commit Status:
shows whether or not Auto Commit is enabled.
Character Set:
the character encoding as detected when the file was loaded (if any). Click it to select which encoding to use when saving the file.
File:
The name of the loaded file (if any). You can click on the filename to copy the file path or open the OS file chooser for the directory holding the
file. If you just type into the editor without loading a file, the filename "Untitled" is shown instead. An asterisk (*) after the filename indicates
that there are unsaved edits.

The SQL Editor is like any editor you're used to when it comes to typing, scrolling etc. But it also offers additional features to help you specifically with
editing SQL scripts. These are described in the following sections.

You can change how to display in the Tools->Tool Properties dialog, in the General / Appearance category. This is explained in more detailed below.

9.2.1 Font Settings
In the Appearance/Fonts category, you can select the font for Text Editors to control the font in the SQL Editor (Monospaced Fonts are usually a good
choice for code editors).

Working with SQL

DbVisualizer 13.0 Users Guide 148 of 445

9.2.2 Editor Styles
An SQL script consists of keywords, operators, object identifiers, quoted text, etc. It may also contain comments. To make it easier to see at a glance what
is what, the SQL Editor displays words using different font styles depending on their classification. For instance, keywords are displayed with a bold blue
font, while quoted text is displayed with a regular type red font.

In the Appearance/Editor Styles category you can select colors for the different kinds of words, as well as the editor selection background color, the
current line highlight color and the editor background color, and more.

The SQL Editor Column Guide is an optional visual guide that appears as a thin vertical line at specified column (this works best if you use monospaced
fonts).

Working with SQL

DbVisualizer 13.0 Users Guide 149 of 445

9.2.3 Comments
The editor uses the Tool Properties settings from the SQL Commander/Comments category under the General tab to detect comments.

Working with SQL

DbVisualizer 13.0 Users Guide 150 of 445

9.2.4 Charsets and Fonts
You can also change the SQL Editor font family, which is useful and necessary in order to display characters for languages like Chinese, Japanese, etc., in
Tool Properties in the Appearance/Fonts category to set the font for the SQL Editor (see Internationalization and Localization (i18N and L10N) for more
information).

9.2.5 Loading and Saving Scripts
The SQL editor supports loading statements from a file and saving the content of the editor to a file. Use the standard file
operations, Open, Save and Save As in the File main menu or the main toolbar to accomplish this. Loading a file loads it into a new SQL Commander tab
or activates the tab that already holds it.

The name of the loaded file is listed in the status bar of the editor, with the full file path shown in the window title. The editor tracks any modifications
and indicates changes with an asterisk (*) after the filename. When you close the SQL Commander tab or exit DbVisualizer, you are asked what to do if
there are any pending edits that need to be saved.

Working with SQL

DbVisualizer 13.0 Users Guide 151 of 445

The File->Open Recent submenu lists the recently loaded files. How many recent files to keep track of can be specified in the Tool Properties dialog, in
the SQL Commander category under then General tab.

You can also use the Quick File Open feature to open recent files as well as Bookmarks and History entries. By default, it is bound to the Ctrl+Alt+O key
combination, and is also available via a main toolbar button as well as in the main File->Quick File Open menu.

9.2.6 Stale Files Warning
SQL Commander monitors open files to detect external changes, for example if an open file is modified by an external editor, reloaded from a network
connection or repository, etc. If a file is externally modified, you will see a warning ribbon at the top of the editor area, presenting options to handle the
situation:

You can turn off this control in Tool Properties/SQL Commander:

Working with SQL

DbVisualizer 13.0 Users Guide 152 of 445

9.2.7 Drag and Drop a File
You can also select a file in the platform's file browser and drop it somewhere in the DbVisualizer window. If you drop it in an editor, the file content is
inserted at the caret position in the editor. If you instead drop it in the toolbar area, the file is opened in a new SQL Commander tab.

9.2.8 Drag and Drop Database Objects
If you want to include an object shown in the database objects tree, you can select the node and drop it in the editor where you want it inserted. The
Script Object dialog is shown where you can select exactly what you want to insert in the editor.

First of all, you can select to insert an SQL statement based on the dropped object, e.g. a SELECT statement or a CREATE statement. You can also choose
to just insert the object name. The choices available depends on the type of object you drop.

In the Options area, you can opt to format the SQL before it is inserted and use qualifiers and quoted identifiers, and even change which statement
delimiter to use.

The Output Destination is set to the SQL Commander tab you dropped the object on by default, but you can change your mind and pick another
destination. If you stick with an SQL Commander as the destination, you can tell where in the editor to insert the text.

You can also open this dialog from the Databases tab, from the object's right-click menu.

9.2.9 Loading and Saving Bookmarks and Monitors
Bookmarks and Monitors are also files, but with special meaning. See the Managing Frequently Used SQL for how to create and edit them in the SQL
Editor.

9.2.10 Navigating Between History Entries
When you execute a script, DbVisualizer saves it as a history entry, see the Re-Executing SQL Statements section for details. You can use
the Previous and Next buttons in the editor toolbar to navigate between (load) these entries.

If you just want to insert the object names in the editor, hold down the Ctrl key (or the Alt key on macOS) while dragging and dropping. This
behavior can be reversed in Tool Properties, in the SQL Commander category, so that dropping without pressing a key inserts the names
and pressing the key launches the dialog.

Working with SQL

DbVisualizer 13.0 Users Guide 153 of 445

9.2.11 Navigating to Script location
By selecting the script filename in the right bottom corner it is possible to copy its path or locate it in the file system or in the Scripts tab.

9.2.12 Confirming Overwriting Unsaved Changes
By default, you have to confirm overwriting unsaved changes in an editor, e.g. when navigating between history entries, and when closing an SQL
Commander tab with unsaved edits. You can disable these confirmation popups in the Tool Properties dialog, under the SQL Commander category
under the General tab.

9.2.13 SQL Formatting

The SQL Commander main menu on the (or right-click in the editor) and its Format SQL sub menu contains operations for formatting SQL statements.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 154 of 445

•
•

•

1.

2.
3.
4.
5.

1.
2.

Format Buffer and Format Current formats the complete editor content or the current SQL (at cursor position) respectively.
Copy Formatted and Paste Formatted are powerful tools for copying SQL statements between programs written in languages like Java, C#,
PHP, VB, etc. and the SQL Editor. Both operations display a dialog where you can adjust some of the formatting options, most importantly
the Target SQL option and the SQL is Between option. Target SQL can be set to a number of common programming language formats.
Unformat Buffer and Unformat Current produces compact statements by removing unnecessary whitespace.

Example:

To copy an SQL statement and paste it as Java code for adding it to a Java StringBuffer:

Select the statement. Example:
SELECT * FROM SAKILA.STAFF)
Choose SQL->Format SQL->Copy Formatted,
Set Target SQL to Java StringBuffer,
Click Format to place the formatted statement on the system clipboard,
Paste it into your Java code. Example:
StringBuffer sql = new StringBuffer();
sql.append("SELECT ");
sql.append(" * ");
sql.append("FROM ");
sql.append(" SAKILA.STAFF");

To copy a statement wrapped in code from a program:

Select the code containing an SQL statement in your program,
Copy it to the system clipboard,

Working with SQL

DbVisualizer 13.0 Users Guide 155 of 445

3.
4.
5.

Choose SQL->Format SQL->Paste Formatted,
Check SQL is Between and enter the character enclosing the SQL statement in the code,
Click Format to extract the SQL statement and paste the formatted SQL in the editor.

9.2.14 Settings
All formatting is done according to the settings defined in the Tool Properties dialog, in the SQL Commander/SQL Formatting category under the
General tab.

There are many things you can configure; use the default example or your own SQL to check the effect of the settings. After making some changes,
press Apply and format again to see the result.

Example:

-- Basic SELECT example, with Sub-SELECT and JOIN
SELECT e.LAST_NAME AS "Last Name", e.FIRST_NAME AS "First Name", d.DEPARTMENT_NAME AS "Department", e.SALARY AS
"Salary", e.SALARY + e.SALARY * e.COMMISSION_PCT, e.COMMISSION_PCT * 100 || '%', ROUND(e.SALARY / (SELECT MAX(SALAR
Y) FROM HR.EMPLOYEES), 2) * 100 AS "Percentage of Max" FROM HR.EMPLOYEES e INNER JOIN HR.DEPARTMENTS d ON
 (e.DEPARTMENT_ID = d.DEPARTMENT_ID) WHERE d.DEPARTMENT_ID IN (10, 20, 90, 210) AND e.SALARY > 3000;
-- CASE example
SELECT FIRST_NAME, LAST_NAME, SALARY, CASE WHEN SALARY > 10000 THEN 'High' WHEN SALARY BETWEEN 5000 AND 999 THEN
'Midlevel' ELSE 'Low' END AS "Income Level", CASE DEPARTMENT_ID WHEN 40 THEN 'Administration' WHEN 20 THEN 'Sales
Related' ELSE 'Other' END AS "Special Departments" FROM EMPLOYEES;
-- JOIN example, with GROUP BY, HAVING and ORDER BY
SELECT COUNT(d.DEPARTMENT_NAME) AS "Departments per Location", c.COUNTRY_NAME, l.STATE_PROVINCE FROM DEPARTMENTS d
INNER JOIN LOCATIONS l ON d.LOCATION_ID = l.LOCATION_ID INNER JOIN COUNTRIES c USING (COUNTRY_ID) GROUP BY
 c.COUNTRY_NAME, l.STATE_PROVINCE HAVING COUNT(d.DEPARTMENT_NAME) > 1 ORDER BY 2, 3, 1;
-- UPDATE example
UPDATE EMPLOYEES SET COMMISSION_PCT = 10 WHERE COMMISSION_PCT = 0 AND SALARY < 5000;
-- INSERT example
INSERT INTO EMPLOYEES (FIRST_NAME, LAST_NAME) VALUES ('Roger', 'Bjarevall');
-- DELETE example
DELETE FROM EMPLOYEES WHERE HIRE_DATE < to_timestamp('1900-01-10', 'RR-MM-DD');
-- CREATE TABLE example
CREATE TABLE DEPARTMENTS (DEPARTMENT_ID NUMBER(4) NOT NULL, DEPARTMENT_NAME VARCHAR2(30) NOT NULL, MANAGER_ID
NUMBER(6), LOCATION_ID NUMBER(4), CONSTRAINT DEPT_ID_PK PRIMARY KEY (DEPARTMENT_ID), CONSTRAINT DEPT_LOC_FK FOREIGN
KEY (LOCATION_ID) REFERENCES "LOCATIONS" ("LOCATION_ID"), CONSTRAINT DEPT_MGR_FK FOREIGN KEY (MANAGER_ID) REFERENCES
 "EMPLOYEES" ("EMPLOYEE_ID"), CONSTRAINT DEPT_NAME_NN CHECK ("DEPARTMENT_NAME" IS NOT NULL));

Formatted with default settings:

-- Basic SELECT example, with Sub-SELECT and JOIN
SELECT
 e.LAST_NAME AS "Last Name",
 e.FIRST_NAME AS "First Name",
 d.DEPARTMENT_NAME AS "Department",
 e.SALARY AS "Salary",
 e.SALARY + e.SALARY * e.COMMISSION_PCT,
 e.COMMISSION_PCT * 100 || '%',
 ROUND(e.SALARY /
 (SELECT
 MAX(SALARY)
 FROM
 HR.EMPLOYEES), 2) * 100 AS "Percentage of Max"
FROM
 HR.EMPLOYEES e
INNER JOIN
 HR.DEPARTMENTS d
ON
 (
 e.DEPARTMENT_ID = d.DEPARTMENT_ID)
WHERE
 d.DEPARTMENT_ID IN (10,
 20,
 90,
 210)

Working with SQL

DbVisualizer 13.0 Users Guide 156 of 445

AND e.SALARY > 3000;

-- CASE example
SELECT
 FIRST_NAME,
 LAST_NAME,
 SALARY,
 CASE
 WHEN SALARY > 10000
 THEN 'High'
 WHEN SALARY BETWEEN 5000 AND 999
 THEN 'Midlevel'
 ELSE 'Low'
 END AS "Income Level",
 CASE DEPARTMENT_ID
 WHEN 40
 THEN 'Administration'
 WHEN 20
 THEN 'Sales Related'
 ELSE 'Other'
 END AS "Special Departments"
FROM
 EMPLOYEES;

-- JOIN example, with GROUP BY, HAVING and ORDER BY
SELECT
 COUNT(d.DEPARTMENT_NAME) AS "Departments per Location",
 c.COUNTRY_NAME,
 l.STATE_PROVINCE
FROM
 DEPARTMENTS d
INNER JOIN
 LOCATIONS l
ON
 d.LOCATION_ID = l.LOCATION_ID
INNER JOIN
 COUNTRIES c
USING
 (COUNTRY_ID)
GROUP BY
 c.COUNTRY_NAME,
 l.STATE_PROVINCE
HAVING
 COUNT(d.DEPARTMENT_NAME) > 1
ORDER BY
 2,
 3,
 1;

-- UPDATE example
UPDATE
 EMPLOYEES
SET
 COMMISSION_PCT = 10
WHERE
 COMMISSION_PCT = 0
AND SALARY < 5000;

-- INSERT example
INSERT INTO
 EMPLOYEES
 (
 FIRST_NAME,
 LAST_NAME
)
 VALUES
 (

Working with SQL

DbVisualizer 13.0 Users Guide 157 of 445

 'Roger',
 'Bjarevall'
);

-- DELETE example
DELETE
FROM
 EMPLOYEES
WHERE
 HIRE_DATE < to_timestamp('1900-01-10', 'RR-MM-DD');

-- CREATE TABLE example
CREATE TABLE
 DEPARTMENTS
 (
 DEPARTMENT_ID NUMBER(4) NOT NULL,
 DEPARTMENT_NAME VARCHAR2(30) NOT NULL,
 MANAGER_ID NUMBER(6),
 LOCATION_ID NUMBER(4),
 CONSTRAINT DEPT_ID_PK PRIMARY KEY (DEPARTMENT_ID),
 CONSTRAINT DEPT_LOC_FK FOREIGN KEY (LOCATION_ID) REFERENCES "LOCATIONS" ("LOCATION_ID"),
 CONSTRAINT DEPT_MGR_FK FOREIGN KEY (MANAGER_ID) REFERENCES "EMPLOYEES" ("EMPLOYEE_ID"),
 CONSTRAINT DEPT_NAME_NN CHECK ("DEPARTMENT_NAME" IS NOT NULL)
);

Unformatted to compact form:

/*-- Basic SELECT example, with Sub-SELECT and JOIN*/ SELECT e.LAST_NAME AS "Last Name", e.FIRST_NAME AS "First
Name", d.DEPARTMENT_NAME AS "Department", e.SALARY AS "Salary", e.SALARY + e.SALARY * e.COMMISSION_PCT,
e.COMMISSION_PCT * 100 || '%', ROUND(e.SALARY / (SELECT MAX(SALARY) FROM HR.EMPLOYEES), 2) * 100 AS "Percentage of
Max" FROM HR.EMPLOYEES e INNER JOIN HR.DEPARTMENTS d ON (e.DEPARTMENT_ID = d.DEPARTMENT_ID) WHERE d.DEPARTMENT_ID
IN (10, 20, 90, 210) AND e.SALARY > 3000;
/*-- CASE example*/ SELECT FIRST_NAME, LAST_NAME, SALARY, CASE WHEN SALARY > 10000 THEN 'High' WHEN SALARY BETWEEN
5000 AND 999 THEN 'Midlevel' ELSE 'Low' END AS "Income Level", CASE DEPARTMENT_ID WHEN 40 THEN 'Administration' WHEN
20 THEN 'Sales Related' ELSE 'Other' END AS "Special Departments" FROM EMPLOYEES;
/*-- JOIN example, with GROUP BY, HAVING and ORDER BY*/ SELECT COUNT(d.DEPARTMENT_NAME) AS "Departments per
Location", c.COUNTRY_NAME, l.STATE_PROVINCE FROM DEPARTMENTS d INNER JOIN LOCATIONS l ON d.LOCATION_ID =
l.LOCATION_ID INNER JOIN COUNTRIES c USING (COUNTRY_ID) GROUP BY c.COUNTRY_NAME, l.STATE_PROVINCE HAVING
COUNT(d.DEPARTMENT_NAME) > 1 ORDER BY 2, 3, 1;
/*-- UPDATE example*/ UPDATE EMPLOYEES SET COMMISSION_PCT = 10 WHERE COMMISSION_PCT = 0 AND SALARY < 5000;
/*-- INSERT example*/ INSERT INTO EMPLOYEES (FIRST_NAME, LAST_NAME) VALUES ('Roger', 'Bjarevall');
/*-- DELETE example*/ DELETE FROM EMPLOYEES WHERE HIRE_DATE < to_timestamp('1900-01-10', 'RR-MM-DD');
/*-- CREATE TABLE example*/ CREATE TABLE DEPARTMENTS (DEPARTMENT_ID NUMBER(4) NOT NULL, DEPARTMENT_NAME
VARCHAR2(30) NOT NULL, MANAGER_ID NUMBER(6), LOCATION_ID NUMBER(4), CONSTRAINT DEPT_ID_PK PRIMARY KEY
(DEPARTMENT_ID), CONSTRAINT DEPT_LOC_FK FOREIGN KEY (LOCATION_ID) REFERENCES "LOCATIONS" ("LOCATION_ID"), CONSTRAINT
DEPT_MGR_FK FOREIGN KEY (MANAGER_ID) REFERENCES "EMPLOYEES" ("EMPLOYEE_ID"), CONSTRAINT DEPT_NAME_NN CHECK
("DEPARTMENT_NAME" IS NOT NULL));

9.2.15 Auto Completion

Auto completion is a convenient feature used to assist you when editing SQL statements and DbVisualizer commands. By default, you activate auto
completion with the key binding Ctrl-SPACE, but you can also configure it to activate as you type (in the Tool Properties dialog, in the SQL Editor/Auto
Completion category under the General tab).

With the caret in any place in a statement where you can type something other than a table name or a column name, and at least one character just
before the caret, activating auto completion displays a list of keywords that starts with the letters you have typed so far. As you continue to type, the list
narrows.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 158 of 445

•
•
•
•

The list of keywords is database specific, selected based on the database type for the connection currently selected in the Database Connection list
above the editor.

With the caret placed where a table or view name may be typed in a supported SQL statement type, the auto completion list shows a list of tables and
views from the currently selected database connection, assuming you are actually connected to the database. The following figure shows the completion
pop up with table names that contain the letter S.

A completion pop-up showing column names is shown when the caret is placed where a column name may be typed.

DbVisualizer provides auto completion for table and columns names for the following DML commands:

SELECT
INSERT
UPDATE
DELETE

Auto completion for DbVisualizer commands is very similar. Activating it after a partial command name lists all matching commands. If you activate it
after a complete command name, you get a list of all valid parameters for the command. After a parameter name, you can select from a list of valid
values.

Working with SQL

DbVisualizer 13.0 Users Guide 159 of 445

•
•

1.
2.
3.
4.
5.
6.
7.
8.

For the @export set command, the parameter list is adapted for the specified output format after you have entered the Format parameter setting, for
instance only showing parameters that are valid for the CSV format.

To display the completion pop-up, use the key binding Ctrl-SPACE (by default). You select an entry in the pop-up menu with a mouse double-click, the
ENTER key, or the TAB key. To cancel the pop-up, press the ESC key.

It is possible to fine-tune how auto completion works in the connection properties.

Enable or disable the use of identifier qualifiers (i.e. qualifying table names with the schema name) in the [Database Type]/Qualifiers category,
Enable or disable the use of delimited identifiers (e.g. quotes around a table name) in the [Database Type]/Delimited Identifiers category.

Sorting, when to show the popup, upper/lower case transformation, etc. can be configured in the Tool Properties dialog, in the SQL Editor/Auto
Completion category under the General tab.

9.2.16 Recording and Playing Edit Macros
If you repeatedly need to run a sequence of edit operation, you can record them as a macro and play it as many times as needed during an editing
session. The editor status bar indicates when a recording is in progress and when a macro is available to play.

As an example, suppose you have some plain text that you need to convert into INSERT statements:

12345 123456
89012 890123
45678 456789

Place the caret at the beginning of the first line and start the macro recording, using the right-click menu or the corresponding key binding, and then type
text and use key bindings to perform the following operations:

Type insert into mytable values('
Insertion Point to Next Word
Type ',
Insertion Point to Next Word
Type '
Insertion Point to Next Word
Type ');
Insertion Point Down

If there are several SQL statements in the editor, make sure to separate them using the statement delimiter character (the default is ";").
In order for the column name completion pop-up to appear, you must first make sure there are table names in the statement.
All table names that have been listed in the completion pop-up are cached by DbVisualizer to make sure subsequent displays of the pop-up is
performed quickly without asking the database. The cache is cleared only when doing a Refresh in the database objects tree or reconnecting
the database connection.
The Database and Schema lists above the editor are used to limit the list of tables in the auto complete pop-up to those in the selected
database and/or schema. To include all tables, select the blank entries in these lists. The default selections for the lists can be set as
connection properties, in the SQL Commander category.

Working with SQL

DbVisualizer 13.0 Users Guide 160 of 445

9. Insertion Point to Beginning of Line

Then stop the recording. You now have a macro for converting a single line to an INSERT statement. To convert the remaining lines, just use Play Macro
for each line. The result will look like this:

insert into mytable values('12345', '123456');
insert into mytable values('89012', '890123');
insert into mytable values('45678', '456789');

9.2.17 Folding Selected Text
If you work with a large script, it can sometimes be helpful to hide parts of it. You can do so using the Code Folding feature.

Select the text you want to hide and then choose Folding Operations->Toggle Fold Selection in the right-click menu. The selected text is then replaced
(visually only) with a folding marker.

Here's an unfolded script with the column expression selected:

And here is the same script with the selection folded:

You can fold more than one part of a script using the same procedure.

To unfold just one part, select the folding marker (be careful to select all of it) and then choose Toggle Fold Selection from the menu again. To unfold all
folded parts, use Expand All Foldings.

The Find operation, by default mapped to the Find key and Ctrl-F key stroke, can not be recorded. You must instead use Find Selection, Find
with Dialog, Find Next and Find Previous. Mouse gestures are also not recorded, only key strokes and menu selections.

Working with SQL

DbVisualizer 13.0 Users Guide 161 of 445

9.2.18 Selecting a Rectangular Area
In some cases, it is handy to be able to select a rectangular area in the middle of a script. Say, for instance, that you need to copy just the first part of a
few lines and paste it at the beginning of some other lines.

To do this in the SQL editor, click the mouse where you want to start the selection and then press the Alt key (by default) while you extend the selection
by dragging the mouse. If you prefer to use the Ctrl key as the modifier, you can change the default in Tool Properties in the SQL Commander category
under the General tab.

9.2.19 Highlighting Matches
Instead of searching for occurrences of a text string and navigating to each occurrence, it is sometimes useful to get all occurrences highlighted. To do
this, select a text string that is at least three characters long and contains at least one letter or digit. You can use the Tool Properties dialog to enable or
disable this feature (in the General / SQL Commander category) or change the colors used (in the General / Appearance / Editor Styles category).

9.2.20 Tab Key Treatment
Pressing the TAB key in the editor inserts eight (8) space characters by default. If you instead want a TAB character to be inserted, or want to insert
another number of space characters, you can specify this in the Tool Properties dialog, in the General / SQL Commander category under the General
tab.

Working with SQL

DbVisualizer 13.0 Users Guide 162 of 445

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•

9.2.21 Key Bindings
The editor shortcuts, or key bindings, can be redefined in the Tool Properties dialog, in the Key Bindings category under the General tab (see Changing
Keyboard Shortcuts). Expand the Editor Commands node to manage all editor actions and the Main Menu/Edit node to manage the key bindings for the
edit operations in the right-click editor menu and the main window Edit menu.

9.3 Morph Selection

Introduction
Basic Examples

Detect Input Delimiter
Detect Numbers
Input Prefix and Suffix
Limit Preview
Missing Input Prefix
Missing Input Suffix
New Line as Input Delimiter
No Delimiters
Output Prefix
Output Prefix and Suffix
Output Prefix and Suffix with Text Quoting
Preserve Output New Line
Quote Output Text Tokens
Repeated Delimiters
Sort Ascending
Sort Descending
Sort Multiline Output
Transform Delimiter
Transform Delimiters on Multi Line Tokens
Trim Input Empty Tokens
Trim Input Empty Tokens with Include Input New Line as Delimiter
Trim Input Whitespace
Trim Input Whitespace and Empty Tokens
Trim Input Whitespace and Empty Tokens with Input New Line as Delimiter
Trim Input Whitespace and Empty Tokens with Input New Line as Delimiter Preserved in Output
Trim Input Whitespace with Prefix and Suffix
Wrap Output Lines
Wrap Output Lines with Continuation Symbol

Use Cases
Morph IN Clause Data to CSV Format
Morph Table Data into CSV Format
Morph Table Data to IN Clause Format

9.3.1 Introduction
The Morph Selection with Dialog in the SQL editor allows you to convert a selection of text into a delimited list with the appropriate options. Simply
select text in the editor and choose Edit->Morph Selection with Dialog (or from the editor right-click menu). This will prompt you for different options
about the Input Format, and the Output Format, with the Output Preview overwriting the input text with the result. This lets you paste text from a Grid,
Excel or some other application into the editor and then convert it into a delimited list suitable for completing a query or other documentation.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 163 of 445

9.3.2 Basic Examples
Some basic examples of how various settings affect the transformations.

Working with SQL

DbVisualizer 13.0 Users Guide 164 of 445

Detect Input Delimiter
Detect the input delimiter by counting occurrences of the default delimiters (the predefined delimiters shown in dropdown).
In this case, comma (,) is the most frequent of the predefined separators (single quote (') is not a predefined delimiter).

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter ON Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

'A','B':'C','D'

Result

'A';'B':'C';'D'

Working with SQL

DbVisualizer 13.0 Users Guide 165 of 445

Detect Numbers
Detect numbers and quote text tokens; recognized numbers (strings that match the specified number format) are not quoted.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers ON Continuation (N/A)

Grouping , preview setting value

Decimal . Preview Token Count OFF

Input

1,000.00:two thousand:3000,00:4000

Result

1000.0;"two thousand";"3000,00";4000

Working with SQL

DbVisualizer 13.0 Users Guide 166 of 445

Input Prefix and Suffix
Trim prefix and suffix in input tokens. Text inside prefix/suffix are treated as one token.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix (Suffix None

Trim Suffix) Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

A:(B:C)

Result

A;B:C

Working with SQL

DbVisualizer 13.0 Users Guide 167 of 445

Limit Preview
If the input is large, it may be useful to limit preview to speed up things while sorting out options.
The limit is applied to number of input tokens as determined by the current settings.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count 2

Input

Token1:Token2:Token3

Result

Token1;Token2

Working with SQL

DbVisualizer 13.0 Users Guide 168 of 445

Missing Input Prefix
Ignore trimming of input prefix and suffix unless both are defined (here we only defined the prefix).

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix ' Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

A:'B:C

Result

A;'B;C

Working with SQL

DbVisualizer 13.0 Users Guide 169 of 445

Missing Input Suffix
Ignore trimming of input prefix and suffix unless both are define (here we only defined the suffix).

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix ' Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

A:'B:C

Result

A;'B;C

Working with SQL

DbVisualizer 13.0 Users Guide 170 of 445

New Line as Input Delimiter
Transform delimiter and quote text spanning multiple lines.
Since we recognize New Line as a delimiter, Token2 and Token3 are interpreted as separate tokens.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line ON Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

Token1:Token2

Token3:Token4

Result

"Token1";"Token2";"Token3";"Token4"

Working with SQL

DbVisualizer 13.0 Users Guide 171 of 445

No Delimiters
No transformation occurs unless both input and output delimiters are defined.

Settings

input setting value output setting value

Delimiter None Delimiter None

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

1,000.00::' one thousand '

Result

1,000.00::' one thousand '

Working with SQL

DbVisualizer 13.0 Users Guide 172 of 445

Output Prefix
We can add a single prefix or suffix to output tokens (we can define one without the other).

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix +

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

A:B:C

Result

+A;+B;+C

Working with SQL

DbVisualizer 13.0 Users Guide 173 of 445

Output Prefix and Suffix
We can add prefix and/or suffix to output tokens.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix [

Trim Prefix None Suffix]

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

1,000.00::' one thousand '

Result

[1,000.00];[];[' one thousand ']

Working with SQL

DbVisualizer 13.0 Users Guide 174 of 445

Output Prefix and Suffix with Text Quoting
We can both quote text and add a prefix and/or suffix to output tokens.
Prefix/suffix are added to all tokens outside the quoting symbols.
Since we detect numbers, the recognized number token is unformatted and not quoted.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix [

Trim Prefix None Suffix]

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers ON Continuation (N/A)

Grouping , preview setting value

Decimal . Preview Token Count OFF

Input

1,000.00:one thousand:1 000,00

Result

[1000.0];["one thousand"];["1 000,00"]

Working with SQL

DbVisualizer 13.0 Users Guide 175 of 445

Preserve Output New Line
Transform delimiter and quote multiline text.
Since we recognize and preserve New Line, we maintain a multiline output with quoted tokens.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line ON Preserve New Line ON

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

Token1:Token2

Token3:Token4

Result

"Token1";"Token2"

"Token3";"Token4"

Working with SQL

DbVisualizer 13.0 Users Guide 176 of 445

Quote Output Text Tokens
Quote text tokens. Since we do not detect numbers, or strip input prefix/suffix, all tokens are quoted and prefix/suffix preserved.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

1,000.00::' one thousand '

Result

"1,000.00";"";"' one thousand '"

Working with SQL

DbVisualizer 13.0 Users Guide 177 of 445

Repeated Delimiters
We use Space (" ") asa delimiter on an input with several repeated spaces and trim single quote (') suffix but do NOT trim whitespace.
Spaces outside the prefix/suffix ar treated as a single delimiter, speces inside the prefix/suffix remain.

Settings

input setting value output setting value

Delimiter Space Delimiter :

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix ' Suffix None

Trim Suffix ' Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

1,000.00 ' one thousand ' 1k

Result

1,000.00: one thousand :1k

Working with SQL

DbVisualizer 13.0 Users Guide 178 of 445

Sort Ascending
Sort tokens in ascending order on a single line.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort ASC

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

A:C:B

Result

A;B;C

Working with SQL

DbVisualizer 13.0 Users Guide 179 of 445

Sort Descending
Sort tokens in descending order on a single line.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort DESC

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

A:C:B

Result

C;B;A

Working with SQL

DbVisualizer 13.0 Users Guide 180 of 445

Sort Multiline Output
This is an unsupported setup: sorting is done on tokens, not lines.
Sorting tokens in a multiline text would be very confusing.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line ON Preserve New Line ON

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort DESC

Trim Empty Tokens OFF Wrap Lines 8

Detect Numbers OFF Continuation \

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

Token1:Token2

Token3:Token4

Result

"Token1"\

;"Token2\

"

"Token3"\

;"Token4\

"

Working with SQL

DbVisualizer 13.0 Users Guide 181 of 445

Transform Delimiter
Basic transformation of delimiters using default settings.
The defined input delimiters are replaced with the defined output delimiters.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

1,000.00::' one thousand '

Result

1,000.00;;' one thousand '

Working with SQL

DbVisualizer 13.0 Users Guide 182 of 445

Transform Delimiters on Multi Line Tokens
Transform delimiters and quote text spanning multiple lines.
Since we ignore New Line, the Token2 and Token3 are interpreted as one token with two embedded New Line.
The resulting output is three tokens on three lines, where the middle token includes two consecutive New Line (producing an empty line).

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

Token1:Token2

Token3:Token4

Result

"Token1";"Token2

Token3";"Token4"

Working with SQL

DbVisualizer 13.0 Users Guide 183 of 445

Trim Input Empty Tokens
Since the input starts with a delimiter, we get an initial empty token that is trimmed.
Since don't trim whitespace or consider New Line as a delimiter, the middle and trailing tokens are not trimmed.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens ON Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

: A : B :

: C : D :

Result

 A ; B ;

; C ; D ;

Working with SQL

DbVisualizer 13.0 Users Guide 184 of 445

Trim Input Empty Tokens with Include Input New Line as Delimiter
Trim empty tokens while treating New Line as a delimiter.
Sine the input starts with a delimiter, we get an initial empty token that is trimmed.
Since New Line is considered a delimiter, we get an empty middle token that is trimmed.
Since the input ends with a delimiter and a New Line, we get a trailing empty token that is trimmed.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line ON Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace OFF Sort None

Trim Empty Tokens ON Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

: A : B :

: C : D :

Result

 A ; B ; C ; D

Working with SQL

DbVisualizer 13.0 Users Guide 185 of 445

Trim Input Whitespace
Trim whitespace outside any prefix/suffix (whitespace inside prefix/suffix is preserved).
Since New Line is considered as whitespace, we get an empty middle token.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace ON Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

: A : B :

: C : D :

Result

;A;B;;C;D;

Working with SQL

DbVisualizer 13.0 Users Guide 186 of 445

Trim Input Whitespace and Empty Tokens
Trim whitespace outside any prefix/suffix (whitespace inside prefix/suffix is preserved).
Since the input starts with a delimiter, we get an initial empty token that is trimmed.
Since New Line is considered as whitespace, we get an empty middle token that is trimmed.
Since the input ends with a delimiter and a New Line, we get a trailing empty token that is trimmed.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace ON Sort None

Trim Empty Tokens ON Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

: A : B :

: C : D :

Result

A;B;C;D

Working with SQL

DbVisualizer 13.0 Users Guide 187 of 445

Trim Input Whitespace and Empty Tokens with Input New Line as Delimiter
Trim whitespace and Empty Tokens while recognizing New Line as an input delimiter.
Since the input starts with a delimiter, we get an initial empty token that is trimmed.
Since New Line is considered as whitespace, we get an empty middle token that is trimmed.
Since the input ends with a delimiter and a New Line, we get a trailing empty token that is trimmed.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line ON Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace ON Sort None

Trim Empty Tokens ON Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

 : A : B

C : D :

Result

A;B;C;D

Working with SQL

DbVisualizer 13.0 Users Guide 188 of 445

Trim Input Whitespace and Empty Tokens with Input New Line as Delimiter Preserved in Output
Trim whitespace and Empty Tokens while recognizing New Line as a delimiter and preserving it in the Output.
Since the input starts with whitespace and a delimiter, we get an initial empty token that is trimmed.
Since New Line is considered as whitespace, we get an empty middle token that is trimmed.
Since the input ends with a delimiter and a New Line that is trimmed, we get a trailing empty token that is trimmed.
Since we preserve New Line in Output, we get the first two tokens (A and B) on the first line and the last two tokens (C and D) on the second line.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line ON Preserve New Line ON

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value None

Trim Whitespace ON Sort None

Trim Empty Tokens ON Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

 : A : B

C : D :

Result

A;B

C;D

Working with SQL

DbVisualizer 13.0 Users Guide 189 of 445

Trim Input Whitespace with Prefix and Suffix
Whitespace is trimmed before trimming prefix/suffix - whitespace inside prefix/suffix is preserved.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix (Suffix None

Trim Suffix) Quote Text Value None

Trim Whitespace ON Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

1,000.00: (1k) : one thousand

Result

1,000.00; 1k ;one thousand

Working with SQL

DbVisualizer 13.0 Users Guide 190 of 445

Wrap Output Lines
Wrap lines at specified length, including any prefix, suffix or quoting symbols.
Wrapping does not observe any tokens or words, it breaks here at specified length.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines 8

Detect Numbers OFF Continuation None

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

Token1:Token2:Token3

Result

"Token1"

;"Token2

";"Token

3"

Working with SQL

DbVisualizer 13.0 Users Guide 191 of 445

Wrap Output Lines with Continuation Symbol
Wrap a multiline output text with a symbol terminating each line that continues on the next line.
Regular line breaks (not resulting from wrapping) are not terminated with the wrapping symbol.

Settings

input setting value output setting value

Delimiter : Delimiter ;

Include New Line ON Preserve New Line ON

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace OFF Sort None

Trim Empty Tokens OFF Wrap Lines 8

Detect Numbers OFF Continuation \

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

Token1:Token2

Token3:Token4

Result

"Token1"\

;"Token2\

"

"Token3"\

;"Token4\

"

Working with SQL

DbVisualizer 13.0 Users Guide 192 of 445

9.3.3 Use Cases
A few "real world" use cases of how to use the Morph function to transform input data into the desired output format.

Morph IN Clause Data to CSV Format
I have an IN clause with text values that I want to use as unquoted data in a CSV file.
I need to trim whitespace and prefix/suffix before transforming the input delimiter to my desired output delimiter.

Settings

input setting value output setting value

Delimiter , Delimiter ;

Include New Line OFF Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix ' Suffix None

Trim Suffix ' Quote Text Value None

Trim Whitespace ON Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

'BETTE', 'CHRISTIAN', 'GRACE', 'JENNIFER', 'JOE', 'JOHNNY', 'KARL', 'MATTHEW', 'UMA', 'ZERO'

Result

BETTE;CHRISTIAN;GRACE;JENNIFER;JOE;JOHNNY;KARL;MATTHEW;UMA;ZERO

Working with SQL

DbVisualizer 13.0 Users Guide 193 of 445

Morph Table Data into CSV Format
I copied a table from a web page into SQL Commander and want to save it as a file that can be used for import.
I want the data in CSV format, lines sorted, text values quoted and any empty lines suppressed.

Input is tab separated, not quoted, in random order and a mix of strings and numbers.
Output is not sorted, separated by semi-colon and all text values are quoted.

Note: it is not possible to sort the output lines. The morph operation is about tokens, not lines.

Settings

input setting value output setting value

Delimiter Space Delimiter ;

Include New Line ON Preserve New Line ON

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value "

Trim Whitespace ON Sort None

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers ON Continuation (N/A)

Grouping , preview setting value

Decimal . Preview Token Count OFF

Input

1 PENELOPE GUINESS

6 BETTE NICHOLSON

3 ED CHASE

7 GRACE MOSTEL

2 NICK WAHLBERG

4 JENNIFER DAVIS

5 JOHNNY LOLLOBRIGIDA

8 MATTHEW JOHANSSON

12 KARL BERRY

9 JOE SWANK

11 ZERO CAGE

10 CHRISTIAN GABLE

13 UMA WOOD

Result

1;"PENELOPE";"GUINESS"

6;"BETTE";"NICHOLSON"

3;"ED";"CHASE"

7;"GRACE";"MOSTEL"

Working with SQL

DbVisualizer 13.0 Users Guide 194 of 445

2;"NICK";"WAHLBERG"

4;"JENNIFER";"DAVIS"

5;"JOHNNY";"LOLLOBRIGIDA"

8;"MATTHEW";"JOHANSSON"

12;"KARL";"BERRY"

9;"JOE";"SWANK"

11;"ZERO";"CAGE"

10;"CHRISTIAN";"GABLE"

13;"UMA";"WOOD"

Working with SQL

DbVisualizer 13.0 Users Guide 195 of 445

Morph Table Data to IN Clause Format
I copied a column from Excel into SQL Commander and want to convert it to a string that I can use as an IN clause in a SQL Query.

I want the data comma separated with a space (,), all values quoted, whitespaces trimmed and any empty lines suppressed.
Since there is no predefined delimiter that includes a space after the comma, I type this delimiter directly in the combo box 1.

Input is tab separated, not quoted, in random order and a mix of strings and numbers.
Output is sorted, separated by semi-colon and all text values are quoted.

1 it is hard to see the trailing space in the settings below

Settings

input setting value output setting value

Delimiter UNIX/Linux/macOS - LF Delimiter ,

Include New Line ON Preserve New Line OFF

Detect Delimiter OFF Prefix None

Trim Prefix None Suffix None

Trim Suffix None Quote Text Value '

Trim Whitespace ON Sort ASC

Trim Empty Tokens OFF Wrap Lines OFF

Detect Numbers OFF Continuation (N/A)

Grouping (N/A) preview setting value

Decimal (N/A) Preview Token Count OFF

Input

JENNIFER

 JOHNNY

BETTE

 GRACE

MATTHEW

 JOE

CHRISTIAN

ZERO

KARL

UMA

Result

'BETTE', 'CHRISTIAN', 'GRACE', 'JENNIFER', 'JOE', 'JOHNNY', 'KARL', 'MATTHEW', 'UMA', 'ZERO'

Working with SQL

DbVisualizer 13.0 Users Guide 196 of 445

•
•
•
•

1.
2.
3.
4.

1.
2.
3.

9.4 Using Editor Templates
Editor Templates can be used to easily insert text that you often use, such as code snippets, current date and time, or anything you like.

Using a Template
Creating a new Template
Editing or Deleting a Template
Changing the Expand Keybinding

9.4.1 Using a Template
A template is an Abbreviation that can easily be replaced by its Expanded Text, and it may optionally have a Description.

To expand a template, just type a few characters that at least partially match one or more template abbreviation and press the TAB key. This displays a
list of matching templates that you can pick from, along with the description or a part of the corresponding expanded text for each.

When you select a template by pressing the TAB or ENTER key, its expanded text replaces the abbreviation you typed in the editor.

You can also enable Instant Substitution to immediately expand the text if you have typed enough of the abbreviation to match a single template when
you press the TAB key:

Open Tools->Tool Properties,
Select the General/SQL Commander/Editor Templates category,
Click the Instant Substitution checkbox in the toolbar,
Click the Apply or OK button to save the updated setting.

Instead of pressing the TAB key to list matching templates, you can use the Show Editor Templates entry in the main Edit menu or the editor right-click
menu.

9.4.2 Creating a new Template
DbVisualizer comes with some default templates, but you can create additional templates:

Open Tools->Tool Properties,
Select the General/SQL Commander/Editor Templates category,
Click the Insert button in the toolbar to add a new template, and enter an Abbreviation, Expanded Text, and optionally a Description,

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 197 of 445

4.

5.

1.
2.
3.
4.
5.

•
•
•
•

Check off the checkbox in the Format column if you want the Expanded Text to be formatted by the SQL Formatter when it is inserted in the
editor,
Click the Apply or OK button to save the new templates.

If you want to use an existing template as a starting point, you can select it and then click the Duplicate button instead of the Insert button. The Edit in
Window button opens the selected cell in a separate window where it is easier to work with larger templates.

9.4.3 Editing or Deleting a Template
You can edit any piece of a template or delete templates you no longer need:

Open Tools->Tool Properties,
Select the General/SQL Commander/Editor Templates category,
To edit, double-click any cell you want to change and edit its value,
To delete a template, select any of its cells and click the Delete button,
Click the Apply or OK button to save the changes.

9.4.4 Changing the Expand Keybinding
The keyboard shortcut used to expand a template, or bring up the list of matching templates if more than one, is the TAB key. You can add other
shortcuts or change the default, as described in Changing Keyboard Shortcuts. The shortcut is named Show Editor Templates and you find it in the Main
Menu/Edit category.

9.5 Executing SQL Statements
In the SQL Commander, you can execute one or multiple statements. You can also control if the execution should stop or continue when the execution of
a statement results in a warning or error.

Execute a Script with Multiple Statements
Execute Only the Current Statement
Execute Buffer
Control Execution after a Warning or an Error

9.5.1 Execute a Script with Multiple Statements
Use the SQL Commander->Execute main menu operation to execute the SQL in the SQL Commander editor. The SQL Commander executes the
statements one by one and indicates the progress in the log area. The currently selected Database Connection is used for all statements. The SQL
Commander does not support executing SQLs for multiple database connections in one batch.

DbVisualizer uses the delimiters specified in the Tool Properties dialog, in the General / SQL Commander / Statement Delimiters category under the
General tab, to separate one statement from the next. Usually semicolon ";" following the actual statement or "go" which should be the only command
on a new line directly after the statement (then with no semicolon after) that should be executed. The "go" command supports setting the number of
times the statement should be executed. For example "go 5" will then execute the statement 5 times.

The result of the execution is displayed in the results area based on the type of results result(s) that are returned. If there are several results and an error
occurred in one of them, the Log tab is automatically displayed to indicate the error.

If you select a statement in the SQL editor and choose SQL Commander->Execute main menu option, only the selected statement is executed. This is a
useful feature when you have several SQL statements in the SQL editor and you just want to execute one or a few of the statements.

Note the option Change Default Values in the SQL Commander->SQL Commander Options. This offers a shortcut to navigate to the Connection
properties section for the options. Setting the options in the Connection properties will result in that these values will be the default for SQL
Commanders opened for this connection.

Always use a special character, such as dot or hashmark, as the first character in the Abbreviation. The default templates use a dot but you
can pick any special character you like. If you use a regular character as the first character, unexpected matches may be found if one
abbreviation starts with the same characters as another abbreviation ends with.

Comments in the SQL editor are sent to the database when you use SQL Commander->Execute, unless you have enabled Strip Comments
when Executing in the SQL Commander->SQL Commander Options menu.

Working with SQL

DbVisualizer 13.0 Users Guide 198 of 445

•
•

•
•

•

9.5.2 Execute Only the Current Statement
The SQL Commander->Execute Current operation is useful when you have a script with several SQL statements. It lets you execute the statement at the
cursor position without first having to select the SQL statement. The default key binding for execute current is Ctrl-PERIOD (Ctrl-.).

9.5.3 Execute Buffer
The SQL Commander->Execute Buffer sends all of the content in the SQL editor to the database in a single run. This is useful when executing complex
SQL statements such as CREATE STORE PROCEDURE (or similar) where statement splitting on semicolon must not be done as with SQL Commander-
>Execute and SQL Commander->Execute Current.

9.5.4 Control Execution after a Warning or an Error
You can control whether subsequent statements should be executed when a statement results in an error, a warning or returns or affects no rows.

Open Tools->Tool Properties and select the SQL Commander category under the General tab. There you find Stop on Error, Stop on SQL Warning and
Stop on No Rows check boxes for enabling these features in all SQL Commander tabs.

Alternatively, you can use DbVisualizer client side commands to enable or disable these features in a script.

@stop on error;
@stop on sqlwarning;
@stop on norows;

@continue on error;
@continue on sqlwarning;
@continue on norows;

9.6 Re-Executing SQL Statements
As you execute SQL statements in the SQL Commander, DbVisualizer saves them as History entries, along with information about the Connection,
Catalog, Schema and the execution result. This makes it easy to locate statements and scripts you have executed in the past.

Using Previous and Next in the SQL Commander
Using the SQL History Window

Reusing a History Entry
Saving a History Entry as a Bookmark or Other File

Using Quick Load

9.6.1 Using Previous and Next in the SQL Commander
If you just want to go back and forth between statements you have executed recently, you can use the Get Previous from History and Get Next from
History toolbar buttons in the SQL Commander.

9.6.2 Using the SQL History Window
To look through all saved statements, you can display the History entries by clicking the SQL History toolbar button in the main window or select the
corresponding operation from the Tools menu.

Execute Current determines the actual statement by parsing the editor buffer using the standard statement delimiters.The current
statement is the statement containing the caret or that ends on the line with the caret. This means that the caret may be after the statement
delimiter as long as there is no other statement on the same line.
If you are unsure what the boundaries are for the current statement then use Edit->Select Current Statement. This will highlight the current
statement without executing it.

Working with SQL

DbVisualizer 13.0 Users Guide 199 of 445

The entries are ordered with the most recently executed entries at the top by default, but you can reorder them by clicking on the column headers. The
complete content of the selected entry is shown below the list, unless you disable it by clicking the Show Details toolbar button.

The columns show when the entry was executed, a part of the script/statement, the size of the complete statement/script, and then the database type
and connection it was executed for, and how long it took to execute. The Success and Errors columns show how many of the statements in a script were
executed successfully or that caused an error. Finally, the Rows column show the number of rows retrieved or affected by the script.

You can use the field at the top right corner in the dialog to search for entries matching a criteria. Clicking on the magnifying glass reveals a configuration
menu where you can, among other things, specify which columns to search in and if you want to search through the complete script rather than just the
part of the script shown in the Script/SQL Statement column.

In the Tool Properties dialog, in the SQL History category under the General tab, you can specify that sequential executions of the same SQL statement/
script should be collected into a single history entry. When this feature is enabled, the Count field number is increased for each execution. In the same
Tool Properties category you can also specify rules for when not to create a history entry.

Reusing a History Entry
When you have found the entry you're looking for, you can open it in an SQL Commander by double-clicking it or clicking the corresponding toolbar
button.

You can also add the content of an entry to the current content of an SQL Editor. Select the entry in the list, drag it with the mouse key depressed to the
position in the editor where you want to add it, and drop it there by releasing the mouse button.

Saving a History Entry as a Bookmark or Other File
If you realise that you need easy access to a History entry in the future, you can save it is as a Bookmark or other file. Just select the entry and use
the Save As operation, or just drag it to the Bookmarks tree and drop it.

You can also locate the file holding the history entry in the file system using the Open Enclosing Directory right-click menu entry or toolbar button. This
opens a file chooser for the directory holding the file.

9.6.3 Using Quick Load
An alternative to locating Bookmarks or Monitors from the Scripts tab and History entries from the History window is to use the Quick Load feature, by
default bound to the Ctrl+Alt+O key combination. It is also available via a main toolbar button as well as in the File->Quick File Open menu.

Working with SQL

DbVisualizer 13.0 Users Guide 200 of 445

•
•
•
•
•

The Quick Load feature locates files with partly matching names from the categories you have selected, as you type. You can use an asterisk ("*") as a
wildcard in the search string.

When you see the file you're looking for, just select it and press Enter to load it into an SQL Commander editor. If the file is already loaded in an editor,
that tab is made visible instead.

The number of matches is shown on the search panel as seen on the figure above. It the number of matches is big and you want to change the size, you
can press Escape and change the number in the Max entries field that is shown. Go then to the Enter search text field and press arrow down. The result
list shown will be limited to your set number for each category.

9.7 Executing Complex Statements

If you need to execute a complex statement that itself contains other statements in the SQL Commander, such as a CREATE PROCEDURE statement, you
may need to help DbVisualizer figure out where the complex statement starts and ends. The reason is that DbVisualizer needs to send statements to the
database for execution one by one.

Using Execute Buffer
Using an SQL Dialect
Using an SQL Block
Using the @delimiter Command
Calling a Function or Procedure

The following explains the options that are available to run complex statements in the SQL Commander:

9.7.1 Using Execute Buffer
The SQL->Execute Buffer operation sends the complete editor buffer for execution as one statement. No comments are removed and no parsing of
individual statements based on any delimiters is made. You can use this feature if the complex statement is the only statement in the SQL Commander
editor.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

To create or edit single procedures, functions, triggers, and similar types of complex objects, we recommend that you use the Create
Procedure function and Procedure Editor to work with these.

Working with SQL

DbVisualizer 13.0 Users Guide 201 of 445

9.7.2 Using an SQL Dialect
DbVisualizer will understand the syntax for complex statements for most of the officially supported databases. Open Tools->Tool Properties->General-
>SQL Commander->Statement Delimiters and check Allow SQL Dialects to enable this feature.

Here is an example of a complex statement for My SQL:

CREATE TRIGGER upd_check BEFORE UPDATE ON account
 FOR EACH ROW
 BEGIN
 IF NEW.amount < 0 THEN
 SET NEW.amount = 0;
 ELSEIF NEW.amount > 100 THEN
 SET NEW.amount = 100;
 END IF;
 END;

Note: Depending on the complexity of the dialect, the overhead of parsing and analyzing all statements before executing them may be significant. If you
notice degraded performance when executing very large scripts we recommend that you disable the dialect feature and use some of the other methods
to handle complex statements.

9.7.3 Using an SQL Block
To tell DbVisualizer that a part of a script should be handled as a single statement, you can insert an SQL block begin identifier just before the block and
an end identifier after the block. The delimiter must be the only text on the line. The default value for the Begin Identifier is --/ and for the End
Identifier it is /.

Here is an example of an SQL block for Oracle:

--/
script to disable foreign keys

declare cursor tabs is select table_name, constraint_name
 from user_constraints where constraint_type = 'R' and owner = user;

begin
 for j in tabs loop
 execute immediate ('alter table '||j.table_name||' disable constraint'||j.constraint_name);
end loop;
end;
/

9.7.4 Using the @delimiter Command
With the @delimiter command you can temporarily change the statement delimiter DbVisualizer uses to separate the statements and send them one by
one to the database. Use it before the complex statement, and after the statement if the script contains additional statements. Here's an example:

@delimiter ++;
CREATE OR REPLACE FUNCTION HELLO (p1 IN VARCHAR2) RETURN VARCHAR2
AS
BEGIN
 RETURN 'Hello ' || p1;
END;
++
@delimiter ;++
@call ${returnValue||(null)||String||noshow dir=out}$ = HELLO('World');
@echo returnValue = ${returnValue}$;

The first @delimiter command sets the delimiter to ++ so that the default ; delimiter can be used within the function body in the CREATE statement. The
++ delimiter is then used to end the CREATE statement, and another @delimiter command sets the delimiter back to ; for the remaining commands in
the script.

Working with SQL

DbVisualizer 13.0 Users Guide 202 of 445

•

•

9.7.5 Calling a Function or Procedure
As a general rule, DbVisualizer takes no part in how you execute the query; the SQL code is simply sent to the server for interpretation and execution. You
should be able to write and execute the SQL code just as you do in any other tool, subject to the server's ability to understand it.

However, the command for executing a function or procedure varies among vendors. For instance, EXECUTE runs a procedure in Microsoft Transact-SQL
and Oracle SQL*Plus, whereas CALL does the same thing in PostgreSQL and MySQL.

@call is the way to do it in DbVisualizer. This is also transparent to the underlying database; you use the same command irrespective of the database you
are connected to (see Executing a Code Object and Using Client-Side Commands for more details).

9.8 Executing an External Script
If you have a very large script to execute, you may not have enough memory available to be allocated for DbVisualizer to load it into an SQL Commander
editor.

To save memory, you can use the @run command. If you try to load a very large file, DbVisualizer suggests using the @run command automatically:

The @run command executes a script file by only loading one statement at a time, minimizing the memory requirements. A related command is the @cd
command for changing the current directory.

@run <file> [<variables>]
Request to execute the file specified as parameter, optionally with a list of variables
@cd <directory>
Change the working directory for the following @run command

Here's an example of a script using these commands:

@run createDB.sql; -- Execute the content in the
 -- createDB.sql file without loading into the SQL editor.
 -- The location of this file is the same as the working
 -- directory for DbVisualizer (when not using an absolut path).
@cd /home/mupp; -- Request to change directory to /home/mupp
@cd myscripts; -- Request to change directory relative to current, i.e. to /home/mupp/myscripts
@run loadBackup.sql; -- Execute the content in the loadBackup.sql
 -- file relative to current directory. This file will now be read from the
 -- /home/mupp/myscripts directory.

You can also include DbVisualizer variables as parameters to the @run command, with values to be used for the corresponding variables in the script:

@run monthlyReport ${month||2021-01-14||Date||noshow}$ ${dept||HR||String||noshow}$

Even though the @run command reads one statement at a time from the file, there are other parts of the execution process that require the whole file to
be read before the statements can be executed: parsing the script for variables, parameter markers, and restricted commands, as well as counting all
statements in order to provide progress information. When you run a script that is large enough (more than 10 MB) for these things to potentially cause
memory problems and slow down the processing, DbVisualizer gives you a chance to turn off this preprocessing and progress reporting so that the
statements instead can be executed directly as the are read from the file, one at a time.

Working with SQL

DbVisualizer 13.0 Users Guide 203 of 445

1.
2.

To ensure that you don't have any problems running scripts this large we strongly recommend that you click Continue w/o Preprocessing, thereby
disabling all variable, parameter and restricted commands processing. Only click Continue Normally if you know for sure that you have enough memory
available and have adjusted your installation so that DbVisualizer can use it. With the preprocessing disabled, you should be able to execute scripts of any
size (we have tested with scripts as large as 4 GB).

Another alternative for execution of large scripts is to use the DbVisualizer command line interface instead of the GUI application. This option is the most
efficient and fastest.

Running without preprocessing is always more efficient, so if your script does not use any variables or parameter markers and you do not use the
Permissions feature, you can disable preprocessing even for scripts smaller than 10 MB by unchecking the SQL Commander Options->Preprocess
Script checkbox in the SQL Commander menu.

9.9 Locating SQL Errors
If errors occur, the corresponding text is underlined with a red wavy line. Hovering the mouse over the error indication shows the corresponding error
message. The right margin contains markers for each error as well, and clicking on a marker scrolls the editor to the corresponding error. Alternatively,
you can click the FAILED link in the Log tab grid to move the caret to the error location.

If you prefer to navigate between errors using the keyboard, you can use the defined key bindings for the Insertion Point to Next Marker and Insertion
Point to Previous Marker actions in the Tool Properties dialog, in the Key Bindings category, in the Editor Commands group. Alternative is to use the
Goto Next Failed and Goto Previous Failed in the right click menu of Log tab grid, and then click the link for the FAILED entries.

9.9.1 Disable Error Markers in the SQL Editor
From DbVisualizer 10.0.5 it is possible to disable error markers in the SQL Commander->SQL Commander Options menus. With Show Error Position
Markers turned on it shows markers only for databases that specifically report positions of errors in a statement. With Show Error Statement
Markers turned on the complete statement is highlighted if it fails during execution, but only if either the Show Error Position Markers is turned off or if
the driver/database doesn't report positions of errors.

If you re looking to minimize the amount of error markers when executing scripts, turn off Show Error Statement Markers and keep the Show Error
Position Markers checked (turned on). DbVisualizer will then report errors reported by the JDBC driver only.

To set default values for these settings visit Tools->Tool Properties and the General / SQL Commander category.

9.10 Analyzing (explain) Query Performance

You can analyze how a query is executed by the database, e.g. whether indexes are used or if the database has to do an expensive full scan. To analyze a
query:

Enter the query in the SQL Commander editor,
Click Execute Explain Plan button in the toolbar,

Error location information is not available for some databases. In that case the complete statement is underlined in the editor.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 204 of 445

3. Look at the result in the results area.

Explain Plan is supported for Azure SQL Database, Db2 LUW, Exasol, Greenplum, H2, JavaDB/Derby, MariaDB, Mimer SQL, MySQL, Netezza, NuoDB,
Oracle, PostgreSQL, Presto, Amazon Redshift, SQLite, Microsoft SQL Server, Trino, Vertica, and Yellowbrick. The available presentations options vary per
database as shown in this table.

Database Graph Format Tree Format Text Format Grid Format Node Cost Coloring (Graph and Tree only)

Azure SQL Database

Db2 LUW

Exasol

Greenplum

H2

JavaDB/Derby

Mimer SQL

MariaDB

MySQL

Netezza

NuoDB

Oracle

PostgreSQL

Presto

Amazon Redshift

SQLite

Microsoft SQL Server

Trino

Vertica

Yellowbrick

Working with SQL

DbVisualizer 13.0 Users Guide 205 of 445

Explain Plan executes your query and records the plan that the database devises to execute it. By examining this plan, you can find out if the database is
picking the right indexes and joining your tables in the most efficient manner. The explain plan feature works much the same as executing SQLs to
present result sets; you may highlight statements, run a script or load from file. The explain plan results can easily be compared by pinning the tabs for
different runs.

DbVisualizer presents the plan either in a tree style format or in a graph, or in a simple text format. The information depends on the database you use. In
the tree view, put the mouse pointer on the column header for a tooltip description what that column represents.

The following screenshot shows the SQL in the editor at top and the resulting explain plan as a tree view. The relative cost is indicated using colored
adornments on each node and you can select a node to see the details (if Show Details is checked).

The Graph View shows the plan as a graph. You can zoom in or out, choose detail levels, export it to an image file or print it using the toolbar buttons.
The relative cost is indicated by node color and you can select a node to see the details (if Show Details is checked).

Working with SQL

DbVisualizer 13.0 Users Guide 206 of 445

The databases use different techniques to manage their explain plan support. You can make database-specific configurations in the Properties tab for a
connection, in the Explain Plan category.

9.11 Auto Commit, Commit and Rollback
With Auto Commit enabled, all changes you make to the database data is automatically committed after the successful execution of an SQL
statement. Auto Commit is enabled for a connection by default. You can change the default in the Options area of the Object View tab for the
connection. Note that this change can only be done when the connection is disconnected.

You can toggle the Auto Commit setting for an open SQL Commander tab using the SQL Commander main menu item of the corresponding button in the
SQL Commander toolbar. The setting is also available both on the right-click menu under the Transaction menu item.

Alternatively, you can use this command in a script to set it:

@set autocommit on/off;

If Auto Commit is disabled, it is very important to manually issue the commit or rollback operations when appropriate. Use the Commit and Rollback
buttons in the SQL Commander toolbar or the corresponding operations in the SQL Commander main menu to commit and rollback transactions.

Alternatively, you can use the following commands in a script executed in the SQL Commander:

@commit;
@rollback;

Not all databases supports transactions and thus always commits executions

Working with SQL

DbVisualizer 13.0 Users Guide 207 of 445

•
•
•
•
•

There is an Auto-Commit: ON/OFF indicator in the editor status bar; the first number shows the number of records updated in the database since the
last commit/rollback, the second shows the number of statements (except SELECTs) executed since last commit/rollback.

9.12 Managing Frequently Used SQL
You may have a set of SQL statements that you use over and over to perform frequent tasks. You probably have them saved in script files that you can
load into an SQL Commander, but DbVisualizer Bookmarks make it even easier to work with them. A Bookmark is a script visible in the Scripts tab in the
navigation area.

Creating, Editing and Organizing Bookmarks
Executing Bookmarks
Adding a Bookmark as a Favorite
Sharing Bookmarks
Using Quick Load

You find your Bookmarks under the Scripts tab in the navigation area to the left in the main DbVisualizer window. The content of a Bookmark is one or
more SQL statements. It may also be associated with a Connection, a Catalog and a Schema, to be used when executing the statements. This information
is displayed, and can be edited, in the lower part of the Scripts tab, along with information about the file that holds the Bookmark. If you don't want to
see these details, you can disable it with the Show Details toggle control in the right-click menu for a node.

Having Auto Commit off for a connection should be handled with great care since transactions may lock parts of the database (this is
database dependent). To minimize the risk of forgetting uncommitted transactions, there is an Ask when Auto Commit is OFF settings in the
connection Properties tab, in the Transactions category, that can be set to warn you when there are changes that hasn't been committed.
You can set it to Always or When Uncommitted Updates. When set to When Uncommitted Updates, you are warned when there is at least
one updated record reported by the database. For database that do not accurately report updated records, you can set it to Always to be
warned if at least one statement (other than SELECT) has been executed since the last commit or rollback.
There is also a Pending Transactions at Disconnect setting in the Tool Properties dialog, in the Transaction category under the General tab.
It specifies what DbVisualizer should do when you disconnect a connection that has pending changes, and you can set it to Commit, Rollback
or Ask.

Working with SQL

DbVisualizer 13.0 Users Guide 208 of 445

9.12.1 Creating, Editing and Organizing Bookmarks
You can create a new Bookmark by selecting the Bookmarks node in the tree and clicking the Create File toolbar button. This adds a new node in the
tree, with the default name selected so that you can replace it with the name you want to use. You can also rename the Bookmark later using
the Rename right-click menu item.

A Bookmark can also be created from the current content in an SQL Editor. Click the Save File As toolbar button to open a file chooser dialog, and click
the Bookmarks button in the file chooser dialog to go to the Bookmarks root directory. Enter a filename for the Bookmark and click Save.

Working with SQL

DbVisualizer 13.0 Users Guide 209 of 445

To put some SQL statements in a new empty Bookmark or to edit the contents of an existing Bookmark, you need to open the Bookmark in an SQL
Commander. Double-click the Bookmark node in the tree or click the corresponding toolbar button to open a new SQL Commander tab for the
Bookmark, or activate the SQL Commander that already holds the Bookmark. When you are done with your edits, use the Save toolbar button in the SQL
Editor to save them.

You can also add the content of a Bookmark to the current content of an SQL Commander editor. Select the Bookmark node, drag it with the mouse key
depressed to the position in the editor where you want to add it, and drop it there by releasing the mouse button.

Folders can be used to organize your Bookmarks. Click the Create Folder toolbar button to create a new folder and give it the name you want. You can
then drag an existing Bookmark node to the folder, and create new Bookmarks and subfolders in the folder by selecting it and clicking the Create
File and Create Folder buttons.

9.12.2 Executing Bookmarks
With a Bookmark opened in an SQL Commander tab, you can of course execute its statements by clicking the Execute toolbar buttons as usual, but you
can also open and execute a Bookmark directly by selecting it in the tree and using the Open in SQL Commander and Execute operations in the right-
click menu.

9.12.3 Adding a Bookmark as a Favorite

If you are using a Bookmark very often, you may find it more convenient to add it to the Favorites area. You can drag and drop a Bookmark from the
Scripts tab to the Favorites area, or via the Add to Favorites right-click menu operation.

9.12.4 Sharing Bookmarks
It's easy to share your Bookmarks with someone else because they are stored as regular files. The files are located in a subfolder of the DbVisualizer user
preferences folder named Bookmarks. The user preferences folder is typically a subfolder named .dbvis in your home folder.

The folders and the Bookmarks within a folder are ordered alphabetically and cannot be changed manually.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 210 of 445

1.

2.

a.

b.

•
•

The main Bookmark content is stored in a file with exactly the same name as the node in the Scripts tab. The additional data associated with the
Bookmark is stored in a file with the same name plus the .met extension.

To share some of your Bookmarks with someone, we recommend that you use DbVisualizer to create a separate Bookmarks subfolder for the shared
Bookmarks.

You can share your Bookmarks in two ways:

use an external tool to create a file archive (e.g. a ZIP file) of the subfolder and send it to your friend or colleague.
He or she can then extract the files into their local Bookmarks folder.
create a Linked Folder that points at a network resource shared by your colleagues.
Notes:

DbVisualizer will try to detect if a file was externally modified, but file locking and access permissions are subject to the server
capabilities and controlled by the system administrator of the server.
In order to create linked folders on Windows, you may have to enable "Developer Mode" in the Control Panel

9.12.5 Using Quick Load
An alternative to locating Bookmarks or Monitors from the Scripts tab and History entries from the History window is to use the Quick Load feature, by
default bound to the Ctrl+Alt+O key combination. It is also available via a main toolbar button as well as in the File->Quick File Open menu.

The Quick Load feature locates files with partly matching names from the categories you have selected, as you type. You can use an asterisk ("*") as a
wildcard in the search string.

When you see the file you're looking for, just select it and press Enter to load it into an SQL Commander editor. If the file is already loaded in an editor,
that tab is made visible instead.

The number of matches is shown on the search panel as seen on the figure above. It the number of matches is big and you want to change the size, you
can press Escape and change the number in the Max entries field that is shown. Go then to the Enter search text field and press arrow down. The result
list shown will be limited to your set number for each category.

9.13 Creating Queries Graphically

The Query Builder provides an easy way to develop database queries. The Query Builder provides a point and click interface and does not require in-
depth knowledge about the SQL syntax.

Creating a Query
Adding tables

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 211 of 445

•
•
•
•
•
•

•
•
•

•
•
•
•

•
•
•

•

Quick Table Add
Joining Tables
Autojoin
Setting Join Properties
Removing Tables and Joins
Specifying Query Details

Custom Expressions
Conditions
Grouping

SQL Preview
Testing the Query
Loading a Query From the Editor
Properties for the Query Builder

Express joins as JOIN clause or WHERE condition
Table and Column Name qualifiers
Delimited Identifiers

Current Limitations

The Query Builder is part of the SQL Commander, alongside the SQL Editor. When you are ready to test a query built with the Query Builder, you just load
it to the SQL Editor for execution.

9.13.1 Creating a Query
To create a query, open the query builder using the SQL Commander->Show Query Builder menu choice or click the vertical Query Builder button in
the SQL Commander. Make sure that the controls in the top section of the Query Builder are set correctly.

This document talks only about Tables even though the Query Builder supports both table and view objects.

Working with SQL

DbVisualizer 13.0 Users Guide 212 of 445

1.
2.
3.
4.
5.
6.

The easiest way to jump between the Query Builder and the SQL Editor is by clicking the vertical control buttons to the right in the SQL Commander.
Clicking these buttons changes the display, but does not copy the query from one display to the other. To copy the current query from the Query Builder
to the SQL Editor, use the toolbar buttons at the top of the Query Builder:

From left to right, the button ...

replaces the content of the SQL Editor with the query SQL and executes it.
replaces the content of the SQL Editor with the query SQL, without executing it.
adds the query last in the SQL Editor.
copies the query to the system clipboard.
opens a dialog that lets you add tables matching a search criteria.
is a drop-down menu for selecting what to show below the diagram area: query details or the SQL preview.

The first three buttons automatically change the display to the SQL Editor.

You can also load a query from the SQL Editor into the Query Builder, as described in detail below.

Adding tables
To add tables using drag and drop, make sure the database objects tree and the table and/or view objects are visible and that the SQL Commander is
showing the Query Builder view. Then select and drag one or more nodes from the tree into the diagram.

When a table is dropped in the diagram area, it is shown as a window with the table name as the window title.

Below the table title is a text field where an optional table alias can be entered. If a table alias is specified, it is used in the Query Builder and the
generated SQL statement to refer to this table.

Under the table alias field is a list of all table columns. Use the check box in front of each name to select whether the column should be included in the
query result set. Columns selected for the query result set also appear in the Columns and Sorting details tabs.

Tables are added using a default layout; you can rearrange and resize them as you see fit.

Quick Table Add
An alternative to dragging and dropping tables into the Query Builder is to use the Quick Table Add dialog.

Working with SQL

DbVisualizer 13.0 Users Guide 213 of 445

It lists tables matching the search criteria as you type it in the search text field. An asterisk ("*") can be used as a wildcard for any characters.

Joining Tables
To join two tables, select the column in the source table window with the mouse, drag it to the target table column, and drop it.

The two columns now represent a join condition, shown in the graph as a link between the columns. If more than one join condition is needed, link
additional columns in the two tables by dragging and dropping the columns in the same way as for the first join condition. The default join type is an
Inner join and the default condition is "equal to" (=), represented as an icon with overlapping circles with the shared area shaded and an equal sign below
them.

Autojoin
Some database schemas declare how tables are related using primary and foreign keys. Other schemas use column names to indicate these
relationships. For instance, in the figure above, the CITY table has a column named COUNTRY_ID, which refers to the column with the same name in the
COUNTRY table. The Query Builder can be configured to use both kinds of rules to automatically join the tables you add to the query builder.

The auto-join feature is disabled by default. You can enable it in the tool properties for the database type (Tools->Tool Properties, under
the Database tab) or for a specific connection (the Properties tab in the Object View tab for the connection). In the Query Builder category, you can
enable the auto-join feature and select whether to use key declarations (FK/PK) or column names to find out how the tables are related.

Working with SQL

DbVisualizer 13.0 Users Guide 214 of 445

•

•

•

•

When you add a new table with auto-join enabled, the Query Builder automatically joins it to the tables already in the builder if table columns match the
selected matching rule.

If columns in the table you add are related to other columns in the same table, the Query Builder creates two windows for the table and joins them based
on the matching rule. In this case, a table alias is also added for one of the windows so that you can tell the two windows for the same table apart.

Setting Join Properties
A Join Properties dialog can be opened by double-clicking the icon or selecting Join Properties from the right-click menu while the mouse pointer is
over the join icon. The Join Properties dialog shows the source and target table columns and the conditional operator.

You can change the join type and the conditional operator in the Join Properties dialog. The join type defines how the records from the tables should be
combined:

Inner
This is the most common join type as it finds the results in the intersection between the tables.
Left
This join type limits the results to those in the left table leaving 0 matching records in the right table as NULL.
Right
This is the same as left join but reversed
Full
A full join combines the results of both left and right joins.

Working with SQL

DbVisualizer 13.0 Users Guide 215 of 445

Here is the sample SQL generated from the previous join definition:

SELECT
 *
FROM
 SAKILA.CITY
INNER JOIN
 SAKILA.COUNTRY
ON
 (
 SAKILA.CITY.COUNTRY_ID = SAKILA.COUNTRY.COUNTRY_ID);

Removing Tables and Joins
A table window is removed by clicking the close icon in the window header. A join is removed by selecting Remove Join in the right-click menu while the
mouse pointer is over the join icon.

If you have multiple join conditions (linked columns) between two tables, you can specify different conditional operators for each join
condition, but the join type is shared between all join conditions; if you change it for one join condition, it is changed for all the other join
conditions linking the two tables. This is not a restriction in the Query Builder but rather how SQL is defined.

Working with SQL

DbVisualizer 13.0 Users Guide 216 of 445

All tables and joins may be removed via Remove All Joins and Remove All Tables.

Specifying Query Details
The Details tabs below the diagram area are used to define the various parts of the query. The tabs basically represent the following parts of the final
SQL:

 SELECT <Columns>
 FROM <Tables>
 WHERE <Conditions>
GROUP BY <Columns>
 HAVING <Grouping>
ORDER BY <Sorting>
(The Tables clause is defined in the diagram, not by a tab).

Use the Columns tab to specify characteristics of the columns that are included in the query. The list is initially empty until a column is checked in a table
window or a column expression is added manually (see below). Columns will appear in the list in the same order as they are checked but may be moved
at any time with the up and down buttons. To include all columns from a table, right-click in the column list in the table window and choose Select All.

Working with SQL

DbVisualizer 13.0 Users Guide 217 of 445

•
•

The previous screenshot shows a total of 5 checked columns in the two tables. These are presented in the columns list by their full column identifier,
qualified by either the table name or the table alias. To remove a column from the list, uncheck the corresponding column in the table window.

The alias field is used to specify an optional alias identifier for the column. The alias is used as the identifier for the column in the final query and also
appears as the column name in the result set produced by the query. Check the documentation for the actual database to see if the alias must be quoted
since the Query Builder does not do this for you.

The Aggregate and Group by fields are used in combination:

The Aggregate field lists the available aggregation functions (AVG, COUNT, MAX, MIN, SUM) that may be used for columns
 The Group By field specifies whether the column should be included in the group for which aggregate columns are summarized

Working with SQL

DbVisualizer 13.0 Users Guide 218 of 445

The Group By field is disabled unless an aggregate function is selected for at least one column, and once you select an aggregate function for one
column, you must set Group By for at least one of the other columns to form a valid query. If you remove the aggregate function for all columns, Group
By is automatically reset for all columns. Group By and Aggregate are also mutually exclusive options for one column, so when you select one of them,
the field for the other is disabled for that column.

Custom Expressions
A custom expression may be added by entering data in the empty row last in the list, e.g., col1 + col2 or TO_CHAR(ts_col, 'DD-MON-YYYY
HH24:MI:SSxFF'). Once entered, press enter to insert a new empty row. You can remove a custom expression by selecting it and clicking
the Remove button.

You can also launch a multi-line text editor for a custom expression, to make it easier to edit a large expression such as a CASE clause. Just double-click
the expression cell, and then click on the editor launch button to the right.

Working with SQL

DbVisualizer 13.0 Users Guide 219 of 445

Conditions
The Conditions tab is used to manage the WHERE clause for the query. A WHERE clause may consist of several conditions connected by AND or OR. The
evaluation order for each condition is defined by indentation in the condition list. Each level in the list will be enclosed by brackets in the final SQL.

Here is an example from the Conditions tab.

Working with SQL

DbVisualizer 13.0 Users Guide 220 of 445

To create a new WHERE condition, press the indexed button in the list. In the menu that is displayed you may choose to create a new condition on the
same level, a compound condition or delete the current condition.

For compound conditions you may choose whether All (AND), Any (OR), None (NOT OR) or Not All (NOT AND) conditions must be met for its sub
conditions. The SQL for the Conditions tab in the figure is:

WHERE
 YEAR("CU"."LAST_UPDATE") > 2019
OR "CU".ACTIVE = TRUE
AND "CU".EMAIL IS NOT NULL;

Next to the input field for each condition, there is a drop down button. When pressed it shows all columns that are available in the tables currently being
in the Query Builder. You can pick columns from the list instead of typing these manually.

Working with SQL

DbVisualizer 13.0 Users Guide 221 of 445

A condition field may also contain a custom expression, and just as for a custom expression in the columns list, you can launch a multi-line editor for the
expression by selecting the field and click the editor launch button.

Grouping
The Grouping tab is used to define the conditions for the HAVING clause that may follow a GROUP BY clause in an SQL query. This tab is only enabled
when at least one of the columns in the Columns tab is marked as a Group By column.

The HAVING clause is similar to the WHERE clause, except that the HAVING clause limits what rows are included in the groups defined by the GROUP BY
clause, after the WHERE clause has been used to limit the total number of rows to process.

You work with conditions in this tab in the same way as in the Conditions tab, with one exception regarding the drop-down button for the fields in a
condition. In the Grouping tab, the drop-down shows all columns listed in the Columns tab, with an aggregate function expression for columns that have
an aggregate function defined. This is because (according to the SQL specification) the conditions in a HAVING clause must only refer to columns that are
being returned by the query.

Finally, the Sorting tab is used to specify how the final result set will be sorted. All columns for the tables in the graph, plus any custom expressions
created for the selection list in the Columns tab, are listed in the Sorting tab.

SQL Preview
Select SQL Preview in the drop-down menu in the toolbar to show a preview of the final SQL. This is a read-only view and cannot be modified.

9.13.2 Testing the Query
To test the query, simply press the appropriate toolbar button in the Query Builder to copy the SQL to the SQL Editor. Then execute the SQL as usual in
the SQL Editor. Or click the Execute button in the Query Builder toolbar to copy and execute the SQL in one step.

Working with SQL

DbVisualizer 13.0 Users Guide 222 of 445

To further refine the SQL press the Query Builder button and make the necessary changes.

9.13.3 Loading a Query From the Editor
If you have an existing SQL query that you want to modify using the Query Builder, you can load it from the SQL Editor into the Query Builder by clicking
the Load in Query Builder button in the SQL Editor toolbar.

It's important to be aware that the Query Builder does not support all features of the SQL SELECT statement, such as comments, UNION, and database-
specific keywords. If you load a query into the Query Builder that contains unsupported constructs or keywords, they are ignored and a dialog pops up
with a warning about this fact. You can then use the SQL Preview tab in the Query Builder to compare the SQL as it is represented in the Query Builder
with the original SQL that you loaded to understand what was ignored.

Working with SQL

DbVisualizer 13.0 Users Guide 223 of 445

•
•

•

•

9.13.4 Properties for the Query Builder
In addition to the Auto Join setting discussed above, there are a few other properties that control how the Query Builder works and the SQL it generates.
You can set these properties for the database type (Tools->Tool Properties, under the Database tab) or for a specific connection (the Properties tab in
the Object View tab for the connection).

Express joins as JOIN clause or WHERE condition
The Generate JOIN Clause in SQL Builder property is available in the [Database Type]->Query Builder category. Joins can be expressed either via the
standardized SQL JOIN clause or a WHERE clause, using database-specific syntax for the Left and Right join types. The database-specific WHERE clause
syntax is somewhat different between the supported databases and the Full outer join type is not supported. The default for this property is to use a JOIN
clause.

A simple inner join expressed as a JOIN clause:

FROM SAKILA.CITY
INNER JOIN SAKILA.COUNTRY
ON (SAKILA.CITY.COUNTRY_ID = SAKILA.COUNTRY.COUNTRY_ID);

Here is the same join expressed as a WHERE condition:

FROM SAKILA.CITY, SAKILA.COUNTRY
WHERE (SAKILA.CITY.COUNTRY_ID = SAKILA.COUNTRY.COUNTRY_ID);

The syntax for expressing Inner and Outer joins in WHERE conditions is different between databases. Oracle, for example, uses the "(+)" sequence to the
left or right of the conditional operator to express left or right joins. SQL Server and Sybase use "*=" or "=*" for the same purpose.

DbVisualizer automatically uses the correct join notation when generating joins as WHERE conditions for databases that support left and right joins using
WHERE conditions. For databases that do not provide syntax for left and right joins, the join type is ignored and the WHERE condition that is generated
produces an inner join result.

Table and Column Name qualifiers
Whether to qualify table names with the schema or database name and whether to qualify column names with the table name are defined in
the [Database Type]->Qualifiers category.

Delimited Identifiers
Identifiers that contain mixed case characters or include special characters need to be delimited. Define this in the [Database Type]->Delimited
Identifiers category.

9.13.5 Current Limitations
These are the current limitations in the Query Builder:

Unions and sub queries are not supported.
Not all join types are supported when joins are expressed as WHERE clause conditions. The Inner join type is supported for all databases, but
the Left and Right types are only supported for databases with proprietary syntax to express these types, e.g., Oracle, SQL Server and Sybase.
The Full type is not supported for any database. If a join type is not supported, the setting in the Join Properties dialog is silently ignored.
When importing an SQL query from the SQL Editor, comments, unsupported keywords and statement clauses are ignored. A dialog tells you
which parts of the query are being ignored when unsupported parts are found in the imported statement.
There is only limited support for the CASE clause, in that everything between CASE and END is treated as uninterpreted text. This means that, as
opposed to plain object references in the select list or conditions, column names and other identifiers within a CASE clause are not affected by
changes to the Query Builder property settings, such as Delimited Identifiers and Qualifiers.

9.14 Formatting SQL

The SQL Commander main menu on the (or right-click in the editor) and its Format SQL sub menu contains operations for formatting SQL statements.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 224 of 445

•
•

•

1.

2.
3.
4.
5.

1.
2.

Format Buffer and Format Current formats the complete editor content or the current SQL (at cursor position) respectively.
Copy Formatted and Paste Formatted are powerful tools for copying SQL statements between programs written in languages like Java, C#,
PHP, VB, etc. and the SQL Editor. Both operations display a dialog where you can adjust some of the formatting options, most importantly
the Target SQL option and the SQL is Between option. Target SQL can be set to a number of common programming language formats.
Unformat Buffer and Unformat Current produces compact statements by removing unnecessary whitespace.

Example:

To copy an SQL statement and paste it as Java code for adding it to a Java StringBuffer:

Select the statement. Example:
SELECT * FROM SAKILA.STAFF)
Choose SQL->Format SQL->Copy Formatted,
Set Target SQL to Java StringBuffer,
Click Format to place the formatted statement on the system clipboard,
Paste it into your Java code. Example:
StringBuffer sql = new StringBuffer();
sql.append("SELECT ");
sql.append(" * ");
sql.append("FROM ");
sql.append(" SAKILA.STAFF");

To copy a statement wrapped in code from a program:

Select the code containing an SQL statement in your program,
Copy it to the system clipboard,

Working with SQL

DbVisualizer 13.0 Users Guide 225 of 445

3.
4.
5.

Choose SQL->Format SQL->Paste Formatted,
Check SQL is Between and enter the character enclosing the SQL statement in the code,
Click Format to extract the SQL statement and paste the formatted SQL in the editor.

9.14.1 Settings
All formatting is done according to the settings defined in the Tool Properties dialog, in the SQL Commander/SQL Formatting category under the
General tab.

There are many things you can configure; use the default example or your own SQL to check the effect of the settings. After making some changes,
press Apply and format again to see the result.

Example:

-- Basic SELECT example, with Sub-SELECT and JOIN
SELECT e.LAST_NAME AS "Last Name", e.FIRST_NAME AS "First Name", d.DEPARTMENT_NAME AS "Department", e.SALARY AS
"Salary", e.SALARY + e.SALARY * e.COMMISSION_PCT, e.COMMISSION_PCT * 100 || '%', ROUND(e.SALARY / (SELECT MAX(SALAR
Y) FROM HR.EMPLOYEES), 2) * 100 AS "Percentage of Max" FROM HR.EMPLOYEES e INNER JOIN HR.DEPARTMENTS d ON
 (e.DEPARTMENT_ID = d.DEPARTMENT_ID) WHERE d.DEPARTMENT_ID IN (10, 20, 90, 210) AND e.SALARY > 3000;
-- CASE example
SELECT FIRST_NAME, LAST_NAME, SALARY, CASE WHEN SALARY > 10000 THEN 'High' WHEN SALARY BETWEEN 5000 AND 999 THEN
'Midlevel' ELSE 'Low' END AS "Income Level", CASE DEPARTMENT_ID WHEN 40 THEN 'Administration' WHEN 20 THEN 'Sales
Related' ELSE 'Other' END AS "Special Departments" FROM EMPLOYEES;
-- JOIN example, with GROUP BY, HAVING and ORDER BY
SELECT COUNT(d.DEPARTMENT_NAME) AS "Departments per Location", c.COUNTRY_NAME, l.STATE_PROVINCE FROM DEPARTMENTS d
INNER JOIN LOCATIONS l ON d.LOCATION_ID = l.LOCATION_ID INNER JOIN COUNTRIES c USING (COUNTRY_ID) GROUP BY
 c.COUNTRY_NAME, l.STATE_PROVINCE HAVING COUNT(d.DEPARTMENT_NAME) > 1 ORDER BY 2, 3, 1;
-- UPDATE example
UPDATE EMPLOYEES SET COMMISSION_PCT = 10 WHERE COMMISSION_PCT = 0 AND SALARY < 5000;
-- INSERT example
INSERT INTO EMPLOYEES (FIRST_NAME, LAST_NAME) VALUES ('Roger', 'Bjarevall');
-- DELETE example
DELETE FROM EMPLOYEES WHERE HIRE_DATE < to_timestamp('1900-01-10', 'RR-MM-DD');
-- CREATE TABLE example
CREATE TABLE DEPARTMENTS (DEPARTMENT_ID NUMBER(4) NOT NULL, DEPARTMENT_NAME VARCHAR2(30) NOT NULL, MANAGER_ID
NUMBER(6), LOCATION_ID NUMBER(4), CONSTRAINT DEPT_ID_PK PRIMARY KEY (DEPARTMENT_ID), CONSTRAINT DEPT_LOC_FK FOREIGN
KEY (LOCATION_ID) REFERENCES "LOCATIONS" ("LOCATION_ID"), CONSTRAINT DEPT_MGR_FK FOREIGN KEY (MANAGER_ID) REFERENCES
 "EMPLOYEES" ("EMPLOYEE_ID"), CONSTRAINT DEPT_NAME_NN CHECK ("DEPARTMENT_NAME" IS NOT NULL));

Formatted with default settings:

-- Basic SELECT example, with Sub-SELECT and JOIN
SELECT
 e.LAST_NAME AS "Last Name",
 e.FIRST_NAME AS "First Name",
 d.DEPARTMENT_NAME AS "Department",
 e.SALARY AS "Salary",
 e.SALARY + e.SALARY * e.COMMISSION_PCT,
 e.COMMISSION_PCT * 100 || '%',
 ROUND(e.SALARY /
 (SELECT
 MAX(SALARY)
 FROM
 HR.EMPLOYEES), 2) * 100 AS "Percentage of Max"
FROM
 HR.EMPLOYEES e
INNER JOIN
 HR.DEPARTMENTS d
ON
 (
 e.DEPARTMENT_ID = d.DEPARTMENT_ID)
WHERE
 d.DEPARTMENT_ID IN (10,
 20,
 90,
 210)

Working with SQL

DbVisualizer 13.0 Users Guide 226 of 445

AND e.SALARY > 3000;

-- CASE example
SELECT
 FIRST_NAME,
 LAST_NAME,
 SALARY,
 CASE
 WHEN SALARY > 10000
 THEN 'High'
 WHEN SALARY BETWEEN 5000 AND 999
 THEN 'Midlevel'
 ELSE 'Low'
 END AS "Income Level",
 CASE DEPARTMENT_ID
 WHEN 40
 THEN 'Administration'
 WHEN 20
 THEN 'Sales Related'
 ELSE 'Other'
 END AS "Special Departments"
FROM
 EMPLOYEES;

-- JOIN example, with GROUP BY, HAVING and ORDER BY
SELECT
 COUNT(d.DEPARTMENT_NAME) AS "Departments per Location",
 c.COUNTRY_NAME,
 l.STATE_PROVINCE
FROM
 DEPARTMENTS d
INNER JOIN
 LOCATIONS l
ON
 d.LOCATION_ID = l.LOCATION_ID
INNER JOIN
 COUNTRIES c
USING
 (COUNTRY_ID)
GROUP BY
 c.COUNTRY_NAME,
 l.STATE_PROVINCE
HAVING
 COUNT(d.DEPARTMENT_NAME) > 1
ORDER BY
 2,
 3,
 1;

-- UPDATE example
UPDATE
 EMPLOYEES
SET
 COMMISSION_PCT = 10
WHERE
 COMMISSION_PCT = 0
AND SALARY < 5000;

-- INSERT example
INSERT INTO
 EMPLOYEES
 (
 FIRST_NAME,
 LAST_NAME
)
 VALUES
 (

Working with SQL

DbVisualizer 13.0 Users Guide 227 of 445

1.
2.

 'Roger',
 'Bjarevall'
);

-- DELETE example
DELETE
FROM
 EMPLOYEES
WHERE
 HIRE_DATE < to_timestamp('1900-01-10', 'RR-MM-DD');

-- CREATE TABLE example
CREATE TABLE
 DEPARTMENTS
 (
 DEPARTMENT_ID NUMBER(4) NOT NULL,
 DEPARTMENT_NAME VARCHAR2(30) NOT NULL,
 MANAGER_ID NUMBER(6),
 LOCATION_ID NUMBER(4),
 CONSTRAINT DEPT_ID_PK PRIMARY KEY (DEPARTMENT_ID),
 CONSTRAINT DEPT_LOC_FK FOREIGN KEY (LOCATION_ID) REFERENCES "LOCATIONS" ("LOCATION_ID"),
 CONSTRAINT DEPT_MGR_FK FOREIGN KEY (MANAGER_ID) REFERENCES "EMPLOYEES" ("EMPLOYEE_ID"),
 CONSTRAINT DEPT_NAME_NN CHECK ("DEPARTMENT_NAME" IS NOT NULL)
);

Unformatted to compact form:

/*-- Basic SELECT example, with Sub-SELECT and JOIN*/ SELECT e.LAST_NAME AS "Last Name", e.FIRST_NAME AS "First
Name", d.DEPARTMENT_NAME AS "Department", e.SALARY AS "Salary", e.SALARY + e.SALARY * e.COMMISSION_PCT,
e.COMMISSION_PCT * 100 || '%', ROUND(e.SALARY / (SELECT MAX(SALARY) FROM HR.EMPLOYEES), 2) * 100 AS "Percentage of
Max" FROM HR.EMPLOYEES e INNER JOIN HR.DEPARTMENTS d ON (e.DEPARTMENT_ID = d.DEPARTMENT_ID) WHERE d.DEPARTMENT_ID
IN (10, 20, 90, 210) AND e.SALARY > 3000;
/*-- CASE example*/ SELECT FIRST_NAME, LAST_NAME, SALARY, CASE WHEN SALARY > 10000 THEN 'High' WHEN SALARY BETWEEN
5000 AND 999 THEN 'Midlevel' ELSE 'Low' END AS "Income Level", CASE DEPARTMENT_ID WHEN 40 THEN 'Administration' WHEN
20 THEN 'Sales Related' ELSE 'Other' END AS "Special Departments" FROM EMPLOYEES;
/*-- JOIN example, with GROUP BY, HAVING and ORDER BY*/ SELECT COUNT(d.DEPARTMENT_NAME) AS "Departments per
Location", c.COUNTRY_NAME, l.STATE_PROVINCE FROM DEPARTMENTS d INNER JOIN LOCATIONS l ON d.LOCATION_ID =
l.LOCATION_ID INNER JOIN COUNTRIES c USING (COUNTRY_ID) GROUP BY c.COUNTRY_NAME, l.STATE_PROVINCE HAVING
COUNT(d.DEPARTMENT_NAME) > 1 ORDER BY 2, 3, 1;
/*-- UPDATE example*/ UPDATE EMPLOYEES SET COMMISSION_PCT = 10 WHERE COMMISSION_PCT = 0 AND SALARY < 5000;
/*-- INSERT example*/ INSERT INTO EMPLOYEES (FIRST_NAME, LAST_NAME) VALUES ('Roger', 'Bjarevall');
/*-- DELETE example*/ DELETE FROM EMPLOYEES WHERE HIRE_DATE < to_timestamp('1900-01-10', 'RR-MM-DD');
/*-- CREATE TABLE example*/ CREATE TABLE DEPARTMENTS (DEPARTMENT_ID NUMBER(4) NOT NULL, DEPARTMENT_NAME
VARCHAR2(30) NOT NULL, MANAGER_ID NUMBER(6), LOCATION_ID NUMBER(4), CONSTRAINT DEPT_ID_PK PRIMARY KEY
(DEPARTMENT_ID), CONSTRAINT DEPT_LOC_FK FOREIGN KEY (LOCATION_ID) REFERENCES "LOCATIONS" ("LOCATION_ID"), CONSTRAINT
DEPT_MGR_FK FOREIGN KEY (MANAGER_ID) REFERENCES "EMPLOYEES" ("EMPLOYEE_ID"), CONSTRAINT DEPT_NAME_NN CHECK
("DEPARTMENT_NAME" IS NOT NULL));

9.15 Using Max Rows and Max Chars for Queries
DbVisualizer limits the number of rows shown in the result set tab to 1000 rows, by default. This is done to conserve memory. If this limit prevents you
from seeing the data of interest, you should first consider:

Using a WHERE clause in the query to only retrieve the rows of interest instead of all rows in the table,
Exporting the table to a file

If you really need to look at more than 1000 rows, you can change the value in the Max Rows field in the SQL Commander toolbar. Use a value of 0 or -1 to
get all rows, or a specific number (e.g. 5000) to set a new limit.

Working with SQL

DbVisualizer 13.0 Users Guide 228 of 445

•

•

•

Character data columns may contain very large values that use up lots of memory. If you are only interested in seeing a few characters, you can set
the Max Chars field in the SQL Commander toolbar to the number of characters you want to see.

A value of 0 or -1 (default) will include all characters in the character data columns.

You can define how to deal with columns that have more characters than the specified maximum in the Tool Properties dialog, in the Grid category under
the General tab. You have two choices: Truncate Values or Truncate Values Visually.

Truncate Values truncates the original value for the grid cell to be less then the setting of Max Chars.

Truncate Values Visually truncates the visible value only and leave the original value intact. This is the preferred setting since it will not harm
the original value. The disadvantage is that more memory is needed when dealing with large text columns.

When the grid data is limited due to either the Max Rows or Max Chars value, you get an indication about this in the rows/columns field in the grid status
bar and in the corresponding limit field.

Along with the highlighted field, a warning pops up close to the field. You can disable this behavior in the Tool Properties dialog, in the Grid category
under the General tab.

9.16 Getting the DDL for an Object
You can use the @dll command in a script to get the DDL for a number of different database object types. The command supports this general syntax:

@ddl <objType>="<objId>" [drop="true | false"] [constrCtrl="<constrCtrl>"]

where <objType> is one of table, indexesfortable, view, procedure, function, package (Oracle only), packagebody (Oracle only), objecttype (
Oracle only), objecttypebody (Oracle only), sequence (Oracle only), synonym (Oracle only), module (Mimer SQL only) or trigger, and <objId> is the
qualified identifier for the object (case sensitive). Here's an example:

@ddl table="SAKILA.STAFF";

If drop is set to true, a DROP statement is included before the CREATE statement.

The constrCtrl parameter only applies to tables. It accepts two values: noconstr means that no constraints should be included in the statement that
can potentially cause creating the table or inserting data into it to fail (FK and CHECK constraints), while onlyconstr means that an ALTER statement
adding the remaining constraints should be generated instead of a CREATE statement.

9.17 Using the Log Tab
The Log reports progress and results when executing in the SQL Commander, Import, Export Schema/Database, Procedure Editor, and when running
Database Object Actions. The appearance of the Log may differ slightly depending on which of these functions is used. The Log was completely
redesigned in 10.0 and now saves unlimited number of log entries to file. Due to memory constraints, the Log grid in the DbVisualizer tool keeps up to 10
000 entries until it starts truncating the oldest entries.

Note that the detail level in a log entry message depends on the driver and database that is being used. Some databases are very good at telling you what
went wrong and why, while others provide less detail.

Preprocessing Script

This affects any subsequent edits and SQL operations that use the value since it's truncated. This setting is only useful to save memory when
viewing very large text columns.

Working with SQL

DbVisualizer 13.0 Users Guide 229 of 445

•
•
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•

Executing
Disabled functionality during execution
Progress information
Auto scroll
Auto Clear log
Log truncation

Auto resize row heights
Navigating to next/previous failed log entry
Highlight statement or error in the SQL editor
Saving all Log entries to text file
Copy Log Entries to clipboard
Copy executed SQLs to the SQL Commander
Filter and search

9.17.1 Preprocessing Script
The preprocessing step is performed just before a script is executed. It locates any variables, parameters, and restricted commands (defined in the
Permissions category in Tools->Tool Properties) in the script. Depending how large the script is, preprocessing may take some time to complete and
DbVisualizer may even advise you to run without preprocessing if the script is too large.

Check Executing an External Script page for more information.

9.17.2 Executing

Disabled functionality during execution
When a script is executed some functions in the Log are disabled:

Quick Search
Sorting
Filtering
Expand row heights (double-click)
Hyperlinks to highlight errors and statements
Save Log to Text File

Progress information
While executing there is progress information in the Log status bar showing overall metrics for the execution. It helps getting a quick overview of number
of failed and successful statements, elapsed time, and number of statements executed per time unit.

The progress bar shows how much of the script has been executed. The progress bar switch to an indeterminate mode when Preprocess Script is
switched off or when running a script using the @run client-side command. The reason is that the Log then doesn't count how many statements to
execute.

Auto scroll
When new log entries are added the Log grid is automatically scrolled to the bottom. This can be turned off in the toolbar or by right-click in the grid, and
select Auto Scroll.

Auto Clear log
Having auto clear checked, the log is cleared when execution is started. Disabling auto clear will keep all entries until number of entries exceeds 10 000
when truncation is triggered.

Log truncation
When the number of entries in the grid exceeds 10 000 the log is truncated by removing the oldest entries. When the log is truncated an icon and
"Truncated" text is displayed in the grid status bar. If having auto clear log disabled, you will still see the STARTED and FINISHED entries for a previous
executions in the grid along with an entry telling how many log entries has been truncated for that execution.

Working with SQL

DbVisualizer 13.0 Users Guide 230 of 445

9.17.3 Auto resize row heights
The Message and SQL/Command columns may include multi-lined content. During execution only a single line of content is displayed in the grid. Once
the execution has completed, and there are any FAILED statements these rows automatically expands to show all of its content. In the right-click menu
under Auto Resize Row Heights, the auto resizing may be configured to also expand SUCCESS entries.

A cell having multi-lined content ends with three dots, "...". To manually expand/collapse a row with more content, double-click the row.

9.17.4 Navigating to next/previous failed log entry
To navigate to next/previous failed statement, use the Goto Next Failed and Goto Previous Failed actions in the right-click menu. An alternative is to
filter out all but FAILED log entries in the grid, see Filter and search section below for more information.

9.17.5 Highlight statement or error in the SQL editor
If there is an editor associated with the log grid, such as the SQL Commander, the Command column for all log entries is represented by a hyperlink.
Clicking the link will navigate to, and highlight the corresponding SQL/command in the SQL editor.

The same applies for any FAILED statements whereas the Status column is then a hyperlink, when clicked it will show the statement that failed.
Depending on if the database reports error positions, clicking the link will set the caret at the position where the error started.

If a single statement produces multiple errors, clicking on the FAILED status link, will then show a menu with all errors. Selecting an error highlights it in
the SQL editor.

For @run commands, clicking the @run link in the Command column shows a menu in which you can select to load the related file in a new SQL
Commander tab.

The matching actions are in the right-click menu, Highlight Statement and Highlight Failed Statement.

9.17.6 Saving all Log entries to text file
All log entries are written to file, even those that has been truncated in the Log grid. The Save Log to Text File right-click menu action saves this log to
text. Note that the log file is cleared between executions if auto clear log is enabled and when manually clearing the log. It is also removed when closing
down the SQL Commander tab.

The internal log file is stored in json format under the $HOME/.dbvis/sqllogs folder with the .dson extension. A log file may be loaded in the Log grid using
Load Log File in the right-click menu.

9.17.7 Copy Log Entries to clipboard
The copy log entries to clipboard actions transforms the selected rows to text format and puts these on the system clipboard. This is useful if you want to
share all or some log entries with others. The difference with the standard Copy Selection is that the latter copies only the selected cells in standard grid
copy format typically separated with tabs.

9.17.8 Copy executed SQLs to the SQL Commander
The SQLs displayed in the log may be copied as a script to an existing or a new SQL Commander. Just select the rows you want to copy and then right-
click and Load Selected Commands into Editor.

9.17.9 Filter and search
The filtering capability is useful to quickly limit what entries are displayed in the grid. A good example is to click the filtering icon in the Status column
header and then de-select all statuses than FAILED (or just double-click FAILED to de-select the others). The result is that only FAILED statements are
displayed in the log grid. That type of filtering can be applied to any on the columns (and in fact in most grids in DbVisualizer). The quick search field can
be used to further refine to do full text search on all entries in the grid.

There is also a (Custom...) option that let you define your own condition to be used in the filter.

Working with SQL

DbVisualizer 13.0 Users Guide 231 of 445

Configure the Log
The Time column in the log shows by default hour:minute:second (HH:mm:ss) but can be configured to show date, milliseconds, and more. Change this
in Tools->Tool Properties and the General / SQL Commander / SQL Log category.

Applying a column filter will not have any effect on the STARTED or any @run log entries as these are grouping (indented) entries in the Log
grid.

Working with SQL

DbVisualizer 13.0 Users Guide 232 of 445

1.
2.

9.18 Writing to the Log Tab
You can use the @echo client side command to write information to the Log tab.

@echo <message>

The message may contain DbVisualizer variables, e.g. one of the predefined variables.

@echo Today is ${dbvis-date}$ and the time is ${dbvis-time}$

Variables can also be used to display values produced by executing a function or stored procedure:

@call ${STATUS||(null)||String||noshow dir=out}$ = "HR"."GET_STATUS"(1002);
@echo STATUS: ${STATUS}$;

9.19 Using the DBMS Output Tab

The DBMS Output tab is only available for Oracle and Db2 LUW databases. It is used to capture messages produced by stored procedures, packages, and
triggers using the DBMS_OUTPUT utility. These messages are typically inserted in the code for debugging purposes. For SQL*Plus users, the
corresponding feature is enabled via the set serveroutput on command. To enable display of DBMS messages in DbVisualizer,

Select the DBMS Output tab
Press the Enable button.

Once DBMS output is enabled, the icon in the tab header is changed. Invoking a stored procedure that produces messages in the SQL Commander results
in content similar to this in the output tab. Each block of output is separated with a timestamp.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 233 of 445

•

•

9.20 Comparing SQL Scripts

You can compare a script in one SQL Commander editor to a scripts in another SQL Commander editor, or to the original file loaded into the editor.

To compare the script to another script, select Compare from the right-click menu in one editor and pick the SQL Commander holding the other
script in Select Object dialog to compare their text content.
To compare the script to the original file, select Compare to Saved from the right-click menu.

9.21 Using Permissions in the SQL Commander

The Permission functionality is a security mechanism, where you can specify that certain database operations must be confirmed. You configure
permissions in the Tool Properties dialog, in the Permissions category of the General tab, per connection mode (Development, Test and Production).

You specify which connection mode to use for a connection in the Properties tab of the Object View tab for the connection. By default a connection
mode is specified to be Development.

For the SQL Commander, you can pick the permission mode type from a drop-down list for each SQL command:

Permission Type Description

Allow This permission type means that you can run the SQL statement without any confirmation

Deny This permission type means that the SQL statement is not executed at all.

Ask This permission type means that when executing an SQL statement, or a script of statements, the
SQL Commander asks you whether the actual SQL command(s) should be executed.

If you never use the DBMS Output tab and want to preserve screen real estate, you can select to not show it in the connection properties, in
the SQL Commander category.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The permission feature is part of DbVisualizer and does not replace the authorization system in the actual database.

Working with SQL

DbVisualizer 13.0 Users Guide 234 of 445

9.22 Sending Comments to the Database with Statements
Comments in an SQL script, identified by the delimiters defined in Tool Properties dialog in the SQL Commander/Comments category under the General
tab, are sent to the database by default. In some cases, you may not want to include the comments with the statement, for instance if your database does
not handle them. You can then enable the stripping of comments using the Strip Comments when Executing toggle item in the SQL Commander
Options menu button in the SQL Commander toolbar or in the SQL Commander->SQL Commander Options main menu.

Working with SQL

DbVisualizer 13.0 Users Guide 235 of 445

9.23 Using Client-Side Commands

9.23.1 Introduction
A client-side command is a DbVisualizer specific command prefixed with the at-sign (@). These commands are used in SQL scripts executed either in the
SQL Commander in the DbVisualizer UI or in the command-line interface, dbviscmd. Client-side commands are used to control the execution of scripts
and run for example export and import functionality without needing to interact with the DbVisualizer UI. The @mail command sends emails with
attachment support, useful when using @export and then to mail the result of a query.

9.23.2 Commands reference
You can use these DbVisualizer client-side commands in your SQL scripts. (These commands are processed by DbVisualizer and never sent to the
database as-is).

Command Description

@cd <directory>
@run <file> [<variables>]

Use these command to execute an external script.

@export Use this command to export the result of a query.

@mail Use this command to send emails and attach files.

@import Import table data from CSV, Excel, and TEXT (fixed width column) files

@open <file_name> Use this command to open the specified file in the associated tool. (Not supported in the
command-line interface, dbviscmd).

@delimiter <new_delimiter> Use this command to temporarily change the statement delimiter for a complex statement.

@call <function_or_proc> Use this command to execute a function or procedure.

@beep Use this command to emit a beep sound, e.g. to indicate a significant point in a script.

@sleep <milliseconds> Use this command to halt processing the specified number of milliseconds.

@echo <text> Use this command to write to the Log tab.

@window iconify
@window restore

Use these commands to lower (iconify) or raise (restore) the DbVisualizer main window.

@desc <table> Use this command to show column information for a table. The table name may be qualified with
a schema and/or database name.

@ddl <params> Use this command to get the DDL for a database object.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 236 of 445

1.

2.
3.

Command Description

@log <file_name> [spool|close] Use this command to write log messages to a named file. Examples

@log /tmp/myLog.txt;
@log /tmp/myLog.txt close;
@log /tmp/allLog.txt spool;

Logs subsequent commands to the file /tmp/myLog.txt. If we are already logging to another
file as the result of a previous @log command that log is closed
Stops logging to the file
Writes all log messages up to this @log command to the named file

@spool log <file_name> This command is no longer supported anymore. Please use the @log command instead.

@stop on error
@stop on sqlwarning
@stop on norows
@continue on error
@continue on sqlwarning
@continue on norows

Use these commands to control what to do when a statement results in a warning or an error.

@set autocommit on
@set autocommit off

Use these commands to control the Auto Commit state.

@set dryrun [off] Offers a way to execute a script or part of a script without actually executing the command fully. As
an example below no actual sleep will be done nor will the Select be executed.

@set dryrun;
@sleep 2000;
select * from Actor;
@set dryrun off;

The command is primarily used to debug scripts and check that script can actually be run. An
exception to this is when used in connection with client-side import commands.

@commit
@rollback

Use these commands to explicitly commit or rollback updates.

@set serveroutput on
@set serveroutput off

Use these commands to enable or disable output to the DBMS Output tab for Oracle databases.

@set maxrows <number>
@set maxchars <number>

Use these commands to adjust the Max Rows and Max Chars limits for specific queries.

@set resultset name <name> Use this command to name any following result set. When the SQL statement is executed, the tab
showing the result set is named using the supplied <name> parameter.

Example:

@set resultset name MyActors;
select * from ACTOR;

DbVisualizer will for the example above show the result of the select in a tab named MyActors

9.23.3 @export - Export query result

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 237 of 445

1.
2.
3.
4.

Instead of viewing and exporting query results from Result Set grids, you can export the result of one or more queries to a file from a script. For very large
results, this may be the preferred choice due to memory constraints.

To export a query result, create a script with

an @export on command,
an @export set command,
one or more queries,
an @export off command.

Here is a basic example:

@export on;
@export set filename="c:\Backups\Orders.csv";
select * from Orders;
@export off;

The @export set command takes a parameter name followed by an equal sign and a value. You can use the following parameters, where only filename is
required and all names are case-insensitive:

Parameter Default Valid Values

AppendFile false true, false, clear (i.e. start with a new file for the first result and
then append to it)

Note that when exporting to Excel and appending to an existing
excel file any manually added formatting in the old sheets will be
lost.

BinaryFileDir Path for data files when BinaryFormat is set to File, see Exporting
a Table for details. Note! Variables for column names must
include the scope option when entered manually into a script, e.g.
/Users/hans/exp/${dbvis-date}$/${COUNTRIES||||||
scope=post}$

BinaryFormat Don't Export Don't Export, Size, Value, Hex, Base64, File

BooleanFalseFormat false false, no, 0, off (you can specify custom entries separated by
comma)

BooleanTrueFormat true true, yes, 1, on (you can specify custom entries separated by
comma)

CLOBFileDir Path for data files when CLOBFormat is set to File, see Exporting
a Table for details. Note! Variables for column names must
include the scope option when entered manually into a script, e.g.
/Users/hans/exp/${dbvis-date}$/${COUNTRIES||||||
scope=post}$

CLOBFormat Don't Export Don't Export, Size, Value, File

CsvColumnDelimiter \t (TAB) The delimiter between columns in a CSV output. In addition to
literals it can also be specified using Unicode Code Points
as \u2656.

CsvIncludeColumnHeader true true, false

CsvIncludeColumnHeaderPerResult false true, false

CsvColumnHeaderIsColumnAlias true true, false

CsvIncludeSQLCommand Don't Include Don't Include, Top, Bottom

Working with SQL

DbVisualizer 13.0 Users Guide 238 of 445

•
•

Parameter Default Valid Values

CsvSplitFileSize -1 Split the result over multiple files if it is larger than the specified
size, or -1 to never split. The size must be specified as size [g | G |
m | M | k | K]

CsvRemoveNewlines false true, false

CsvRowCommentIdentifier

CsvRowDelimiter \n \n (UNIX/Linux/macOS), \r\n (Windows) (you may set this to any
literal)

DateFormat yyyy-MM-dd See valid formats in Changing the Data Display Format document

DecimalNumberFormat Unformatted See valid formats in Changing the Data Display Format document

DecimalNumberSeparator . The Decimal separator character to use

Destination File File, Clipboard, SQL Commander

Encoding UTF-8 Check supported encodings for all encodings. (Use the encoding
in the Canonical Name for java.nio API column).

ExcelAutoResizeColumns false true, false

ExcelColumnHeaderIsColumnAlias true true, false

ExcelFileFormat If ExcelFileFormat is not specified, the file extension is used to set
this parameter to one of the below

xls is for binary (or legacy) Excel max 65 535 rows
xlsx is the current and recommended OOXML format

ExcelIncludeColumnHeader true true, false

ExcelIncludeSQLCommand false true, false

ExcelIntroText Any description

ExcelSheetName Used when exporting to excel. Sets the name of exported excel
sheet.

ExcelTextOnly false true, false. Convert numeric values to text in the Excel file if true.

ExcelTextDateTime true true, false. Convert date, time and timestamp data to text in the
Excel file if true.

ExcelTitle Any title

Filename The output file name for exported file. This parameter is required
if Destination="file". If setting a relative filename the output path
depends on the current working folder set by any @cd command.

Format Based on file extension, or CSV if
none

CSV, HTML, XML, SQL, Excel, JSON. If Format is not specified, the
file extension is used to determine the format. If there is no
recognized file extension, CSV is used as the default.

HtmlColumnHeaderIsColumnAlias true true, false

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

Working with SQL

DbVisualizer 13.0 Users Guide 239 of 445

Parameter Default Valid Values

HtmlConvertChars true true, false. Set to false if you have HTML code in the exported
data, so that e.g. < and > characters are not converted to <
and >

HtmlFooter [Generated by: DbVisualizer version] Any text to use in the document footer. Can be set to blank to
remove the footer.

HtmlIncludeSQLCommand false true, false

HtmlIntroText Any description

HtmlPerTableHeader E.g.

Date: 2017-05-31
16:48:23

Columns: 4

Table: COUNTRIES

HTML code that describes the table. To fit into the rest of the
HTML code, it must start with <tr> and end with </tr>. The pre-
defined DbVisualizer variables can be used, e.g. ${dbvis-
object}$ to include the table name.

HtmlTitle Any title

JSONColumnHeaderIsColumnAlias true true, false

JsonSplitFileSize -1 Split the result over multiple files if it is larger than the specified
size, or -1 to never split. The size must be specified as size [g | G |
m | M | k | K]

JSONStyle Array Array, Rows

NumberFormat Unformatted See valid formats in Changing the Data Display Format document

NumberGroupingSeparator , The number grouping separator to use. Example using
NumberFormat=“#,###” and NumberGroupingSeparator="."
the formatting of 2000 will produce the result 2.000.
If using NumberGroupingSeparator="space" the result will be
2 000.

QuoteAllValues false true, false

QuoteDuplicateEmbedded true true, false (quote char is the same as QuoteTextData)

QuoteTextData None None, Single, Double

Settings The path to an XML file containing all settings

ShowNullAs (null)

SqlAfterExportStmts Any statements to include in the script after the SQL statements
for the exported objects, e.g. set foreign_key_checks = 1;

SqlBeforeExportStmts Any statements to include in the script before the SQL statements
for the exported objects, e.g. set foreign_key_checks = 0;

SqlBeginIdentifier Character to use to begin a quoted identifier. Note! To specify a
double-quote, you must duplicate it since double-quote is also
used to enclose the parameter value.

Working with SQL

DbVisualizer 13.0 Users Guide 240 of 445

Parameter Default Valid Values

SqlBlockBeginDelim String to use to begin an SQL block when exporting complex DDL
statements using the @ddl command.

SqlBlockEndDelim String to use to end an SQL block

SqlDelimitedIdentifiers true true, false

SqlEndIdentifier Character to use to end a quoted identifier. Note! To specify a
double-quote, you must duplicate it since double-quote is also
used to enclose the parameter value.

SqlGroupBy Object Object, Statement. Set to Object to generate DROP, CREATE,
INSERT, and ALTER statements (where applicable) for each
exported object in turn. Set to Statement to group all statements
of the same type together, e.g. first DROP statements for all
exported objects, then CREATE statements for all exported
objects, etc.

SqlIncludeAutoGeneratedValues true true, false. Set to false to exclude columns declared as
AUTO_INCREMENT or IDENTITY in the INSERT statements.

SqlIncludeCreateDDL false true, false

SqlIncludeSQLCommand Don't Include Don't Include, Top, Bottom

SqlMultiRowInsert false true, false. If true Multiple rows are included in each INSERT
statement. The number of rows to include in each INSERT
statement is limited by the SqlMultiRowInsertLimit parameter.

SqlMultiRowInsertLimit 10 The maximum number of rows to include in a multirow INSERT.

SqlQualifier Qualifier to use when qualifying table names. If not set,
DbVisualizer tries to determine the schema and use it as the
qualifier.

SqlQualifyColumnName false true, false

SqlQualifyObjectName true true, false

SqlRowCommentIdentifier --

SqlSeparator ; Statement separator character.

SqlSplitFileSize -1 Split the result over multiple files if it is larger than the specified
size, or -1 to never split. The size must be specified as size [g | G |
m | M | k | K]

TableName Can be set if DbVisualizer cannot determine the value for the $
{dbvis-object}$ variable

TimeFormat HH:mm:ss See valid formats in Changing the Data Display Format document

TimeStampFormat yyyy-MM-dd HH:mm:ss.SSSSSS See valid formats in Changing the Data Display Format document

XmlColumnHeaderIsColumnAlias true true, false

XmlIncludeSQLCommand false true, false

Working with SQL

DbVisualizer 13.0 Users Guide 241 of 445

•

•

•

Parameter Default Valid Values

XmlIntroText Any description

XmlStyle DbVisualizer DbVisualizer, XmlDataSet, FlatXmlDataSet

Here are a few examples using some of these settings.

Automatic table name to file mapping
This example shows how to make the filename the same as the table name in the select statement. The example also shows several select statements.
Each will be exported in the SQL format. Since the filename is defined to be automatically set, this means that there will be one file per result set and
each file is named by the name of its table.

@export on;
@export set filename="c:\Backups\${dbvis-object}$" format="sql";
select * from Orders;
select * from Products;
select * from Transactions;
@export off;

Multiple results to a single file
This example shows how all result sets can be exported to a single file. The AppendFile parameter supports the following values.

true
 The following result sets will all be exported to a single file
false
 Turn off the append processing
clear
 Same as the true value but this will in addition clear the file before the first result set is exported

@export on;
@export set filename="c:\Backups\alltables.sql" appendfile="clear" format="sql";
select * from Orders;
select * from Products;
select * from Transactions;
@export off;

Using predefined settings
If you save settings when exporting a table or a schema, you can use the Settings parameter to reference the settings file.

@export on;
@export set settings="c:\tmp\htmlsettings.xml" filename="c:\Backups\${dbvis-object}$";
select * from Orders;
select * from Products;
select * from Transactions;
@export off;

Limit the number of exported rows
You can use the @set maxrows command in combination with the @export command to override the Max Rows field value in the SQL Commander tab
toolbar.

@set maxrows 10;
@export on;

There must be only one table name in a select statement in order to automatically set the filename with the ${dbvis-object}$ variable, i.e if
the select joins from several tables or pseudo tables are used, you must explicitly name the file.
The ${dbvis-object}$ variable is not substituted with a table name if using the AppendFile="true/clear" parameter.

Working with SQL

DbVisualizer 13.0 Users Guide 242 of 445

•
•

•
•
•
•
•
•

•
•
•

•

@export set filename="c:\Backups\alltables.sql" format="sql";
select * from Orders;
select * from Products;
select * from Transactions;
@export off;

If Max Rows is set to a positive number, you can use the @set maxrows command to set it to -1 to export all rows.

Don't Export

Other Ways to Export Table Data
Export all or selected tables with the Export Schema or Export Table assistant
Export query results by exporting the grid with the query results

9.23.4 @mail - Send emails and attach files

Mail with DbVisualizer
FileSource parameter - attaching files
Body parameter
Defining Mail Server Accounts
MailTemplate parameter
Usage Examples

Sending mail with inline attachment
Exporting to CSV Including csv in Mail body
All parameters on command line

Expanding variables in the Body

Mail with DbVisualizer
The @mail client side command is used to send emails from scripts executed in the SQL Commander and the command-line interface, dbviscmd. It
offers full email setup including attaching multiple files and embedding data from files in the body of the email. There is also the capability to group
settings for a mail server setup in a Mail Server Account enabling a simple reference for a mail server definition in the @mail command rather than a lot
of parameters.

Here is a basic example with mail server parameters:

@mail
To="<recipient>"
Subject="<subject>"
Body="<body>"
MailServerHost="smtp.gmail.com"
MailServerPort="587"
MailServerUser="<user>"
MailServerPassword="<password>";

The following are the supported parameters for the @mail command:

Parameter Default Values

Subject The subject

To Defining the recipients of the mail. Multiple email addresses may be
specified separated with comma:

E.g.: John <john.doe@nowhere.com>, jane.doe@nowhere.com

Cc Defining Cc recipients of the mail

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

http://nowhere.com
mailto:jane.doe@nowhere.com

Working with SQL

DbVisualizer 13.0 Users Guide 243 of 445

•
•

•

•
•
•

Bcc Defining Bcc recipients of the mail

From Same as MailServerUser This is by default the same address specified in MailServerUser. The mail
server may reject sending from another email address depending how it
is configured

ReplyTo Same as From (if specified) or
MailServerUser

An address to which replies should be sent

Body The mail message body.

Read more in Body parameter

FileSource File attachment parameter

Should specify the path to the file being attached. The path can be
absolute or relative to the working directory:

E.g: FileSource="/tmp/file.txt"

Read more in FileSource parameter

FileSource_AttachType Attach Specifies how files are attached. Possible values:

Attach: Add the file as an attachment
Inline: Add the file as inline. Note that it is not supported to specify
inline attachments and message body in the same email.
Embed. Since inline attachment and body text can not be specified
at the same time DbVisualizer adds support to include text file
content from multiple files in the message body. By setting the
AttachType to Embed DbVisualizer will not also attach the file.
More about this in the section about specifying message content
(Body)

FileSource_ContentType Optional, determined by the type of file attached.

MailHeaders For adding mail headers to the mail.

E.g: MailHeaders="X-Priority=""1"""

The above mail header will result in a mail marked as important. For
information about this and other headers please use online resources as
the interpretation of mail headers may differ between different mail
clients

MailTemplate Offers the possibility to use a file as a template for the mail.

Read more in MailTemplate parameter

The following parameters are used to setup the mail server connection

MailServerHost The host name or IP address of the outgoing mail server

MailServerPort The port number of the outgoing mail server

MailServerUser The user account for the outgoing mail server

MailServerPassword The user account password for the outgoing mail server. Note that the
password is in plain text. The solution is to setup a mail server account

MailServerSecurity None For connecting to the mail server securely. Possible values are:

None (secure connection not enabled)
STARTTLS
SSL

Working with SQL

DbVisualizer 13.0 Users Guide 244 of 445

•
•
•
•

MailServerProperties Comma separated list of properties sent to the mail server.

Eg.: MailServerProperties="mail.smtp.starttls.enable=""true""
mail.smtp.auth=""true"""

Note the double-quotes of the values. I.e =""true"" is correct. Using
="true" would render an error

MailServerAccount Refers to the name of a mail server account defined in Tools->Tool
Properties->Mail Server Account. By defining a mail server account,
MailServerAccount is the only parameter you will need when
using @mail. Read more in Defining Mail Server Accounts

FileSource parameter - attaching files
The FileSource parameter should identify the path to an absolute or relative file that will be attached to the email. Files may be attached as a regular
attachment, inline (for content and mail clients supporting it), and embedded as plain text (useful for text data).

Example of basic use resulting in the files being attached:

FileSource="C:\Data\file1.csv" FileSource_AttachType="Embed"
FileSource1="C:\Data\file2.xlsx"
FileSource2="C:\Data\file3.html" FileSource2_AttachType="Attach";

Restrictions with AttachType:

If using AttachType="Inline" there must only be a single file attached. If multiple files, these will be attached
Having Body specified and AttachType="Inline" is not allowed. The file will then be attached
AttachType="Inline, Embed" is not valid. File will then be embedded.
A text file may both be attached and embedded in the body of the email, use AttachType="Attach, Embed"

One more FileSource related parameter is the FileSource_ContentType. Use this to specify a MIME content type representing the file being
attached.

For embedded files, check the next chapter for information how to specify where in the body content it should be inserted.

Body parameter
The Body parameter specifies the plain text content of the mail. With variables (place holders) any files with AttachType="Embed" can be specified
which when the email is sent is replaced with the file content. In addition there are a collection of variables that can be included in the body related to
the script execution. Read more about these in Expanding variables in the Body.

Example:

FileSource="C:\Temp\sales.csv"
FileSource_AttachType="Embed"
Body="Dear Mgmt,

Please find the requested product information:

{{FileSource}}

/Staff"

Sample output:

Dear Mgmt,

Please find the requested product information:

id brand length width hp weight
1 Audi A4 48 76 28 44
2 Audi A6 96 6 51 86

/Staff

Working with SQL

DbVisualizer 13.0 Users Guide 245 of 445

Defining Mail Server Accounts
Sending an email in DbVisualizer requires mail server related information that includes userid, password, server name, port, etc. These parameters are
prefixed "MailServer" for the @mail command. Instead of specifying these as parameters a Mail Server Account can be defined in Tools->Tool
Properties and under the Mail Server Accounts category.

Working with SQL

DbVisualizer 13.0 Users Guide 246 of 445

Working with SQL

DbVisualizer 13.0 Users Guide 247 of 445

Use the left most button Add new ... to add a new account. Note choosing one of the top ones from the menu will create a new account from a named
template. The template contains predefined values for well known mail servers. E.g the one named Gmail defines a temple for accessing an existing
gmail account. Unless google changes connection data for gmail the only change that would be required is changing the User Name and Password.

The data entered for Mail Server Account are

Name The name of the account. Example: "My Gmail"

Corresponds to the MailServerAccount parameter for the @mail command.

Description Optional short description of the mail server account

Host Name The name or IP adress of the mail server. Example: smtp.gmail.com

Corresponds to the MailServerHost parameter for the @mail command.

Port The port number of the mail server. Example: 587

Corresponds to the MailServerPort parameter for the @mail command.

User Name The mail account user name. Example: someuser@gmail.com

Corresponds to the MailServerUser parameter for the @mail command.

Password The mail account password. Example: "password for someuser@gmail.com"

Corresponds to the MailServerPassword parameter for the @mail command.

Connection Security For connecting to the mail server securely.

Example: STARTTLS

Corresponds to the MailServerSecurity parameter for the @mail command.

Testing a Mail Server Account

By selecting an account in the list and pressing the mail icon in the toolbar it is possible to send a test mail.

Generating client side commands @mail

Select an account in the list and press the copy icon in the toolbar. Two menu alternatives exist:

"Copy to clipboard as @mail command with all parameters" generates a @mail command with all mail server parameters as defined for the mail
server account.

"Copy to clipboard as @mail command with MailAccountServer parameter" generates a @mail command with only the MailAccountServer
parameter.

MailTemplate parameter
The MailTemplate parameter is used to specify a template file for the final email and some of the settings such as To, Subject, Body, etc.

Note:

The Body parameter must be defined as the last parameter in the template. Please see the section about Specifying Mail Content for a description of how
to specify the Body.

Any parameters defined for the @mail command line will override the ones in the template. Example:

@mail MailTemplate="template.txt"
Subject="A better subject"
MailServerAccount="gmail";

And the template.txt file:

To: jane.doe@somewhere.com
Subject: Hey take care of this!
Body: The report
of the last ...

The mail will be sent to "jane.doe@somewhere.com" and the subject of the mail will be "Hey take care of this!".

http://smtp.gmail.com
mailto:someuser@gmail.com
mailto:someuser@gmail.com

Working with SQL

DbVisualizer 13.0 Users Guide 248 of 445

Usage Examples

Sending mail with inline attachment
The following script exports an HTML file, sends an email with that file attached as inline (most email clients will render the HTML in the body of the
email). Note that Body parameter is not defined.

@export on;
@export set filename="g_actors.html" Format="HTML";
SELECT * FROM ACTOR WHERE last_name LIKE 'G%';
@export off;

@mail Subject="The actors" To="first.last@somewhere.com" MailServerAccount="gmail"
FileSource="g_actors.html" FileSource_AttachType="Inline";

Exporting to CSV Including csv in Mail body
Please see Export and Mail example.

All parameters on command line

@mail To="someone@somewhere.com"
Subject="The subject"
Body="The body"
MailServerHost="smtp.gmail.com"
MailServerPort="587"
MailServerUser="first.last@gmail.com"
MailServerPassword="password"
MailServerSecurity="STARTTLS";

Expanding variables in the Body
The body of the mail can contain references to place holders with values supplied by DbVisualizer during execution of the script in which @mail is
executed. The values are inserted using the syntax: {{place holder}}

Example:

@mail Body="Hi, Number of records exported where {{dbvis-current.rowCount}}"

The above example shows how we are referring the property dbvis-current.rowCount. dbvis-current refers to the current total result.

Following is a list of accessible variables.

Variable/property Description

dbvis-last properties. Properties referring the result of the command executed just before the @mail command

{{dbvis-last.statusCode}} The result status code

{{dbvis-last.isError}} "true" if the last command failed

{{dbvis-last.executionMetrics.elapsed}} The execution time

{{dbvis-last.executionMetrics.begin}} Execution start time

dbvis-current properties. These refers the script execution up to but not including the @mail command in which they are used

{{dbvis-current.executionCount}} Number of statements/commands executed

{{dbvis-current.schemaChanged}} "true" if the schema has changed

Working with SQL

DbVisualizer 13.0 Users Guide 249 of 445

Variable/property Description

{{dbvis-current.catalogChanged}} "true" if the catalog has changed

{{dbvis-current.updateCount}} The number of updated records

{{dbvis-current.numberOfResultSetsFetched}} The number of result sets fetched

{{dbvis-current.rowCount}} The number of records returned

{{dbvis-current.emptyResultSetsCount}} The number of empty result sets fetched

{{dbvis-current.successCount}} The number of statements/commands successfully executed

{{dbvis-current.errorCount}} The number of statements/commands failed

{{dbvis-current.warningCount}} The number of statements/commands with result warning

{{dbvis-current.stoppedOnErrors}} "true" if the execution of the script was stopped on errors

{{dbvis-current.stoppedOnSQLWarning}} "true" if the execution of the script was stopped because of SQL Warnings

{{dbvis-current.stoppedOnNoRows}} "true" if the execution of the script was stopped because of result returned no rows

{{dbvis-current.executorWasInterrupted}} "true" if the execution of the script was stopped due to user interrupt

File attachment related variables

{{FileSource}} Replaced in runtime with the content of the file FileSource is referring to

The use of variables is illustrated in the following example.

Export and mail Example

@log "logfile.txt";1
 2
@export on;3
@export set filename="g_actors.csv" Format="CSV";4
SELECT * FROM ACTOR WHERE last_name LIKE 'G%';5
@export off;6
 7
@export on;8
@export set filename="f_contry.csv" Format="CSV" CsvIncludeColumnHeader="false";9
SELECT country FROM COUNTRY WHERE country LIKE 'F%';10
@export off;11
 12
@mail Subject="Last report" To="first.last@somewhere.com" MailServerAccount="gmail" 13
Body="Hi, 14
The total export took: {{dbvis-current.commandElapsedExecTime}} sec and {{dbvis-current.rowCount}}
records where exported.

15

 16
Actors with a last name starting with 'G':17
{{FileSource}} 18
 19
Countries starting with 'F':20
{{FileSource1}}21
 22
The log file is attached.23
"24
FileSource="g_actors.csv" FileSource_AttachType="Embed"25
FileSource1="f_contry.csv" FileSource1_AttachType="Embed"26
FileSource2="logfile.txt";27

Working with SQL

DbVisualizer 13.0 Users Guide 250 of 445

•
•

•
•
•
•
•

•
•
•
•

•
•
•
•

•

•

•

•

•

9.23.5 @import - Importing data

Importing data - Example
The @import commands

@import on
@import set
@import parse
@import target
@import execute

Examples
Selecting data to import and mapping columns
Overriding analysed type information
Importing fixed column width input data (TxtColumns parameter)

The TxtColumns parameter
Importing Excel data
Continuing an export that has failed
Testing an import - Dry Run

Instead of using the GUI to import data you can use client-side commands to import data, i.e @import. This enables you to use the DbVisualizer
command-line interface to automate your imports and utilise other client-side commands such as @export, @mail, among others. Import data using the
@import command supports the following formats:

Excel
xlsx or the legacy xls format
XML
The same XML formats that can be exported with DbVisualizer
JSON
The same JSON formats that can be exported with DbVisualizer
CSV
Importing CSV files supports a lot of configurations such as multi-symbol column separator, multi-line values, etc.
TXT
Importing fixed width text files

These are client-side commands for @import are:

@import on The command starts an import session

@import set Set parameters for the import

@import parse Parse and convert the source data to an intermediary format, and analyze the data.

@import target Identify the target table and what target columns should be used

@import execute Runs the export

The import process is explained by the following figure.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Working with SQL

DbVisualizer 13.0 Users Guide 251 of 445

The @import parse step (1) lays the foundation for the database import as it based on the source file format (csv, json, xlsx, etc), parses the data to an
intermediary and internal file. This file is then analyzed in order to detect widths, data types and their sizes based on the data, row and cell references
back to the source file, and a lot more.

The intermediary format stores the input data as Records associated with information from where the data originates.

Once the data has been parsed some basic tests are performed to see if the properties of the data is compatible with the target table properties. E.g. if
the size of the input data will fit the targeted table columns. This done when when the @import target command is run (2).

Final step of an import is to execute (3-4) the actual operations towards the database to import the data. I.e. execute the INSERT statements.
Any failures in the import will include specification of where in the source file the invalid data originates.

Following is a complete example where a simple CSV file is imported to a Target table Expenses.

Importing data - Example
The example shows how data about fruits included in a CSV file fruits.csv is imported into a database table fruits.

The example shows a minimal example where the columns of the CSV file is mapped directly to the table columns.

The SQL needed to import the file

1,Banana,1.221
2,Apple,0.352
3,Orange,0.553

Working with SQL

DbVisualizer 13.0 Users Guide 252 of 445

Running the import script in DbVisualizer

As seen in the screen-shot above 3 records were inserted and and 1 was skipped (the header).

Read further on in the guide for how you can tailor your import using the different parameters of the import commands.

The @import commands

@import on
The @import on command initialises the import session. When a client-side command import session is started an output folder is created where
DbVisualizer generates data representing intermediate results of the import. The output folder is created under a root folder (importresults) in the
DbVisualizer preferences directory. The name of the folder is generated to be unique.

These folders are automatically cleaned by DbVisualizer on regular basis.

Note: Normally there is no need to specify any parameters to the @import on command. Default values should be sufficient for most uses.

Parameter Default Valid Values

ImportResultRoot PREFSDIR/importresults The root folder for parsing results and other temporary files
produced by the import session.

Note: Any results produced in this directory will automatically be
removed on regular basis.

@import on;1
@import set ImportSource="fruits.csv"; 2
@import parse;3
@import target Table="FRUITS";4
@import execute;5
@import off;6

Working with SQL

DbVisualizer 13.0 Users Guide 253 of 445

Parameter Default Valid Values

ImportResultDir Automatically generated as a sub folder
to PREFSDIR/importresults

The path to put the DbVisualizer import results. If the path is an
absolute path the results are stored in this folder. If it's not an
absolute path it is assumed that it's path relative to
the ImportResultRoot

The folder is created when import is started.

If the folder already exists, the import fails unless the
Clean parameter is also used.

If none of the ImportResultRoot/ImportResultDir is specified
DbVisualizer will create a new uniquely named directory for every
import session.

Clean false If true, the ImportResultDir is cleaned before import. If false
import fails if directory exists.

No need of specifying this parameter if ImportResultDir is not
specified.

ContinueImportFile Specified if you are continuing an import. See chapter about
Continuing an Import.

Example 1

@import on ImportResultDir=/tmp/myimport Clean="true";

Import results are stored in the folder /tmp/myimport. Any existing folder /tmp/myimport will be deleted/cleaned.

Example 2

@import on ImportResultDir="newimport";

Import results are stored in PREFSDIR/importresults/newimport. If this directory exists the import will fail.

@import set
The @import set command takes a parameter name followed by an equal sign and a value, e.g. parameter="value". You can use the following
parameters, where ImportSource is the only required parameter. All names are case-insensitive. Note that you may use multiple @import set
commands but the first one must include the parameter ImportSource setting the input data to import.

Parameter Default Valid Values

BooleanFalseFormats false, no, 0, off Comma separated string of values that should be interpreted as
boolean false.

BooleanTrueFormats true, yes, 1, on Comma separated string of values that should be interpreted as
boolean true

CsvColumnDelimiter Can be used to override the auto detection by specifying a column
delimiter. CsvColumnDelimiter=";"

The most common column delimiters are auto detected.

CsvColumnDelimiterType Auto Detect Valid values are: String or Auto Detect. If
only CsvColumnDelimiter is specified in the command
CsvColumnDelimiterType is set to String

Working with SQL

DbVisualizer 13.0 Users Guide 254 of 445

•
•

•

Parameter Default Valid Values

CsvTextQuotedBetween None Having data quoted is needed if the data itself contains the
delimiter use to separate columns, special characters such as
tabs, multiline separators, etc.

The CsvTextQuotedBetween parameter is used to specify the
identifier which is used to enclose this type of data. Please note
that there may not be multiple text quote identifiers in the same
import source.

Any character is valid to use. Some additional aliases can be used
to make the values more clear.

Single Equal to specifying the value as "'"
Double Equal to specifying the value as """". Note that a "
character need to be escaped with an additional ".
None Equal to specifying the value as "" (The default)

Example 1: For the following
CsvTextQuotedBetween="Single" is used:

1 'Apple' 'Round fruit'

Example 2: For the following
CsvTextQuotedBetween="Double" is used:

2 "Lemon" "Yellow fruit"

Example 3: For the following CsvTextQuotedBetween="|" is
used:

3 |Lemon| |Yellow fruit|

If you have quoted data in your import source and do not
specify CsvTextQuotedBetween, the data will be detected as
text data.

DateFormat yyyy-MM-dd See valid formats in Changing the Data Display Format document.

DecimalSeparator . The decimal separator to use when parsing decimal numbers

Encoding As set in Tool Properties The file encoding to use when parsing the file to import

ErrorIncludeStackTrace false true/false If true the Java stack trace of any exception will be
included in error messages.

ExcelCellPolicyError SKIP Defines what to do for a formula cell where the cached value
indicates an error. Possible values:

 EMPTY: Set the cell to blank
 SKIP_ROW: Skip the complete row
 ERROR: Produce an error for the cell/row
TO_STRING: Include the error as data.

ExcelSheetId 0 An id specifying the sheet id of a workbook when importing from
xls/xlsx files. First sheet has id = 0
Either this parameter or ExcelSheetName parameter can be used.
Not both.

ExcelSheetName A name specifying the sheet name of a workbook when importing
from xls/xlsx files.

FailOnConvertFailure false If true, the Import will fail if data conversion fails.

FailOnNoColumnsFoundFailure false If true, the Import will fail if we found no columns during continue
import

Working with SQL

DbVisualizer 13.0 Users Guide 255 of 445

Parameter Default Valid Values

FailOnParseFailure false If true, the Import will fail if we got a failure during parsing of the
source data.

HeaderStartRow 0 The row index of the row where the Header starts. If set to a
number x the StartRowOfData parameter is automatically set to x
+1.

The default value 0 indicates that the source data has no header
information.

ImportSource A path to the file to import. Must be included in the first @import
set command. The path is an absolute path or a relative path to
the script location.

If a @cd command has been run before the @import set
command a relative path is relative to the @cd directory

MaxRows -1 The Maximum row to parse/import

ShowNullAs The value that should be considered as NULL. E.g. (null)

SkipEmptyRows true true/false

SkipHeader true true/false

If set to false the header is also imported.

SkipRowsStartingWith String

StartRowOfData 1 The row index of the row where data starts. See
also HeaderStartRow.

ThousandSeparator , The thousand separator to use

TxtColumns Used when fixed columns text files are imported. Example 0, 4.
For detailed syntax of the TxtTrim parameter please see the
example Importing fixed column width input data

TxtTrim true If true, the column data retrieved when importing fixed column
text files is trimmed.

TimeFormat HH:mm:ss See valid formats in Changing the Data Display Format document.

TimeStampFormat yyyy-MM-dd HH:mm:ss.SSSSS See valid formats in Changing the Data Display Format document.

Example 1

@import set StartRowOfData="5" SkipRowsStartingWith="//";

We are starting to import data from row 5 of the source data file and skipping rows starting with "//".

Example 2

@import set HeaderStatRow="1";

The input data has header information at row 1. We are starting to import data from row 2. As StartRowOfData is not explicitly set is automatically set
to 2.

@import parse
This command does all the parsing and analysing of input data.

Working with SQL

DbVisualizer 13.0 Users Guide 256 of 445

•
•

•
•
•

Example

@import parse;

The source data file is parsed. As a result result are stored in the location pinpointed by ImportResultDir.

Example output from the @input parse command:

Parsed 5 records. Columns in source: 2 using ',' delimiter

INDEX NAME TYPE NULLABLE FROM ROW
----- -------- ---------- -------- --------
0 NAME String(6) No 2
1 BIRTHDAY String(16) No 4

Total bytes: 73 B

The information shows the number of parsed records along with the number of columns found. If the parsed file was a CSV file the used delimiter is
printed.

For each column the following information is printed:

INDEX: The index of the column
NAME: If @import set parameter HeaderStartRow was specified and header information was extracted the extracted column name is
printed.
TYPE: The type of data found. The size declaration (E.g. 16) represents the longest string found.
NULLABLE: If the column is nullable or not.
FROM_ROW: From which row in the source file the data type (e.g. String) was determined. This number serves as a hint to investigate source
data when an unexpected type is analyzed.
E.g. The column name BIRTHDAY in the source data indicates that this data should be a date. By investigating the source data at row 4 you may
find the reason why the column was analyzed as String column.

@import target
This command is responsible of all preparation of the target table prior to import. This includes dropping, truncating, deleting from and creating the
table.

When this is executed a check is done if the input data will actually fit the table. This is done by comparing of the analyze result with the specified target
and column mapping. Depending on the parameters the check is performed at different occasions. Parameters for this command are:

Parameter Default Valid Values

Catalog The target table Catalog

CleanData Specifies if data should be cleared before import. Values
Drop The table is dropped before import. If this is used either
the CreateTableSQL or CreateTableSQLFile must be specified
Clear The table is cleared. Either through the use of TRUNCATE or DELETE.
Default method is TRUNCATE. Override the default Clear method by
specifying the parameter ClearTableMethod. Before the table is cleared the
check of input data towards the target table is performed.

ClearTableMethod Truncate or Delete.

Working with SQL

DbVisualizer 13.0 Users Guide 257 of 445

Parameter Default Valid Values

ColumnMapping Specifies mapping of source columns to target columns. The default is to
import the source columns to the target table column by index. First column
in source is import in first column in table. To specify another order or to
ignore certain columns use ColumnMapping parameter.

Syntax: ColumnMapping="<src col>=<tgt col>, <src col=tgt
col>, ..."

Source column can be identified by index starting with 0 or by its name.
Target column can be identified by index starting with 1 or by its name.

Example: ColumnMapping="0=2, 1=3" or ColumnMapping="id=no,
color=col"

Overriding type

The mapping also supports overriding of the type information of the input
data column.
I.e overriding the type information deducted by DbVisualizer when parsing/
analysing the data.

The syntax in this case, for a single column mapping is: <src col>(<type
spec>)=<tgt col>
Where <type spec> is one of: String, Date, Time, Timestamp,
Number, Decimal Number, Boolean, BLOB and CLOB

Example: ColumnMapping="id(Number)=no, color=col"

ColumnMappingFile A reference to a file containing the column mapping.

CreateTableSQL The SQL needed to create the table to import too. This parameter or the
CreateTableSQLFile parameter is required if CleanData="Drop" is
specified.

CreateTableSQLFile A file reference to a file containing the SQL to create the table.

DropTableSQL The SQL for dropping the table

FailOnDropFailure false If true, the Import will fail if the DROP table statement fails.

Schema The target table schema to import to

SkipValidateColumns A comma separated list of target column names for which validation shall not
be done. Example: SkipValidateColumns="Acol,Bcol"

SkipValidateColumnNumbers A comma separated list of target column numbers for which validation shall
not be done. Example: SkipValidateColumnNumbers="1,5"

SkipValidateJdbcTypes A comma separated list of JDBC type names for which validation shall not be
done. Example: SkipValidateJdbcTypes="INTEGER,TINYINT,VARCHAR"

Table The target table to import to

UseDelimitedIdentifiers false true or false

If true object identifiers will be delimited.

Some examples

Example 1

@import target Table="MyTable" ColumnMapping="0=ID,2=NAME" CleanData="Drop"
 CreateTableSQL="CREATE TABLE MyTable (id SMALLINT, name VARCHAR(45))";

Working with SQL

DbVisualizer 13.0 Users Guide 258 of 445

Target table is the "MyTable" table. The table is dropped and recreated before import. We are mapping the first column of the input data to the target
column "ID" and the third column to the target column "NAME".

As the table is dropped we need to supply the DDL/SQL for creation of the table.

Example 2

@import target Table="MyTable" ColumnMapping="2=NAME" CleanData="Clear"

The table is cleared before the import. The clear method is determined by DbVisualizer. For Databases supporting this Truncate is used.

@import execute
Run the actual import.

Parameter Default Valid Values

BatchImport true true or false

Using batch import will significantly improve the import speed. Note though
that batch import may not be supported by all databases or JDBC drivers. In
error situations it is also a good idea to switch off batch import.

BatchSize 100 For every 100 (or specified) number of rows being inserted, DbVisualizer will
run a commit.

FailOnInsertFailure false If true, the Import will fail if an INSERT statement towards the database fails

Examples

@import execute BatchImport="false";

Run the import. Don't import using batch import

Examples

Selecting data to import and mapping columns
CSV File delimited by exclamation mark "!".

Volvo!XC90
BMW!F32 4 Series
Volvo!XC60
Mercedes!C197 SLS AMG

Note that the first column of the CSV file is the brand name (Volvo) of the car. The table we are importing to have the columns in opposite order model,
brand. I.e. we need to Map the columns.

CREATE TABLE carmodel (model VARCHAR(50), brand VARCHAR(50));

@import on;
@import set ImportSource="cars.csv" CsvColumnDelimiter="!" SkipRowsStartingWith="BMW";
@import parse;
@import target Table="carmodel" ColumnMapping="0=brand,1=model";
@import execute;

Parameters used

CsvColumnDelimiter="!" specifying that the data is delimited by the character '!'.

SkipRowsStartingWith="BMW" We are not importing BMW cars

ColumnMapping="0=brand,1=model" Column 0 of the CSV file is mapped to the brand column of the table. Column 1 is mapped to the model column.

The table carmodel content after import:

model brand
------------ --------

Working with SQL

DbVisualizer 13.0 Users Guide 259 of 445

•

•

XC90 Volvo
XC60 Volvo
C197 SLS AMG Mercedes

Overriding analysed type information
When an input file is parsed DbVisualizer analyses the data to determine data types of the input data. The algorithm for this is quite coarse. DbVisualizer
does offer a way to override the analysed data type.

CSV data

Note that the birthday of "Lotta" is "NoData" which is of course not a valid date. When DbVisualizer parses/analyses the data, it will come to the
conclusion that the BIRTHDAY column is a String.

The result of @import parse will contain a table describing information about the data that was parsed.

Parsed 5 records. Columns in source: 2 using ',' delimiter

INDEX NAME TYPE NULLABLE FROM ROW
----- -------- ---------- -------- --------
0 NAME String(6) No 2
1 BIRTHDAY String(16) No 4

Total bytes: 73 B

As mentioned earlier you can see that column BIRTHDAY has been interpreted as a String. This was found examining row 4 (FROM ROW column is 4).

In connection with inserting this column in the database DbVisualizer would insert/set this as a string. This would result in total import failure and no
rows would be inserted in the database.

This may be addressed by overriding the analysed type for BIRTHDAY (String) and set the type to date.

The SQL

Parameters

DateFormat="EEE, d MMM yyyy"
Defining the format to be able to interpret the dates in the CSV file.
ColumnMapping="0=name,1(date)=birthday"
Note the 1(date)=birthday where we are mapping the column with index 1 to the target column birthday. The (date) part specifies that
column 1 should be interpreted as a date.

The result of the import using the script above is that 3 rows are imported (August, Sven and Bert). The row representing Lotta is reported as a
failure as Indicated below.

1 Record affected, Record: 0 originating at row: 4
DataRecordException: Convert error, Column: BIRTHDAY at index: 1
DataTypeConversionException: Value is 'NoData'. Not a valid date format. Valid format: 'EEE, d MMM yyyy'

Importing fixed column width input data (TxtColumns parameter)
Text File

NAME,BIRTHDAY1
August, "Sat, 21 Jul 1962"2
Sven, "Fri, 21 Jan 1972"3
Lotta, "NoData"4
Bert, "Sat, 21 Jul 1962"5

CREATE TABLE birthdays (name VARCHAR(40), birthday DATE);1
 2
@import on;3
@import set ImportSource="birthdays.csv" CsvTextQuotedBetween="Double" DateFormat="EEE, d MMM yyyy"
 HeaderStartRow="1";

4

@import parse;5
@import target Table="birthdays" ColumnMapping="0=name,1(date)=birthday";6
@import execute;7
@import off;8

Working with SQL

DbVisualizer 13.0 Users Guide 260 of 445

001 APPLE
002 LEMON
003 ORANGE

The SQL Script

@import on;
@import set ImportSource="fruitlist.txt" TxtColumns="0,6";
@import parse;
@import target Table="fruitslist" Catalog="test";
@import execute;

The parameter TxtColumns parameter specifies the column character positions. In this case first column starts at character position 0 and the second
column starts at character position 6.

The resulting imported table is

id name
-- ------
1 APPLE
2 LEMON
3 ORANGE

Note how "LEMON" is imported without proceeding blanks. This is because column values are trimmed (TxtTrim parameter default is true).

The TxtColumns parameter
The TxtColumns parameter supports a number of syntaxes as explained in the examples below.

An example when parsing a row "AAA BBB CCC"

TxtColums parameter Yields extracted columns

0-2, 4-5 "AAA" "BB"

1-3, 8-9 "AA" "C"

Omitting the end index (as in the SQL script above)

TxtColums parameter Yields extracted columns

0, 4, 8
(same as 0-3,4-7, 8-end of line)

"AAA" "BBB" "CCC"

1, 8-9
(same as 1-7,8-9)

"AA BBB" "C"

Using the "+" sign

TxtColums parameter Yields extracted columns

0+3, 4+3, 8
(Same as 0-3,4-7, 8-end of line)

"AAA" "BBB" "CCC"

0+7, 8+1
(Same as 0-7, 8-9)

"AAA BBB" "CC"

Importing Excel data
Excel file

A B
-- --
1 A

Working with SQL

DbVisualizer 13.0 Users Guide 261 of 445

2 #DIV/0!
3 C

Note how row 2 column B has the value #DIV/0!. This value represents a case where a cell is a calculated using formula where the calculation is
producing an error.

SQL Script to import

CREATE TABLE exceldata (id INT, value VARCHAR(50));

@import on;
@import set ImportSource="excelData.xlsx" ExcelSheetName="mydata" ExcelCellPolicyError="SKIP_ROW";
@import parse;
@import target Table="exceldata";
@import execute;
@import off;

Parameters used

ExcelSheetName="mydata"
Specifying that the sheet named mydata is is the sheet to import.

ExcelCellPolicyError="SKIP_ROW";
Specifies that if we find a formula that produced an error we should skip the complete row.

Resulting Table

id value
-- -----
1 A
3 C

Note that row 2 is not imported as we instructed by ExcelCellPolicyError="SKIP_ROW";

Continuing an export that has failed
If any of the input data cannot be imported DbVisualizer will keep track of this. This is done by storing the failed data in a specific errorRecords.drec file in
the directory where the import process stores its intermediate results (See ImportResultRoot parameter).

Following is an example were the export fails. It also shows how to import the failed data again. Specifically, the first import fails as Clementine is a name
that is too long to fit in the target table column.

ID,FRUIT,PRICE
1,Banana,1.22
2,Clementine,0.35
3,Orange,0.55

First Import SQL Script

CREATE TABLE fruits (id SMALLINT, name VARCHAR(6), price DECIMAL(10,2));

@import on Clean="true" ImportResultDir="/tmp/importContinueFirstImport";
@import set ImportSource="fruits.csv" HeaderStartRow="1";
@import parse;
@import target Table="fruits" SkipValidateJdbcTypes="VARCHAR";
@import execute;
@import off;

Note: the table definition for the fruit table defines the column name to be VARCHAR(6). The input data "Clementine" will not fit there.

Parameters used

ImportResultDir="/tmp/importContinueFirstImport" We get our results in this directory. Makes it easy to refer in the second import script.

SkipValidateJdbcTypes="VARCHAR" Tells DbVisualizer not to validate VARCHAR columns. This is done for the purpose of this example. If not specified,
the import would stop before any data has been imported.

When running this import the Database used in the example (MySQL) will fail when the import tries to insert the data row 3 as Clementine will not fit the
column. The Failure printed in the DbVisualizer Log for this looks something like:

1 Record affected, Record: id = 0 originating at row: 3
DataRecordException: Error when importing data.

Working with SQL

DbVisualizer 13.0 Users Guide 262 of 445

MysqlDataTruncation: Data truncation: Data too long for column 'name' at row 1

Note that the source data is pinpointed as originating at row: 3.

The Table fruits content after import.

id name price
-- ------ -----
1 Banana 1.22
3 Orange 0.55

Second import SQL Script

ALTER TABLE fruits MODIFY COLUMN name VARCHAR(20);

@import on ImportResultDir="/tmp/importContinueSecond" UseImportFile="/tmp/importContinueFirstImport/
errorRecords.drec" Clean="true";
@import execute;
@import off;

The ALTER statement is dealing with the root cause why the import failed. The name column was too small.

Note that when continuing an import, the commands @import set and @import target is not specified. The settings and target from the old import is
used.

Parameters used

ImportResultDir="/tmp/importContinueSecond": Specifying a separate directory for the results

UseImportFile="/tmp/importContinueFirstImport/Results/errorRecords.drec" Pinpointing the file containing the data that contains the data that could
not be imported.

The Table fruits content after second import.

id name price
-- ---------- -----
1 Banana 1.22
3 Orange 0.55
2 Clementine 0.35

Testing an import - Dry Run
The client-side import offers a way to run the import script to perform all client side data validation without changing anything in the database. This is
done using the @set dryrun command.

Note that when running the import, without dry run, the import may fail nevertheless due to checks on the database side. E.g. primary- or unique key
constraint checks.

@import set ImportSource="fruits.csv";
@import parse;
@set dryrun;
@import target Table="fruits" CleanData="Clear";
@import execute;
@set dryrun off;
@import off;

When running the script, no actual clearing of the table will be done as the parameter CleanData indicates. Nor does the @import execute lead to any
rows being inserted in the database.

Since there is a @set dryrun command prior to the commands no changes to the database table will be performed.

9.24 Parameterized SQL - Variables and Parameter Markers
A useful feature in the SQL Commander is to use variables or parameter markers in SQL scripts. Variables are used to express that certain parts of the SQL
should be replaced with values when the SQL is executed. If you use a script to perform repetitive tasks, such as creating a user and granting permissions,
just insert variables for the user name and permissions to grant in the script and DbVisualizer will prompt for the values at execution.

Working with SQL

DbVisualizer 13.0 Users Guide 263 of 445

In addition to DbVisualizer's own variable syntax, two parameter marker syntaxes supported natively by some databases/drivers can also be used. This
makes it easier to use SQL statements from other tools or code as-is in DbVisualizer, but you need to be aware of the limitations in how they are used
compared to DbVisualizer variables.

The following gives an overview of the different formats and how they can be used.

The following variable syntaxes are supported by DbVisualizer:

DbVisualizer Variables

${variable||
value||type||
options}$

This is the most flexible syntax as it supports setting a name, default value, data type, and other options. Check the
DbVisualizer Variables section for details.

A DbVisualizer variable can be used anywhere in the SQL as the specified value replaces the variable definition as a literal
(unless a data type is specified; with a data type, its behavior is exactly the same as for Named Parameter Markers).

Example

select *
from EMPLOYEE
where FIRST_NAME like '${First Name||Phil}$'
and AGE > ${Age||20}$

The variable identifiers, ${...}$ can be modified in Tools->Tool Properties and in the General / Variables category.

Named Parameter Markers

&name
:name
:{name}
:'name'

These syntaxes are supported natively by a few databases. This format allows only a name for the parameter and
no other settings, such as type or default value. The parameter name is the name DbVisualizer shows in the
prompt window.

Named parameter values are bound at runtime with the markers in the SQL. Some JDBC drivers/databases
requires that the proper data type is set while some are more relaxed. For named (and unnamed) parameter
markers, you may choose data type in the prompt window.
Using data type Literal means that the specified value will replace the variable as-is in the SQL statement. I.e the
value is not bound at runtime.

Named parameter markers should only be used in contexts supported by the actual database, usually for
column values. For example, as opposed to a DbVisualizer variable, a parameter marker cannot be used for a
table or column name.

The only difference between &name, :name, :{name} and :'name' is that the latter two, :{name} and :'name',
allow white spaces in the name.

Example

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, &FirstName, &LastName, &Address, &Age);

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, :FirstName, :LastName, :Address, :Age);

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, :{FirstName}, :{LastName}, :{Address}, :{Age});

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, :'FirstName', :'LastName', :'Address', :'Age');

Read more about named parameter markers.

Even if DbVisualizer supports several variable formats it doesn't mean you can always copy/paste the SQLs including the parameter markers
to another application and successfully execute it. You need to check the compatibility for the actual connector/driver/framework and even
that the database itself supports the used syntax.

Working with SQL

DbVisualizer 13.0 Users Guide 264 of 445

•
•
•
•

Unnamed Parameter Markers

? The question marker symbol is probably the most supported parameter marker among the supported databases. It is also the most unintuitive
marker since the user has to remember the order of question marks and the corresponding values.

Since there is no name associated with it, DbVisualizer shows these as Parameter 1, Parameter 2 and so on in the prompt window.

There is no technical difference between how unnamed and named parameter markers are handled internally in DbVisualizer or when processed by
the database. All are bound with a prepared SQL statement.

Example

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, ?, ?, ?, ?)

Use named in favor of unnamed parameter markers if there is support in the target database based on the easier reading of named markers. Read
more about unnamed parameter markers.

For more information about the different syntaxes check Using DbVisualizer Variables and Using Parameter markers.

9.24.1 Using DbVisualizer Variables
DbVisualizer variables are used to build parameterized SQL statements and let DbVisualizer prompt you for the values when the SQL is executed. This is
handy if you are executing the same SQL repetitively, just wanting to pass new data in the same SQL statement.

Variable Syntax
Pre-defined Variables
Variables for Java System Properties and OS Environment Variables
Variable Substitution in SQL statements

DbVisualizer Variables

${variable||
value||type||
options}$

This is the most flexible syntax as it supports setting a name, default value, data type, and other options. Check the
DbVisualizer Variables section for details.

A DbVisualizer variable can be used anywhere in the SQL as the specified value replaces the variable definition as a literal
(unless a data type is specified; with a data type, its behavior is exactly the same as for Named Parameter Markers).

Example

select *
from EMPLOYEE
where FIRST_NAME like '${First Name||Phil}$'
and AGE > ${Age||20}$

The variable identifiers, ${...}$ can be modified in Tools->Tool Properties and in the General / Variables category.

Variable Syntax

The variable format supports setting a default value, data type and a few options as in the following example:

${FullName||Andersson||String||where pk}$

This is the complete syntax for a DbVisualizer variable:

It is not possible to mix DbVisualizer variables and parameter markers, or named and unnamed parameter markers, in the same script. If you
do, you will only be prompted for values for one type and the execution will fail.

A DbVisualizer variable that doesn't specify a data type will always be replaced with the value as a literal. This allows use of variables
anywhere in an SQL statement. If a data type is specified, the prompted value will be bound with the SQL and variables can in this context
only be used where supported by the target database.

Working with SQL

DbVisualizer 13.0 Users Guide 265 of 445

•

•

•

•

•

•

${name || value || type || options}$

Part Default Description

name Required Required. This is the name that appear in the prompt window. If multiple variables in
a script have the same name, the substitution dialog shows only one and the entered
value will be applied to all variables with that name

value null The default value for the variable

type none
(= literal)

The type of variable: String, Boolean, Integer, Float, Long, Double, BigDecimal, Date,
Time and Timestamp. In addition DbVisualizer defines: BinaryData and TextData (for
CLOB). This is used to determine how the data should be passed between DbVisualizer
and the database server. If no type is specified, it is treated as a literal

options none The options part is used to express certain conditions. Separate these with a
whitespace

pk
Indicates that the variable is part of the primary key in the final SQL. Represented
with a symbol in the prompt window
where
Defines that the variable is part of the WHERE clause. A symbol indicate this
condition in the prompt window
noshow
This option define that the variable should not appear in the prompt window. A
value must be set when using this option, unless it is an output variable
(see dir below)
nobind
Used in combination with when a type is set and defines that the variable should
be replaced as a literal in the SQL rather than being bound as a parameter marker
dir=in | out | inout
The direction for a variable used with the @call command (it is ignored for other
uses). A variable assigned the return value for a function must be declared
as dir=out, and a variable used for a procedure parameter must use a dir type
matching the procedure parameter direction declaration. in is the default
scope=post
The scope must be specified as post when using variables representing columns
when exporting BLOB/CLOB values to separate files named based on column
values.

Pre-defined Variables
A few pre-defined DbVisualizer variables can be used anywhere in the SQL. These are replaced with actual values just before the SQL is sent to the DB
server.

${dbvis-date}$
${dbvis-time}$
${dbvis-timestamp}$
${dbvis-connection}$
${dbvis-database-type}$

By default, date/time variable values are formatted as defined in Tool Properties->Data Formats, but you can also specify a custom format for a single
use of the variable, e.g.

${dbvis-date||||||format=[yyyyMMdd]}$

The following variables can be used only when monitoring a SQL statement that produce a result set and the Allowed Row Count for the monitor is > 0.
The output format is seconds and milliseconds. Ex: 2.018

${dbvis-exec-time}$
${dbvis-fetch-time}$

Note that none of the pre-defined variables below will show in the prompt window.

Working with SQL

DbVisualizer 13.0 Users Guide 266 of 445

The following variable holds the absolute path to the current directory, e.g. set by the @cd command:

${dbvis-pwd}$

In an sql script, the name on the result set produced by the next SELECT statement can be set with the @set resultset name command (see Using
Client-Side Commands). This result set name is accessible through the variable

${dbvis-resultset-name}$

Variables for Java System Properties and OS Environment Variables
You can use DbVisualizer variables to access the value of a Java system property by prefixing the property name with java. (java.<property>). Please
note that some java properties include "java" in the property name!
Examples:

@echo ${java.user.home}$
@echo ${java.java.io.tmpdir}$
To access the value of an operating system environment variable, prefix the variable name with env. (env.<variable>).
Examples:

@echo ${env.USER}$
@echo ${env.TMP}$
This may be used in many cases, for instance when importing or exporting files. The export example below
shows how to specify the DbVisualizer Bookmarks folder without explicitly giving the hardcoded folder
path.
@export set filename="${java.dbvis.prefsdir}$/Bookmarks/myscript.sql" Format="SQL" AppendFile="false";
A list of Java properties can be found in the Java Properties tab accessible from the Help→About... menu

Using "now" in values for Time, Date, and Timestamp
For variables with the type set to Time, Date, and Timestamp, the value may be set to the literal now. The value is then converted to the specified type
with the format defined in Tool Properties and Data Formats category.

Variable Format Sample

${myDate||now||Date}$ yyyy-MM-dd 2017-07-17

${myDate||now||Time}$ HH:mm:ss 09:02:50

${myDate||now||Timestamp}$ yyyy-MM-dd HH:mm:ss 2017-07-17 09:03:11

For these types it is also possible to specify the value now in the variable prompting window.

Variable Substitution in SQL statements

A simple variable may look like this:

${FullName}$

A variable is identified by the start and end sequences, ${...}$. (These can be re-defined in Tool Properties). During execution, the SQL Commander
searches for variables and displays the prompt window with the name of each variable and an input (value) field. Enter the value for each variable and
then press Execute. This will then replace the variable with the value as a literal and finally let the database execute the statement.

Consider the following SQL statement with variables. It is the simplest use of variables since it only contains the variable names. In this case it is also
necessary to enclose text values with quotes since the prompt window cannot determine the actual data type for the variables.

INSERT
INTO
 EMPLOYEES
 (
 EMPLOYEE_ID,

For variable processing to work in the SQL Commander, make sure the SQL Commander Options->Parameterized SQL is checked in the
SQL Commander main menu.

http://confluence.dbvis.com/display/UG91/Using+DbVisualizer+Variables#UsingDbVisualizerVariables-ChangingtheDelimiterCharacters

Working with SQL

DbVisualizer 13.0 Users Guide 267 of 445

 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID,
 SALARY,
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
 VALUES
 (
 ${EMPLOYEE_ID}$,
 ${FIRST_NAME}$,
 ${LAST_NAME}$,
 ${EMAIL}$,
 ${PHONE_NUMBER}$,
 ${HIRE_DATE}$,
 ${JOB_ID}$,
 ${SALARY}$,
 ${COMMISSION_PCT}$,
 ${MANAGER_ID}$,
 ${DEPARTMENT_ID}$
)

Executing the above SQL will result in the following prompt window:

Using variables with no data type defined shows these as Literal. This means that the specified value will replace the variable as-is in the SQL statement.

The prompt window has the same look and functionality as the Form Data Editor, i.e. you can sort, filter, insert pre-defined data, copy, paste and edit
cells in the multi line editor, plus a lot of other things. In addition the prompt window adds two new commands (leftmost in the toolbar and in the form
right-click menu).

Working with SQL

DbVisualizer 13.0 Users Guide 268 of 445

Set Default Values This will set each value to the default value for the variable. If a default value was not
specified in the variable, (null) will shown

Set Previously Used Values Set the value for each variable to the values (matched by name) that was used in the
previous run (if there are no values from a previous run, this button is disabled)

The SQL Preview area shows the statement with all variables replaced with the values.

Here is an example of a more complex use of variables utilizing default value, data type and options:

INSERT
INTO
 EMPLOYEES
 (
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 EMAIL,
 PHONE_NUMBER,
 HIRE_DATE,
 JOB_ID,
 SALARY,
 COMMISSION_PCT,
 MANAGER_ID,
 DEPARTMENT_ID
)
 VALUES
 (
 ${EMPLOYEE_ID||105||BigDecimal||pk ds=7 dt=NUMERIC}$,
 ${FIRST_NAME||David||String||nullable ds=20 dt=VARCHAR}$,
 ${LAST_NAME||Austin||String||ds=25 dt=VARCHAR}$,
 ${EMAIL||DAUSTIN||String||ds=25 dt=VARCHAR}$,
 ${PHONE_NUMBER||590.423.4569||String||nullable ds=20 dt=VARCHAR}$,
 ${HIRE_DATE||2005-06-25 00:00:00||Timestamp||ds=7 dt=TIMESTAMP}$,
 ${JOB_ID||IT_PROG||String||ds=10 dt=VARCHAR}$,
 ${SALARY||4800||BigDecimal||nullable ds=10 dt=NUMERIC}$,
 ${COMMISSION_PCT||(null)||BigDecimal||nullable ds=4 dt=NUMERIC}$,
 ${MANAGER_ID||103||BigDecimal||nullable ds=7 dt=NUMERIC}$,
 ${DEPARTMENT_ID||60||BigDecimal||nullable ds=5 dt=NUMERIC}$
)

This example use the full capabilities of variables. This example is generated by the Script to SQL Commander->INSERT COPY INTO TABLE right click
menu choice in the Data tab grid. By default it generates variables representing the actual values and the characteristics of the columns.

Working with SQL

DbVisualizer 13.0 Users Guide 269 of 445

•
•
•
•

To highlight that a variable is part of the WHERE clause in the final SQL, it is represented with a green symbol in front of the name.

When executing an SQL statement that consist of variables, DbVisualizer replaces each variable with either the value as a literal or as a parameter marker.
Using parameter markers to pass data with a statement is more reliable than literals. DbVisualizer will automatically generate a parameter marker if the
variable has the data type set and if there is no nobind option specified.

The following will be replaced with a parameter marker:

${Name||rolle||String}$

These will be replaced with the value as a literal in the final SQL:

${Name||rolle}$
${Name||rolle||String||nobind}$

Variables in DbVisualizer may be used anywhere in a statement as long as there is no data type specified.

Changing the Delimiter Characters
You can change which identifiers should be used as the prefix, suffix and part delimiter in a variable expression in Tools->Tool Properties, in the
General / Variables category.

9.24.2 Using Parameter Markers
Parameter markers (also referred as bind/host variables or place holders) are commonly used in database applications where the SQL is composed of
static text combined with values represented as markers instead of actual values. These markers are processed during the preparation of the SQL
statement and values are then bound with the markers. Each database has its recommendations for how and when to use parameter markers so this is
not further discussed here.

Named Parameter Markers
Unnamed Parameter Markers
Get Parameter Types via JDBC
Database Support/Driver Support

Working with SQL

DbVisualizer 13.0 Users Guide 270 of 445

DbVisualizer supports the most common syntaxes for parameter markers to comply with the supported databases. Parameter markers are categorized as
either named or unnamed markers. The following sections explains their respective syntaxes.

Named Parameter Markers

Named Parameter Markers

&name
:name
:{name}
:'name'

These syntaxes are supported natively by a few databases. This format allows only a name for the parameter and
no other settings, such as type or default value. The parameter name is the name DbVisualizer shows in the
prompt window.

Named parameter values are bound at runtime with the markers in the SQL. Some JDBC drivers/databases
requires that the proper data type is set while some are more relaxed. For named (and unnamed) parameter
markers, you may choose data type in the prompt window.
Using data type Literal means that the specified value will replace the variable as-is in the SQL statement. I.e the
value is not bound at runtime.

Named parameter markers should only be used in contexts supported by the actual database, usually for
column values. For example, as opposed to a DbVisualizer variable, a parameter marker cannot be used for a
table or column name.

The only difference between &name, :name, :{name} and :'name' is that the latter two, :{name} and :'name',
allow white spaces in the name.

Example

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, &FirstName, &LastName, &Address, &Age);

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, :FirstName, :LastName, :Address, :Age);

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, :{FirstName}, :{LastName}, :{Address}, :{Age});

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, :'FirstName', :'LastName', :'Address', :'Age');

Read more about named parameter markers.

The following is a sample SQL executed in the SQL Commander:

INSERT INTO EMPLOYEES
 (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE,
 JOB_ID, SALARY, COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID)
VALUES
 (:EMPLOYEE_ID, :FIRST_NAME, :LAST_NAME, :EMAIL, :PHONE_NUMBER,
 :HIRE_DATE, :JOB_ID, :SALARY, :COMMISSION_PCT, :MANAGER_ID, :DEPARTMENT_ID);

The prompt window will show the markers with their respective names:

It is not possible to mix DbVisualizer variables and parameter markers, or named and unnamed parameter markers, in the same script. If you
do, you will only be prompted for values for one type and the execution will fail.

Working with SQL

DbVisualizer 13.0 Users Guide 271 of 445

For parameter marker processing to work in the SQL Commander, make sure the SQL Commander->Parameterized SQL main menu option is checked.

Unnamed Parameter Markers

Unnamed Parameter Markers

? The question marker symbol is probably the most supported parameter marker among the supported databases. It is also the most unintuitive
marker since the user has to remember the order of question marks and the corresponding values.

Since there is no name associated with it, DbVisualizer shows these as Parameter 1, Parameter 2 and so on in the prompt window.

There is no technical difference between how unnamed and named parameter markers are handled internally in DbVisualizer or when processed by
the database. All are bound with a prepared SQL statement.

Example

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)
values (null, ?, ?, ?, ?)

Use named in favor of unnamed parameter markers if there is support in the target database based on the easier reading of named markers. Read
more about unnamed parameter markers.

This is the same SQL as used in the Named Parameter Marker section but here question marks are used as markers:

INSERT INTO EMPLOYEES
 (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE,
 JOB_ID, SALARY, COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID)
VALUES
 (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);

To apply the values, close the window and continue with the execution, use key binding Ctrl+Enter (Command+Enter on macOS).

Working with SQL

DbVisualizer 13.0 Users Guide 272 of 445

Since we're using the unnamed marker, ?, the name of each parameter is displayed as Parameter 1, Parameter 2 and so on:

Working with SQL

DbVisualizer 13.0 Users Guide 273 of 445

Working with Result Sets

DbVisualizer 13.0 Users Guide 274 of 445

Due to the use of unnamed markers it is not very intuitive what parameter correspond to which part in the statement. The SQL Preview may be handy to
get an idea. The Type field is automatically adjusted based on what data is entered for a value. The data type may be manually set by left-click on the
type and choose another type from the drop-down.

Get Parameter Types via JDBC
The processing of named and unnamed parameter markers is managed by DbVisualizer. By default there is no data type detection of the target columns
identified by the markers and DbVisualizer will initially present these as String in the prompt window. When changing the value for a parameter in the
prompt window, a data analyzer is triggered which will automatically detect the type and update the Type field accordingly.

Some drivers (far from all) have the capability to detect the real data type for the referenced columns in the SQL statement. To enable this processing,
select the Get Parameter Types via JDBC action in the SQL Commander menu. DbVisualizer will then show the correct types in the prompt window.

Database Support/Driver Support
The support for parameter markers may differ between databases. Please consult the documentation for the database to see what syntax it supports.

In some situations the database and DbVisualizer support for named parameters might be incompatible. An example is when using the same parameter
name in multiple places in the SQL. When preparing a statement towards such a database, the database may report that the parameter is only used
once. In these cases, DbVisualizer will trust the driver and revert to generating the names visible in the form as Parameter 1 , Parameter 2 and so on.

10 Working with Result Sets
You can view result sets in different ways, edit simple result sets, and export or compare them.

10.1 Viewing a Result Set
You can view a result set as a grid, as text or as a chart. Which format to use by default can be specified in the Tool Properties dialog, under the Default
Display Mode section shown in the SQL Commander > Result Sets category under the General tab.

Here you can also specify other things like if empty result sets should be shown at all, or which tab should be activated after a successful execution in the
SQL Commander.

To change the view format for the current result set, use the buttons to the upper right in the grid toolbar.

Below is an example of a Result Set shown in text format.

To apply the values, close the window and continue with the execution, use key binding Ctrl+Enter (Command+Enter on macOS).

Having Get Parameter Types via JDBC enabled while executing may decrease performance substantially as each SQL statement in the script
is then pre-processed with the database before the prompt window is displayed.

Working with Result Sets

DbVisualizer 13.0 Users Guide 275 of 445

10.1.1 Viewing as a Grid
When you view the result set as a grid, you have access to the same features as when viewing table data (or, for a document data source, viewing
document data).

10.1.2 Viewing as Text

The text format for a result set presents the data in a tabular style. The column widths are calculated based on the length of each value and the length of
the column label.

10.1.3 Merge Result Sets
If you want to combine the text view of a number of result sets into one, select Merge Result Sets from the result set tab right-click menu. A dialog lets
you select the result sets to merge and also do some configuration:

Auto merging
Using the Merge Result Sets drop-down menu in the SQL Commander toolbar, you can enable Auto Merge after Execution. You can also select Merge
Result Sets > Configure Merging from the drop-down menu to adjust various merge options.

10.1.4 Viewing as a Graph

To view the result set as a chart, use the rightmost button in the grid toolbar. Please see the Working with Charts page for how you can arrange the chart.

10.2 Editing a Result Set

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Only in DbVisualizer Pro

Working with Charts

DbVisualizer 13.0 Users Guide 276 of 445

1.
2.
3.

1.
2.

A result set from a query that fulfills these requirements is editable:

The SQL is a SELECT command,
Only one table is referenced in the FROM clause,
All current columns exist by name (case sensitive) in the identified table.

A result set like this can be edited in the same way as you can edit table data.

If you want results to always be read-only, you can enable the Make Result Sets Read-Only setting in the Tool Properties dialog, in the SQL
Commander/Result Sets category under the General tab.

10.3 Exporting a Result Set
You can export a result set as described in Exporting a Grid or using the @export client side command.

10.4 Comparing Result Sets

You can compare a result set grid to tables and/or other result set grids.

To compare the grid data to the data of a table or a another result set:

Open the Data tab for another table or execute an SQL query to open a result set tab,
Select Compare from the right-click menu in one of the tabs to compare their grid content.

10.5 Pinning Result Sets
Existing Result Set tabs are removed when you execute a script again. If you want to save a Result Set tab between executions, you can "pin" it using the
Pin Tab right-click menu choice for the tab header, or by simply clicking on the tab icon. There is also a Pin All choice if you have multiple tabs you want
to pin, and Unpin All to make them all be replaced at the next execution.

Whether Result Set tabs should be pinned by default can be controlled in the Tool Properties dialog, in the SQL Commander/Result Sets category under
the General tab.

10.6 Show Result Sets in a Separate Window
Results Sets and the Log tabs are located just under editor in a SQL Commander tab. Sometimes you may need to get the full screen height available for
the editor and detach the result area tabs in its own window. To accomplish this click the symbol at the right-most position in the tab row.

Clicking the symbol while result area tabs are detached will bring them back into the original location.

Note that the symbol to detach and re-attach back can differ slightly depending on the Operating System and the current Theme.

11 Working with Charts

This feature is only available in the DbVisualizer Pro edition.

If all of the above requirements are fulfilled but the edit controls are still not shown, please try qualifying the table name with the schema
and/or database name.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Only in DbVisualizer Pro

Working with Charts

DbVisualizer 13.0 Users Guide 277 of 445

•
•
•
•

•
•
•
•

•
•

Result sets in the SQL Commander and in the Monitor tools can be viewed as charts.

Charting a Result Set
Selecting the Category
Selecting the Series
Chart Type

Chart Configuration
Appearance Preferences
Series Preferences
Saving/Loading Preferences

Zooming
Export

The chart support in DbVisualizer presents data from any result set in a configurable chart displayed in a line, bar, area or pie style. It offers much of the
charting support you find in MS Excel and other specialized charting tools. Charts may be exported as an image to file, printed and copied to system
clipboard for easy sharing with other tools. Charts are configured and viewed in the SQL Commander and in the Monitor tool which is really powerful,
delivering real time charts of many result sets simultaneously. Charts can be opened by clicking the icon at the the rightmost button in the result tab
toolbar (see below).

Here are some sample charts:

This feature is only available in the DbVisualizer Pro edition.

Working with Charts

DbVisualizer 13.0 Users Guide 278 of 445

11.1 Charting a Result Set
The basic setup of a chart is really easy. Just select one or more columns that should appear as series in the chart and what column to use as the category
(X-axis). Further refinement of the chart can be made in the chart preferences window.

Working with Charts

DbVisualizer 13.0 Users Guide 279 of 445

The normal output view of a result set in the SQL Commander or Monitor window is in a grid style as shown in the following screenshot. To activate the
chart view click the rightmost button in the result tab toolbar:

When switching to the chart view DbVisualizer automatically picks the first date or text column as the category (x-axis) for the chart and the first numeric
column as the series (y-axis). In the following example it is the CATEGORY and TOTAL_SALES columns for this specific result set.

11.1.1 Selecting the Category
Click the category button to pick the column to use for the x-axis. Let the mouse pointer stay on a column name for a second and a tip will show what
data type it is.

Working with Charts

DbVisualizer 13.0 Users Guide 280 of 445

11.1.2 Selecting the Series
Click the series button to change what series to display in the chart. This drop-down stays on screen while selecting one or more series (the changes are
directly propagated in the chart). To close the list either press the ESC button or click outside the list. If only one series is selected then its name is listed
in the button label. If additional series are selected then the number of selected series are listed in parentheses. Only columns that are of number data
types can be selected as series.

This is the chart after applying category and 2 series:

11.1.3 Chart Type
A chart can be displayed as one of several types. Select what type to use in the toolbar or on the right-click menu (which also offers some other controls):

Tip: Press the ALT key while selecting a series and all currently selected series will be de-selected.

Working with Charts

DbVisualizer 13.0 Users Guide 281 of 445

Note: For the Pie chart, only one series can be selected.

Working with Charts

DbVisualizer 13.0 Users Guide 282 of 445

11.2 Chart Configuration
The chart can be configured to your preferences for titles, colors, legend position, etc. You can also set alternative names for the series in the chart. All
appearance settings are automatically re-used when running subsequent queries in the SQL Commander during the same DbVisualizer session. If you
save a query as a bookmark script then all appearance settings are saved with the chart. Loading the script at a later time will also load the chart settings.

Open the chart configuration dialog from the toolbar or the right-click menu:

11.2.1 Appearance Preferences
In the Chart Configuration panel, use the controls in the General tab to customize the layout and style of the chart (click the information button to show/
hide information about the selected setting at the bottom of the window).

Working with Charts

DbVisualizer 13.0 Users Guide 283 of 445

Working with Charts

DbVisualizer 13.0 Users Guide 284 of 445

11.2.2 Series Preferences
The default name of the series is the column name in the result set. In the Series tab you can set an alternative label name and also control what series
should be visible.

Changes in the Series tab are propagated directly in the chart.

11.2.3 Saving/Loading Preferences
You can also save or load default preferences by clicking the Settings button in the lower left corner:

11.3 Zooming
Charts support zooming by selecting a rectangle in the chart area. Selecting another rectangle in that zoomed area will zoom the chart even further, and
so on. To unzoom one level, click the Zoom Out button.

11.4 Export
Charts can be exported in PNG, GIF or JPG formats.

Note: You cannot zoom pie charts.

Exporting a Grid

DbVisualizer 13.0 Users Guide 285 of 445

•
•

•
•
•
•

•
•
•

The default size of the exported image is the same as it appears on the screen. To change the size, either select a pre-defined paper size in the Size list or
enter a size in pixels.

12 Exporting a Grid
All grids in DbVisualizer can be exported to file, clipboard or into the SQL Commander using a number of formats.

Settings
Data page

Generating Test Data
Preview
Output Destination
Settings Menu

The Export wizard gives you full control over the export (there is also an option to open the grid as a spreadsheet using predefined settings). The
commands are available both on the right-click menu and on the toolbar and operate on either selected, visible, or all data:

Export Visible: visible data, observing any sorting, filtering or hidden columns that reduce the contents of the grid
Export: all data loaded into the grid (ignoring filters and sorting)
Export Selection: data in selected cells

Exporting a Grid

DbVisualizer 13.0 Users Guide 286 of 445

12.1 Settings
The first wizard page is the Settings page, containing general properties for how the exported data should be formatted.

Exporting a Grid

DbVisualizer 13.0 Users Guide 287 of 445

Select an output format, file encoding (it is also used to set the encoding in the HTML and XML headers, if you select one of those formats), and values for
some different data formats (date, time, et.c.).

Note that the text to the right of the selections in the Data Format section shows an example of how the currently selected option would look like with
real data.

Excel export do not support formatted date, time or timestamp. To get the correct date format in Excel you either have to export dates as text (check the
Export Date/Time as Text) or set the format explicitly in Excel.

Only in DbVisualizer Pro

Exporting a Grid

DbVisualizer 13.0 Users Guide 288 of 445

The Options section is used to define settings that are specific for the selected output format, for instance the column and row delimiters for the CSV
format, or the Excel spreadsheet format.

12.2 Data page
Clicking the Next button in the wizards moves you to the Data page. Use the columns list to control which columns to export and how to format the data
for each columns. The list is exactly the same as the column headers in the original grid, i.e., if a column was manually removed from the grid before
launching the Export Wizard, then it will not appear in this list.

The Table Rows fields show you how many rows are available and let you specify the number of rows to export. This setting along with the Add
Row button is especially useful when you use the test data generation feature described in the next section.

The columns in this page's grid can be used like this.

Column Descriptions

Export Defines whether the column will be exported or not. Uncheck it to ignore the column in the
exported output.

Name The name of the column. This is used if exporting in HTML, XML, XLS, JSON or SQL format. Column
headers are optional in the CSV output format.

Label (Alias) When you export a result set grid for a SELECT statement that uses column aliases, this column
holds the alias. If you have also enabled Use any Label (Alias) in the Options section, this value is
used in place of the name.

Type The internal DbVisualizer type for the column. This type is used to determine if the column is a text
column (i.e., if the data should be enclosed by quotes or not).

Is Text Specifies if the column is considered to be a text column (this is determined based on the type) and
so if the value should be enclosed in quotes.

Value The default ${value}$ variable is simply be substituted with the column value in the exported
output. You can enter additional static text in the value field. This is also the place where any test
data generator variables are defined.

12.2.1 Generating Test Data
The test data generator is useful when you need to add random column data to the exported output.

With the DbVisualizer Free edition, only the CSV and HTML formats are supported.

Exporting a Grid

DbVisualizer 13.0 Users Guide 289 of 445

The Value column in the Data page grid specifies the data to be in the exported output. By default, it contains the ${value}$ variable, which is simply
replaced with the real column value during the export process. You can also add static values before and after the ${value}$ variable, to be exported as
entered.

Alternatively, you can use test data generator variables in the Value column. The choices are available in the right-click menu when you edit the Value
column.

Function Name Function Call Example

Generate random number ${var||randomnumber(1,
2147483647)}$

Generates a random number between 1 and 2147483647

Generate random string of random size ${var||randomtext(1, 10)}$ Generates random text with a length between 1 an 10
characters

Generate random value from a list of
values

${var||randomenum(v1, v2, v3,
v4, v5)}$

Picks one of the listed values in random order

Generate sequential number ${var||number(1, 2147483647, 1)}
$

Generates a sequential number starting from 1. The
generator re-starts at 1 when 2147483647 is reached. The
number is increased with 1 every time a new value is
generated.

Here is an example of how to use the test data generators to try out planned changes to the data. Consider this initial data:

After the changes, the CATEGORY_ID column should not appear in the output and the new CATEGORY_CODE should contain abbreviated category
codes. To test this, we simply uncheck the Export checkbox for CATEGORY_ID entry and set the Value for the CATEGORY_CODE to use the Generate
random value from a list of values function (${var||randomenum(DRAMA, ACTION, THRILLER, COMEDY, SCI_FI)}$).

By unchecking the "Export" checkbox for the column CATEGORY_ID this column will not be included in the export.

Exporting a Grid

DbVisualizer 13.0 Users Guide 290 of 445

12.3 Preview
The third wizard page is the Preview page, showing the first 100 rows of the data as it will appear when it is finally exported. This is useful to verify the
data before performing the export process. If the previewed data is not what you expected, just use the back button to modify the settings.

Previewing the data (or exporting it) in CSV format results in this:

12.4 Output Destination
The final wizard page is the Output Destination page. The destination field specifies the target destination for the exported data, one of File, SQL
Commander or Clipboard.

Opening a Grid as Spreadsheet

DbVisualizer 13.0 Users Guide 291 of 445

•

•

•

•

•

•

•
•
•

Click Export on this page to export the grid data to the selected destination.

12.5 Settings Menu
If you often use the same settings, you can save them as the default settings for this assistant. If you use a number of common settings, you can save
them to individual files that you can load as needed. Use the Settings drop-down button menu to accomplish this:

Save as Default Settings
Saves all format settings as default. These are then loaded automatically when open an Export Schema dialog
Use Default Settings
Use this choice to initialize the settings with default values
Remove Default Settings
Removes the saved defaults and restores the regular defaults
Load...
Use this choice to open the file chooser dialog, in which you can select a settings file
Save As...
Use this choice to save the settings to a file
Copy Settings to Clipboard
Copies the settings to the system clipboard

You can also use settings saved here with the @export client side command.

13 Opening a Grid as Spreadsheet
All grids in DbVisualizer offer options to open the grid data in an external spreadsheet tool using predefined settings (you can also export the grid to a
number of formats with full control). The commands are available both on the right-click menu and on the toolbar and operate on either selected, visible,
or all data:

Open Visible as Spreadsheet: visible data, observing any sorting, filtering or hidden columns that reduce the contents of the grid
Open as Spreadsheet: all data loaded into the grid (ignoring filters and sorting)
Open Selection as Spreadsheet: data in selected cells

Opening a Grid as Spreadsheet

DbVisualizer 13.0 Users Guide 292 of 445

Opening a Grid as Spreadsheet

DbVisualizer 13.0 Users Guide 293 of 445

13.1 Output
The spreadsheet includes the SQL query that created the data, preserves data types and attempts to adjust columns as necessary.

Comparing Data

DbVisualizer 13.0 Users Guide 294 of 445

•
•
•
•

14 Comparing Data

With DbVisualizer, you can compare grids and text data, such as scripts or the DDL for two tables or procedures.

Selecting the Objects to Compare
Comparing Text Data
Comparing Grids
Comparing Cell Values

14.1 Selecting the Objects to Compare
You can open the Compare Objects object chooser via Tools->Compare... and select two objects available for comparison.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Comparing Data

DbVisualizer 13.0 Users Guide 295 of 445

If you select Editor, all SQL Commander editors and all Object View sub tabs that you have opened that contain text, such as DDL , SQL Editor, and
Procedure Editor tabs, are listed. There is also an entry for the System Clipboard, holding the last text you copied.

Selecting Grids lists all SQL Commander Result Set tabs and all Object View sub tabs that you have opened that contain a grid, for instance the Data
and Columns tabs for a table, or the Tables tab for a schema.

To compare two objects, select one each in the Left Object and Right Object columns and click Compare.

You can also open the object selection dialog from the Compare... item in the right-click menu inside a tab that holds an object that can be compared.
The object shown in that tab is then preselected as the Right Object so you only need to select the Left Object in the dialog.

The right-click menu for an SQL Commander editor also contains a Compare to Saved entry. This bypasses the object selection dialog and opens the
Compare window directly, showing you how you have changed the script since loading it into the editor.

14.2 Comparing Text Data
To compare text data, either select both text object from the Tools->Compare dialog or choose Compare from the right-click menu in one of them and
select the one to compare to. The text compare window shows you how they differ.

Comparing Data

DbVisualizer 13.0 Users Guide 296 of 445

The objects are shown side-by-side, with indications about how they differ in the divider between them. The margin areas outside the left and right
objects have markings that also show sections of differences. You can navigate between the differences using the arrow buttons in the toolbar, or by
clicking the markings to the left and right.

Comparing two texts is pretty straightforward. You can see what has been changed, inserted and deleted, with row level indications in the divider and
details for changed text highlighted in the text panes. A difference may start on one line and span over multiple lines until a match is found again.

If the right object is editable, you can apply the changes needed to remove the differences, one by one or all at once.
Along with the difference indications in the divider there are small icons: arrows and cross marks. Clicking on such an icon updates the modified object to
match the original object, by inserting or deleting one or more rows or updating the text or column values.

If you want to apply all changes needed to make the right object match the left object, you can click on the Sync button in the toolbar (the second to
rightmost button).

You can also edit the right object directly in the Compare window.

If you want to change sides when comparing objects, you can click the Flip button in the toolbar (the rightmost button). One reason for doing this may be
that you want to update the object you originally used as the original instead of the modified object.

14.3 Comparing Grids
To compare grids, either select both grid object from the Tools->Compare dialog or choose Compare from the right-click menu in one of them and select
the one to compare to. The Compare Grids window shows you how they differ.

Comparing grids is a bit complicated, since each row is a unit in itself, with a unique identifier in the form of a Key. A difference can therefore not span
rows. It is also important that both grids are sorted the same way and that the column in one grid is compared to the corresponding column in the other
grid, otherwise the result is indeterminably. By default, columns are matched by name, or index if the names differ.
If the default matching is not correct, click the Column Configuration button in the toolbar to manually match the columns, and optionally select key
columns and ignore some columns.

No matter how you update the right object, all changes are also applied to the tab where the object was originally opened. To permanently
save the changes, you need to use the Save button in that tab.

Comparing Data

DbVisualizer 13.0 Users Guide 297 of 445

Use the Right Column Name drop down lists to select the column matching the Left Column Name. If a column does not match another, just leave it
blank to exclude it from the comparison.
Use the Key Column check boxes to pick the columns that should be used as the key when comparing the grids. If you don't care about the value in some
columns, e.g. a column that contains a timestamp that may vary between the grids without being an important difference, you can check the Ignore
Column check box for that column to exclude it for the comparison.

It gets a bit more complicated if a key column value is changed.

DbVisualizer considers a changed key value as one inserted row and one deleted row, as shown in the figure above. If the grids do not have any declared
key columns, all columns are considered to be regular, non-key columns.

Two grids may also differ in the number of columns they contain. DbVisualizer finds columns that only exist in one of the grids and excludes their values
when comparing the grids. If the column names do not match between the two grids, open the Column Configuration dialog to manually map the
columns.

Comparing Data

DbVisualizer 13.0 Users Guide 298 of 445

1.
2.

Similarly, DbVisualizer does not consider Binary/BLOB and CLOB columns when comparing, and marks them as ignored. You can manually specify that
CLOB columns should be compared in the Column Configuration dialog.

If the right object is editable, you can apply the changes needed to remove the differences, one by one or all at once.

Along with the difference indications in the divider there are small icons: arrows and cross marks. Clicking on such an icon updates the modified object to
match the original object, by inserting or deleting one or more rows or updating the text or column values.

If you want to apply all changes needed to make the right object match the left object, you can click on the Sync button in the toolbar (the second to
rightmost button).

You can also edit the right object directly in the Compare window.

If you want to change sides when comparing objects, you can click the Flip button in the toolbar (the rightmost button). One reason for doing this may be
that you want to update the object you originally used as the original instead of the modified object.

14.4 Comparing Cell Values
In a Data tab or a result set tab, you can also compare the values of two selected cells.

Select the two cells to compare,
Choose Compare Two Selected Cells from the right-click menu.

The values are compared and shown the same way as when comparing text data, with the exception that editing is disabled.

No matter how you update the right object, all changes are also applied to the tab where the object was originally opened. To permanently
save the changes, you need to use the Save button in that tab.

Monitoring Data Changes

DbVisualizer 13.0 Users Guide 299 of 445

•
•

15 Monitoring Data Changes
With the monitor feature, you can track changes in data over time, viewing the results of one or many SQL statements either as grids or graphs. Typically,
you configure the monitor to run the statements automatically at certain intervals.

The monitoring feature combined with the charting capability in DbVisualizer Pro is really powerful, delivering real time charts of many result sets
simultaneously. For example, you can use monitoring to spot trends in a production database, surveillance, statistics, database metrics, and so on.

Any SQL statement that produces a result set can be monitored, and when you monitor multiple statements, different statements may use different
database connections concurrently.

15.1 Creating a Monitored Query
Monitored SQL statements are managed under the Monitors node in the Scripts tab in the tree area to the left in the main DbVisualizer window.

Monitor table row count
Monitor table row count difference

A monitor is basically a regular SQL script with some additional information and controls. You create it like any other script but place it in the Monitors
folder.

A monitored SQL script is associated with information about the target database connection and (optionally) the catalog (the JDBC term which translates
to a database for some databases, like Sybase, MySQL, SQL Server, etc) and schema. It also has a title, a maximum row count (how many results to keep
track of) and a visibility status (whether the monitored statement result should be included in the Monitors windows, discussed below). This information
is displayed, and can be edited, in the lower part of the Scripts tab, along with information about the file that holds the monitored statement. If you don't
want to see these details, you can disable it with the Show Details toggle control in the right-click menu for a node.

Note that the monitor is not supposed to run scripts with multiple statements, and especially not client-side commands (@). Only statements
returning a single result set (i.e. select statements) are supported.

Monitoring Data Changes

DbVisualizer 13.0 Users Guide 300 of 445

The figure above shows the Incidents/Day monitored statement and the SQL that is associated with it.

The following is an example of the result set produced by the statement:

The interesting columns in the result are the Month and Count. The Year and MonthNum are there just to get the correct ascending order of the result.

Monitoring Data Changes

DbVisualizer 13.0 Users Guide 301 of 445

You can create and work with monitored statements in the same way as with a Bookmark. The main difference is how they are used and a couple of
additional ways monitored statements can be created. For information about how to manually create, manage and share monitored statements, please
see the Managing Frequently Used SQL page. The following sections describe how you can get help creating the bookmarks for a couple of cases that are
commonly used for monitoring.

15.1.1 Monitor table row count
It is very common to want to keep track of how the number of rows in a table varies over time. The right-click menu in the grid for a table or result set
therefore has a Create Row Count Data Monitor operation that creates a monitored statement for you automatically.

It creates a monitor with SQL for returning a single row with the timestamp for when the monitor was executed and the total number of rows in the table
at that time. Every time the monitor is executed, a new row is added to the grid, up to a specified maximum number of rows. When the maximum row
limit is reached, the oldest row is removed when a new row is added. Example:

PollTime NumRows

2016-01-23 12:19:10 43123

2016-01-23 12:11:40 43139

2016-01-23 12:21:10 43143

2016-01-23 12:22:40 43184

… …

The SQL for this monitor uses two variables, dbvis-date and dbvis-time. These variables are substituted with the current date and time, formatted
according to the corresponding Tool Properties settings. The reason for using these variables instead of using SQL functions to retrieve the values is
simply that it is almost impossible to get the values in a database-independent way. Another reason is that we want to see the client machine time rather
than the database server time. You can, of course, modify the SQL any way you see fit, as long as the PollTime and NumRows labels are not changed.

SELECT '${dbvis-date}$ ${dbvis-time}$' AS PollTime,
 COUNT(*) AS NumRows
FROM RENTAL

DbVisualizer keeps the result for previous executions from the Monitor, up to the specified maximum number of rows, so that you can see how the result
changes over time. You define the maximum number of rows in the Max Row Count field in the details area at the bottom of the Scripts tab. This
property is initially set to 100 when you use Create Row Count Data Monitor to create the monitor.

Monitoring Data Changes

DbVisualizer 13.0 Users Guide 302 of 445

You can change the value to limit or extend the number of rows that DbVisualizer should keep. Setting it to 0 or a negative number tells DbVisualizer to
always clear the grid between executions of monitors.

15.1.2 Monitor table row count difference
In addition to tracking the number of rows in a table over time, you may want to see by how many rows the value changes. You can create a monitor for
this purpose with the Create Row Count Diff Data Monitor operation, available in the right-click menu for the grid.

In addition to the Row Count Monitor, the Row Count Diff Monitor reports the difference between the number of rows in the last two executions:

PollTime NumRows NumRowsChange

2016-01-23 12:19:10 43123 0

2016-01-23 12:11:40 43139 16

2016-01-23 12:21:10 43143 4

2016-01-23 12:22:40 43184 41

Monitoring Data Changes

DbVisualizer 13.0 Users Guide 303 of 445

PollTime NumRows NumRowsChange

… … …

The SQL for this monitor adds a third column, named NumRowsChange. It utilizes the fact that DbVisualizer automatically creates variables for the
columns in a monitor result set, holding the values from the previous execution. The NumRowsChange column is set to the value returned by the
count(*) aggregate function for the current execution minus the value from the previous execution, held by the NumRows variable. All columns in a
monitor result set can be used like this to reference values from the previous execution of the monitor.

SELECT '${dbvis-date}$ ${dbvis-time}$' AS PollTime,
 COUNT(*) AS NumRows,
 COUNT(*) - ${NumRows||count(*)}$ AS NumRowsChange
from RENTAL

15.2 Running a Monitored Query
The Monitor window, launched via the Tools->Data Monitor menu option, is where you active monitors and look at the results. The monitor tabs can be
rearranged in the same way as all other tabs, pretty much any way you like. Please see Getting the Most Out of the GUI for details.

The monitor results can be viewed only as grids in DbVisualizer Free, while DbVisualizer Pro adds the capability to view them as charts or text.

The Monitor window has a toolbar at the top with an Auto Reload Interval field and a Adjust box. The Auto Reload Interval field is used to control how
often, in seconds, to execute the monitors when auto update is running. The specified number of seconds may be increased automatically by
DbVisualizer if the total execution time for all monitors is longer than the specified value. Check the Adjust box and the Monitor feature will automatically
increase the number of seconds so that all monitors will complete before next auto-update.

The rest of the window holds result areas for each monitored statement with the Visible attribute enabled. Each individual monitor result tab or window
may also have a toolbar with controls that apply just to that result. The screenshot is from DbVisualizer Pro, with View buttons in the toolbar for the
selected monitor; these buttons are not included in DbVisualizer Free.

When auto reload is running, there is a progress bar shown to the left of the Auto Reload Interval field. This progress bar is only shown when auto
update is running.

The main toolbar buttons have the following functions:

Toolbar Button Description

Close Closes the Monitor window

Reload Reloads all results (i.e., executes all monitors and updates the result sets)

Accessing Frequently Used Objects

DbVisualizer 13.0 Users Guide 304 of 445

1.
2.
3.
4.

Toolbar Button Description

Locate Current Locates and select the monitor node in the Scripts tab corresponding to the currently
selected result

Clear Current Clears the currently selected result

Clear All Clears all results

Show as Tabs Shows the results as collapsed tabs

Show as Windows Shows the results as tiled tabs

Show Grids Shows all results as grids

Show Text Shows all results as text

Show Chart Shows all results as graph in the selected chart type

Show/Hide Chart Legends Toggle this to show/hide chart legends

Show/Hide Monitor Toolbars Toggle this to show/hide toolbars for each monitor

Start Monitors Starts auto-update of all monitors, repeatedly executing all statements at the intervals
specified by the Auto Reload Interval field

Stop Monitors Stops the auto-update

In the Tool Properties dialog, you can enable Show Monitor Window at Startup and Start Monitors Automatically, in the Monitor category under the
General tab.

16 Accessing Frequently Used Objects
When you work on many different tasks, it is important to easily find and use the data and scripts you need.

DbVisualizer helps you by keeping the tabs you use open between sessions and letting you organize references to objects and scripts.

16.1 Keeping Tabs Open Between Sessions
If you often work with the same objects and a few scripts, you can ensure that the Object View and SQL Commander tabs for these objects remain open
between DbVisualizer sessions.

Open Tools->Tool Properties,
Select the Tabs category,
Enable one or both of Preserve SQL Commander tabs between Sessions and Preserve Object View tabs between Sessions,
Click Apply or OK to apply the new settings.

This feature is enabled by default for SQL Commander tabs but not for Object View tabs.

The content of the SQL Commander tabs is saved at regular intervals so when you restart DbVisualizer, the content is the same as where you left off.

For Object View tabs, you can also enable Preserve Object View tabs at Disconnect. By default, Object View tabs for objects that belong to a connection
are closed when it is disconnected.

16.2 Using Favorites

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Accessing Frequently Used Objects

DbVisualizer 13.0 Users Guide 305 of 445

Navigating the Databases tab tree down to the object can be quite time consuming for database objects that you work with often. By adding these
objects to the Favorites toolbar, you have one-click access to them instead. In addition to database objects, you can also add Bookmark script files to the
Favorites toolbar.

When you click on a database object in the Favorites toolbar, the corresponding object is opened in an Object View tab. If you're not connected to the
database the object belongs to, a connection is automatically established. Clicking on a Bookmark in the Favorites toolbar opens it in an SQL
Commander tab.

You can also easily find the corresponding object in the Databases tab or Scripts tab tree using the Select Target Object right-click menu item.

The easiest way to add an item to the Favorites toolbar is to select the item in the Databases tab tree or the Script tab tree, drag it with the mouse key
depressed and drop it in the Favorites toolbar by releasing the mouse button. If you have created Favorite folders, you can also drop the item on a folder.

Accessing Frequently Used Objects

DbVisualizer 13.0 Users Guide 306 of 445

You can also use the Add to Favorite right-click menu operation for the database object or Bookmark. This opens a dialog where you can add the item, at
the top level or in an existing or new Favorite folder.

Use the Favorites tab in the navigation area to organize your favorites.

Here you can add folders and drag and drop entries between them. A favorite folder works as a drop-down menu in the Favorites toolbar. Double-click a
favorite to open the target script file in the SQL Commander or database object in the Object View.

You can also delete and rename entries here. The right-click menu for an entry also contains entry-type dependent operations, such as executing a
Bookmark and open a database object in a separate window.

To sort the favorites, select Sort... from the right-click menu for any favorite. The sorting criteria can be defined in the dialog that pops up.

Delimited Identifiers and Qualifiers

DbVisualizer 13.0 Users Guide 307 of 445

•
•
•
•

1.
2.
3.
4.

16.3 Using Scripts
A script is a file with one or more SQL statements that you can edit and execute in an SQL Commander tab. You can keep a script as an ordinary file
anywhere in the file system and load it into an SQL Commander tab when needed, but managing it as a Bookmark under the Scripts tab is more
convenient as it also keeps information about which connection you used it with last, among other things.

17 Delimited Identifiers and Qualifiers
Delimited Identifiers must generally be used for database object with names that contain special characters, reserved words or mixed case. Qualifiers are
needed when referring to an object in a different schema/catalog than the current one. DbVisualizer uses delimited, qualified identifiers in all SQL it
automatically executes in response to user interaction, such as when loading the Data tab for a table, dropping a stored procedure or getting metadata
for a DDL statement.

For the features where DbVisualizer generates SQL that you can then execute, you can control if you want to use delimited identifiers and/or qualified
object names. In the Properties tab for a connection, or in the Tool Properties dialog for a database type under the Database tab, you find
the Delimited Identifiers and Qualifiers categories.

In the Delimited Identifiers category you can specify which delimiter characters to use, e.q. double-quotes or square brackets, and for which features to
use them: Scripting (all SQL generating features), Auto Completion/Query Builder, Export, and Actions.

In the Qualifiers category you can specify for which features to use them, and also if column names should be qualified with the table name for the
Scripting and the Auto Completion/Query Builder features. For database types that supports fully qualified named (both database and schema
qualifiers), you can enable fully qualified names in the References/Navigator Graphs and for the Auto Completion/Query Builder features.

18 Handling Transactions
Database transactions are intended to make sure operations performed simultaneously do not cause data integrity problems.

By default, DbVisualizer commits all changes immediately but you can disable this to have full control over the transactions. You can also set an
appropriate transaction isolation level for your connections.

18.1 Changing the Auto Commit Setting
Auto Commit means that each SQL statement successfully executed in an SQL Commander is committed automatically, permanently changing the
database. This is the default for a connection, but you can change it at different levels.

Changing Auto-Commit for a Database Type
Changing Auto-Commit for a Connection
Changing Auto-Commit for an SQL Commander tab
Changing Auto-Commit for a Statement Block

18.1.1 Changing Auto-Commit for a Database Type
Open Tools->Tool Properties,
Select the Database tab,
Expand the node for the database type, e.g. Oracle,
Select the Transaction category,

Handling Transactions

DbVisualizer 13.0 Users Guide 308 of 445

5.

1.
2.
3.
4.

•
•

1.
2.
3.
4.

Uncheck the Auto Commit checkbox.

18.1.2 Changing Auto-Commit for a Connection
Double-click the connection node in the Databases tab tree to open an Object View tab,
Select the Properties tab,
Select the Transaction category under the node for the database type, e.g. Oracle,
Uncheck the Auto Commit checkbox.

18.1.3 Changing Auto-Commit for an SQL Commander tab
Use the SQL Commander->Transaction->Turn On/Off Auto Commit toggle item, or,
Use the corresponding toggle button to the right in the SQL Commander toolbar.

18.1.4 Changing Auto-Commit for a Statement Block
You can use the @set autocommit command in a script to enable or disable auto commit for different blocks:

@set autocommit off;
insert into SAKILA.FILM (FILM_ID, LANGUAGE_ID, TITLE) values(1201, 1, 'Mission: Impossible - DbVisualizer');
insert into SAKILA.FILM (FILM_ID, LANGUAGE_ID, TITLE) values(1202, 1, 'Harry Potter and the DbVisualizer');
insert into SAKILA.FILM (FILM_ID, LANGUAGE_ID, TITLE) values(1203, 1, 'DbVisualizer: Episode 12');
@set autocommit on;

18.2 Setting Transaction Isolation
When you connect to a database that is concurrently modified by other users and processes, the Transaction Isolation Level specifies how changes made
by others will affect you and how your changes will affect others.

To set the Transaction Isolation Level for a connection,

Double-click the connection node in the Databases tree to open an Object View tab for it,
Select the Properties tab,
Select the Transaction category,
Pick an appropriate Transaction Isolation Level from the drop-down list.

The levels that are supported depends on the database you are connecting to. Many databases support the levels as defined in the JDBC specification,
which are described in the table below. But be aware that there are also many databases that have their own levels and/or terminology.

Level Transactions Dirty Reads Non-Repeatable Reads Phantom Reads

TRANSACTION_NONE Not supported N/A N/A N/A

TRANSACTION_READ_COMMITTED

Supported Prevented Allowed Allowed

TRANSACTION_READ_UNCOMMITT
ED

Supported Allowed Allowed Allowed

TRANSACTION_REPEATABLE_REA
D

Supported Prevented Prevented Allowed

TRANSACTION_SERIALIZABLE Supported Prevented Prevented Prevented

A dirty read occurs when transaction A reading a value before transaction B has made permanent, i.e. before it has been committed.

A non-repeatable read occurs when transaction A retrieves a row, transaction B subsequently updates the row, and transaction A later retrieves the same
row again. Transaction A retrieves the same row twice but sees different data.

A phantom read occurs when transaction A retrieves a set of rows satisfying a given condition, transaction B subsequently inserts or updates a row such
that the row now meets the condition in transaction A, and transaction A later repeats the conditional retrieval. Transaction A now sees an additional
row. This row is referred to as a phantom.

Database Connection Options

DbVisualizer 13.0 Users Guide 309 of 445

1.

Please see the database documentation for the description of transaction isolation values supported by your database.

19 Database Connection Options
The database connection is a central concept in DbVisualizer.

Learn how to configure it to your needs, how to use special features like connecting through an SSH tunnel, using Single-Sign-On, organizing the
connections, and much more.

19.1 Create a New Database Connection
To connect to a database, you must first create and setup a Database Connection.

19.1.1 Create a database connection
Create a new connection from Database->Create Database Connection and select a driver for your database from the popup menu.

Database Connection Options

DbVisualizer 13.0 Users Guide 310 of 445

2.

3.
4.
5.

6.
7.
8.

An Object View tab for the new connection is opened:

Enter a name for the connection in the Name field, and optionally enter a description of the connection in the Notes field,
Leave the Database Type as Auto Detect,
If the selected driver in Driver Type is marked with a green checkmark then it is ready to use. If it is not marked with a green checkmark, you
may have to configure the driver in the Driver Manager (see Installing a JDBC Driver how to install a JDBC driver),
Enter information about the database server in the remaining fields (see below for details),
Verify that a network connection can be established to the specified address and port by clicking the Ping Server button,
If the result from Ping Server shows that the server can be reached, click Connect to connect to the database server.

Alternatively, you can set the Settings Format to Database URL (this is the only choice for some JDBC drivers). This replaces the fields for information
about the database server with a single Database URL field, where you can enter the JDBC URL.

The information about the database server that needs to be entered depends on the which JDBC driver you use. For most drivers, you need to specify:

See Fixing Connection Issues for some tips if you have problems connecting to the database.

Database Connection Options

DbVisualizer 13.0 Users Guide 311 of 445

•
•

•
•
•

Field Description

Database Server The IP address or DNS name for the server where the database runs.

Database Port The TCP/IP port used by the database.

Database Userid The database user account name. Enter (null) to not send an account name.

Database Password The database user account password. Enter (null) to not send a password.

For some database such as Oracle, you may use a TNS name instead of specifying the server and port. Other drivers may add more fields that are driver
specific.

You may also optionally specify SSH tunneling information and Options, such as:

Option Description

Auto Commit Check if you want to enable auto commit in the SQL Commander by default for the
connection.

Save Database Password Check if you want the password to be saved (encrypted) during the session, between
sessions, or cleared when you disconnect.

Permission Mode One of Development, Test or or Production to select which set of Permissions to use.

See the Configuring Connection Properties page for related topics.

19.2 Configuring Connection Properties
Tool Properties
Connection Properties

Database Profile
Driver Properties
Invoke Java methods in the JDBC driver

In addition to the basic connection information in the Connection tab, there is also a collection of connection properties. Which properties are available
depends on the Database Type selected for the database connection in the Connection tab. Some database types have more properties than others.
Which edition of DbVisualizer you use also affects which connection properties are available.

Properties for a connection can be defined at two different levels: Tool Properties (Database tab) and Connection Properties.

19.2.1 Tool Properties
The Database tab in Tool Properties defines settings for all connections of the specific database type. All supported database types (Oracle, Informix,
SQL Server, Db2, MySQL, etc.) are listed, and for each database type, there are a number of properties that are applied to any database connection of
that type. This means, for instance, that a database connection defined as being a PostgreSQL database type will use the PostgreSQL properties defined
in Tool Properties.

Database Connection Options

DbVisualizer 13.0 Users Guide 312 of 445

19.2.2 Connection Properties
The global properties can be overridden for individual connections. The advantage with this inheritance model is that property changes that apply to all
connections can be made in one place, instead of having to apply a common setting for every database connection of a specific database type.

The Connection Properties are available in the Properties sub tab in the the database connection's Object View tab.

Database Connection Options

DbVisualizer 13.0 Users Guide 313 of 445

The Properties tab is organized basically the same way as the Tool Properties window. The main difference is that the list contains only the categories
that are applicable to this database connection. The Database Profile and Driver Properties categories are available only in the Properties tab and not
in Tool Properties. The page explains the Database Profile and Driver Properties categories, while the other categories are described in pages that
describe feature the property applies to.

Additional categories may appear in the connection properties depending on the type of database. An example is the category for Explain Plan for the
databases where this feature is supported.

At the top right corner, you will also find a link to set the Global Properties for all connections of this database type.

Database Profile
The Database Profile category is used to select whether a profile should be automatically detected and loaded by DbVisualizer, or if a specific one should
be used for the database connection. The default strategy is to Auto Detect a database profile.

Database Connection Options

DbVisualizer 13.0 Users Guide 314 of 445

There is rarely a reason to use another setting than Auto Detect, but if you manually choose a database profile, this choice will be saved between
invocations of DbVisualizer.

The way DbVisualizer auto detects a profile is based on the setting of Database Type in the Connection tab. If the Database Type is also set
to Auto Detect, DbVisualizer first detects the database type based on the JDBC information, and then detects the profile based on the
database type.

Database Connection Options

DbVisualizer 13.0 Users Guide 315 of 445

1.
2.

Driver Properties
The Driver Properties category is used to fine tune a JDBC driver before the database connection is established. You can use the filter to quickly find a
specific property.

The list of parameters, their default values and parameter descriptions are determined by the JDBC driver used for the connection. Not all drivers
support additional driver properties. To change a value, just modify it in the list. The second column in the list indicates whether the property has been
modified or not, and so, whether DbVisualizer will pass that parameter and value onto the driver at connect time.

New parameters can be added using the plus button to the right of the list. The minus button removes user added properties or resets the property to the
default value.

Invoke Java methods in the JDBC driver
In addition to driver properties, it is also possible to invoke low-level Java methods in the JDBC driver classes, java.sql.Connection and
java.sql.Statement. These are edited in the driver properties list.

You may run single argument methods taking one of String.class, Integer.class, or Boolean.class Java types as argument. The method name should be
specified as Parameter which must be fully qualified with the all-lowercase class name. The argument is specified in the Value field in the driver
properties list.

Here are a few examples:

Parameter Value

java.sql.connection.setReadOnly true

java.sql.statement.setFetchSize 1000

java.sql.connection methods are invoked just after a physical connection with the database has been established. java.sql.statement methods are
invoked just after a statement has been created and is ready for execution.

19.3 Copying an Existing Connection
To copy an existing connection and use as the basis for a new:

Select the original connection node in the Databases tab tree,
Use the Database->Duplicate Database Connection to create a copy,

The Object View tab for the copied connection is opened where you can make adjustments.

http://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html
http://docs.oracle.com/javase/7/docs/api/java/sql/Statement.html

Database Connection Options

DbVisualizer 13.0 Users Guide 316 of 445

1.
2.

3.

•
•

19.4 Edit Multiple Database Connections

There are situation when you may need to change one or several connection settings for multiple database connections at the same time. Instead of
doing this one connection at a time, the connections editor come in handy.

There are multiple paths to edit database connections:

Selecting multiple database connections in the Databases tab, right-click and choose Edit Database Connection(s)...
Selecting multiple database connections in the connections list shown when opening the object view for the Connections node. Right-click and
choose Edit Database Connection(s)...
Selecting a Folder object in the Databases tab will show all included database connections in the right-pane. Select the ones you want to edit,
right-click and choose Edit Database Connection(s)...

Note that all database connections that are to be edited must be disconnected.

The screenshot below shows how the Connections tab is listing all the connections. The list has been sorted on Connection Mode in order to make it
easy to select and edit all Test databases. As an alternative, you could have used the filter to show only these connections.

The connections editor will show only those fields that are commonly available for the database connections being edited.

The window has the following columns:

Update: Indicates if the value is edited. You may manually uncheck this to indicate the setting should not be updated
Value: Enter the new value here. Once the field is being edited its background will change and the Update box is checked.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Database Connection Options

DbVisualizer 13.0 Users Guide 317 of 445

1.
2.

19.4.1 Changing the database driver
The Driver Type setting is the main setting that controls what properties are available for a database connection. Once Driver Type has been edited its
Update checkbox cannot be unchecked.

19.5 Removing a Connection
To remove a connection,

Select the connection node in the Database tab tree,
Use the Database->Remove Database Connection(s) menu choice to remove the connection.

19.6 Organizing Connections in Folders

If you work with many database connections, you can use folder objects to organize and group them in the tree. Folder objects can have child folder
objects in an unlimited hierarchy.

Use the Database->Create Folder, Database->Rename Folder and Database->Remove Folder menu choices to manage folder objects. You can also
drag and drop folders and other objects to move them to a new location in the Databases/Connections tree.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Database Connection Options

DbVisualizer 13.0 Users Guide 318 of 445

1.
2.
3.
4.

1.
2.
3.

By double clicking the Folder node a tab is opened listing all the connections recursively in the folder. This is handy when you need to edit properties for
multiple database connection. See the chapter Edit Multiple Database Connections for details about this.

19.7 Rearranging Connections and Folders
You can sort the nodes under the Connections node or a folder node in the Databases tab:

Select the Connections node or a folder node,
Open the Sort... dialog from the right-click menu,
Select the sort order and where to place nestled folder,
Click OK.

To move an individual connection node or folder node:

Select one or more nodes,
Drag the node(s) to the new location,
Drop the node.

19.8 Setting Common Authentication Options
DbVisualizer lets you handle authentication in a manner that suits your balance between security and convenience.

Database Connection Options

DbVisualizer 13.0 Users Guide 319 of 445

19.8.1 Authentication settings in Connection Properties
Userid and password information is generally information that should be handled with great care. By default,
DbVisualizer saves both the Database Userid and Database Password (encrypted) for each database connection. The
default for SSH is to save the SSH Userid but not the SSH Password (or Key Pass-phrase). You can change this
behavior to fit your preferences.

You specify how to handle the Database Userid and Password in the Authentication category of the Properties tab.

The Require Userid and Require Password properties can be enabled to tell DbVisualizer to automatically prompt for userid and/or password when a
connection is to be established if they are not specified for the connection. The following dialog is displayed if requiring both userid and password.

19.8.2 SSH Settings in Tool Properties
The same options are available for the SSH Userid and Password in the Database Connection/SSH Settings category in the General tab of the Tool
Properties window.

Database Connection Options

DbVisualizer 13.0 Users Guide 320 of 445

Since a password may need to be handled with great care, you can also specify for how long it should be saved, if at all. If Clear at Disconnect is selected,
DbVisualizer ensures that the Password field is cleared as soon as the connection is terminated. With Save During Session, it is cleared when you shut
down DbVisualizer. To keep the password between sessions, select Save Between Sessions. If you use Save Between Sessions, we recommend that you
also set a Master Password.

SSH Config File
The configuration value is blank by default thus meaning that Config file parsing is not enabled by default. The default location of the SSH configuration
file is in the users .ssh directory (<User home>/.ssh/config).

Database Connection Options

DbVisualizer 13.0 Users Guide 321 of 445

•

•

•
•
•
•
•
•
•

1.
2.
3.

Note: Even though we do support the parsing of SSH config files all keywords are not supported. E.g. keywords such as ProxyCommand is not
supported. For a list of supported keywords please see the documentation of OpenSSHConfig. More details on Configuration Options.

The SSH Configuration file support included DbVisualizer has some known issues listed below:

Host key word need to start with a capital H
In the example below the line Host in "Host myhost" need to start with capital H. Having the line specified as "host myhost"
will give unpredictable results.

Host myhost
 user admin
 port 2222

Compression support
SSH Compression is NOT included in DbVisualizer.
Please send us an improvement request, if you need Compression to be included in DbVisualizer by default, and we will consider this for future
releases.

19.9 Setting a Master Password
Specifying a Master Password
Changing a Master Password
Resetting the Master Password
Connecting with a Master Password specified
Manually Requesting the Master Password for New Connections
Showing the Encrypted Password in Cleartext
Declaring a Master Password Rule

When you use Save Between Sessions for database passwords and SSH passwords or pass-phrases, they are by default encrypted using a static key. The
same is true for the Proxy password if you have specified one. For better security, you can specify a Master Password that is then used instead of the static
key to encrypt all passwords and pass-phrases. This way, only you know the information needed to decrypt the data. The algorithms used for encryption
with a Master Password are also more advanced, minimizing the risk that the data can be decrypted by brute force.

Using a Master Password does, however, mean that if you forget it, there is no way to retrieve it and therefore no way to decrypt the saved passwords. It
also means that the encrypted passwords cannot be read by a DbVisualizer version earlier than 9.2.

19.9.1 Specifying a Master Password
To use a Master Password for encoding of passwords saved between sessions:

Open Tools->Tool Properties and select the General/Master Password category,
Enter a password matching the described rules in both the New Password and Confirm New Password fields,
Click Apply and then confirm that you want to do this after reading the warning about what it implies.

If you forget the Master Password, it cannot be recovered. The only way forward is to reset the Master Password, which also clears all
passwords encrypted with it.
Passwords encrypted with a Master Passwords cannot be used in DbVisualizer version earlier than 9.2. If you set a Master Password in 9.2 and
then use an earlier version, you will get "invalid password" errors when trying to connect with a saved password. You must enter the database
or SSH password again in the earlier version, or go back to using DbVisualizer version 9.2 or later.

https://epaul.github.io/jsch-documentation/javadoc/com/jcraft/jsch/OpenSSHConfig.html
https://epaul.github.io/jsch-documentation/simple.javadoc/com/jcraft/jsch/JSch.html#setConfig-java.lang.String-java.lang.String-

Database Connection Options

DbVisualizer 13.0 Users Guide 322 of 445

1.
2.

3.

The passwords for all connections with Save Between Sessions chosen for the password are now encrypted with the Master Password. The same goes
for the SSH passwords/pass-phrases if you have selected to have them saved between sessions, as well as the proxy password, if any.

19.9.2 Changing a Master Password
If you want to change the Master Password:

Open Tools->Tool Properties and select the General/Master Password category,
Enter the current password in the Current Password field and the new password in both the New Password and Confirm New
Password fields,
Click Apply.

The saved passwords are then decrypted with the current Master Password and re-encrypted with the new.

Database Connection Options

DbVisualizer 13.0 Users Guide 323 of 445

1.
2.

1.
2.

1.
2.

1.
2.
3.

1.

19.9.3 Resetting the Master Password
If you have forgotten the Master Password, or simply no longer want to use one, you can reset it:

Open Tools->Tool Properties and select the General/Master Password category,
Click the Reset Master Password button and confirm that you want to do this.

19.9.4 Connecting with a Master Password specified
When you have a Master Password specified, you will be prompted to enter it the first time within a DbVisualizer session that you need to connect with a
saved password. From then on, you can make other connections with saved passwords without being prompted until you restart DbVisualizer.

19.9.5 Manually Requesting the Master Password for New Connections
You have two options to manually require being prompted for the Master Password again after entering it once within a DbVisualizer session:

Select Database->Require Master Password at Next Connect,
Open Tools->Tool Properties, select the General/Master Password category and enable Require Master Password after All Connections
Closed.

19.9.6 Showing the Encrypted Password in Cleartext
When you have specified a Master Password, you can view the saved database password or SSH password/pass-phrase in cleartext.

Right-click on the password field label and select Show Password,
Enter the Master Password when prompted.

19.9.7 Declaring a Master Password Rule
A Master Password must have at least eight characters of any kind by default, but you can declare your own rule using a regular expression in an
installation configuration file:

Open the DBVIS-HOME/resources/dbvis-custom.prefs file,
Enter a regular expression as the value of the dbvis.-MasterPasswordRule property,
Enter a description of the rule for showing the user in Tool Properties as the value of the dbvis.-MasterPasswordRuleDescr property.

The regular expression for the default rule is .{8,}. It is easy to change the number in this expression to any number you want. There are regular
expressions that can describe pretty much any rule you can come up with. For instance, this rule requires at least nine characters, with at least one
symbol, one digit, one uppercase character, and one lowercase character:

(?=.{9,})(?=.*?[^\\w\\s])(?=.*?[0-9])(?=.*?[A-Z]).*?[a-z].*

If you cannot adopt these examples to your own policy, you can search the Internet for other examples of "regular expressions for password validations".

19.10 Using Connection Keep-Alive
Databases can be configured to terminate sessions that have been idle for some time, and networks often does the same with TCP/IP connection. The
Connection Keep-Alive feature helps preventing connections to be closed due to time-outs of this kind by periodically executing a simple SELECT
statement.

To enable Keep-Alive for a connection:

Open the Object View tab for the connection,

Note that all passwords encoded with the Master Password are then immediately cleared and there is no way to recover them.

Network connections may be terminated for other reasons than a time-out in the database or at the network layer, e.g due to a restart of the
database or a network element. The Connection Keep-Alive feature does not help in those cases. Also note that connections that are busy,
e.g. actively used to run a script, are not "pinged". If a SELECT statement or stored procedure takes a very long time to complete, it is
therefore possible that a time-out happens at the network level. In this case, the network configuration must be tuned to handle long running
statements without timing out.

Database Connection Options

DbVisualizer 13.0 Users Guide 324 of 445

2.
3.
4.
5.
6.

•
•

•
•

•
•
•

Open its Properties tab,
Select the Physical Connection category,
Modify or enter a simple SQL statement in the Validation and Keep-Alive SQL field, if needed (see note below),
Enable Connection Keep-Alive and optionally change the Connection Idle Time,
Click the Apply button.

19.11 Security

Using an SSH Tunnel
Using SSL/TLS

Certificates
Using a truststore for the whole JVM

Example
Common problems
Single Sign-On (SSO)

When DbVisualizer communicates with a database server, all communication (except passwords) is done in plain text; by intercepting the
communication, someone can access the transmitted data and even modify it while in transit. To protect your communication you need to encrypt the
communication between DbVisualizer and the server. Kerberos, LDAP, Radius, security mechanisms, external authentication options, SSH server
forwarding, and a lot of other database specific features are not directly related to DbVisualizer, but we will do our best to assist in these scenarios.

19.11.1 Using an SSH Tunnel
You can use SSH (Secure SHell) to encrypt the network connection between DbVisualizer and a server even for non-SSL-capable clients. A database that
sits behind a firewall cannot be accessed directly from a client on the other side of the firewall, but it can often be accessed through an SSH tunnel. The
firewall must be configured to accept SSH connections and you also need to have an account on the SSH host for this to work.

If you need to access a database that can only be accessed vi an SSH tunnel, you need to specify additional information in the Use SSH Tunnel area of the
Connection tab.

Enable SSH tunneling by clicking on the checkbox. When it is enabled, five additional fields are shown.

The SELECT statement used for Connection Keep-Alive can also be specified in the properties pane. For supported databases, it is set to a
SELECT statement that has been verified to work for the database type but for connections that use the Generic profile, you must specify a
valid SELECT statement in order for this feature to work. For many databases, SELECT 1 or SELECT 1 FROM aSmallTable WHERE 1 = 0 s
hould work.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You find additional information on security related to specific databases in our support portal.

This area is only shown when the Server Info settings format is selected, and only for databases identified by at least a Database Server and
a Database Port (i.e. not for embedded databases or when using the TNS Connections Type for an Oracle database, or similar).

https://support.dbvis.com/support/solutions/folders/1000232850

Database Connection Options

DbVisualizer 13.0 Users Guide 325 of 445

The SSH Host is the name or IP address for the host accepting SSH connections. The SSH Host is typically the same as the Database Server. Enter the port
for SSH connections in the SSH Port field. The default value is 22.

You may also enter the userid and password for your SSH host account in the SSH Userid and SSH Password fields, but see Setting Common
Authentication Options for other options. Alternatively, you can enter the path to a private key file (using either the RSA or DSA algorithms) in the Private
Key File field. The SSH Password field is then replaced by a Key Passphrase field where you can enter the passphrase if the private key is protected with
one.

On macOS, Linux and other Unix based operating systems an additional option Use ssh-agent is available. When this option is selected ssh-agent will be
used for authentication, removing the need to provide a private key or password. In order to use ssh-agent for authentication, the identity used for
authentication needs to be added to ssh-agent by running ssh-add in a terminal.

When SSH tunneling is enabled, a tunnel is established when you connect to the database and the connection is then made through the tunnel by
constructing a JDBC URL that uses information from both the Connection and Use SSH Tunnel sections.

If you're familiar with using the ssh command to set up a tunnel manually, you may be interested in more details. The tunnel corresponds to the tunnel
you would set up with the ssh command like this:

ssh -p <SSHPort> -L<LocalPort>:<DatabaseServer>:<DatabasePort> <SSHUserid>@<SSHHost>

Where the placeholders correspond to the fields in the Connect and Use SSH Tunnel sections, except for <LocalPort> which is any available port,
determined at connect time.

The JDBC URL is constructed using 127.0.0.1 as the Database Server portion and <LocalPort> as the Database Port portion, e.g. like this for the Oracle
Thin driver when <LocalPort> is 50538:

jdbc:oracle:thin@127.0.0.1:50538/XE

In other words, the JDBC driver connects to the SSH tunnel's local port, which then forwards all communication to the database server.

Note that when using an SSH tunnel, the Database Server is evaluated on the SSH host. If the database server is running on the SSH host, you
can therefore set Database Server to localhost in case the database only accepts local connections.

Database Connection Options

DbVisualizer 13.0 Users Guide 326 of 445

•
•
•
•
•
•

The URL that is used for the connection is shown at the top of the Object View tab for the database connection when a connection is established, along
with a certificate icon if the connection is made through an SSH tunnel.

If you use the SSH Tunnel feature, you may also want to configure a few things in Tools->Tool Properties. In the Database Connection/SSH Settings
category under the General tab, you can specify:

SSH Keep-Alive Interval to minimize the risk that the tunnel is disconnected due to inactivity
SSH Known Hosts File so you don't have to accept connections to known SSH hosts every time you connect
SSH Config File containing optional SSH configuration. More on SSH config files.
SSH Authentication settings
Number of SSH Authentication Tries that limits the number of allowed connection attempts
SSH Password/Passphrase settings

19.11.2 Using SSL/TLS
Depending on the database and the JDBC driver, you may be able to use SSL (Secure Socket Layer) to encrypt client/server communications and securely
authenticate client and server.

In case the JDBC driver supports SSL, you define the SSL settings as Driver Properties for your connection according to the documentation for the JDBC
driver. The exact details depend on the versions of the database and the driver, but using PostgreSQL as an example, the settings can look like this:

DbVisualizer does not support algorithms such as ssh-ed25519 or ssh-ed448 out of the box. In order to support this, you need to use Java 17.
Even though Java 17 is not yet officially supported by DbVisualizer, we have many users running DbVisualizer with Java 17 (see this article for
details).

https://support.dbvis.com/a/solutions/articles/1000274189
http://confluence.dbvis.com/display/UG100/Configuring+Connection+Properties
https://support.dbvis.com/support/solutions/articles/1000231944-how-do-i-change-the-java-version-that-dbvisualizer-use-

Database Connection Options

DbVisualizer 13.0 Users Guide 327 of 445

1.

2.

Certificates
For ensuring security of the data being transferred between a client and server, SSL can be implemented either one-way or two-way (aka mutual
authentication). In one way SSL, only client validates the server to ensure that it receives data from the intended server. In case of two-way SSL, both
client and server authenticate each other to ensure that both parties involved in the communication are trusted.

Trusting the server – One way authentication
A server certificate that is signed by a trusted Certificate Authority (CA) should always work fine, since the Java distribution includes a truststore with all
the CA public keys.

When a self-signed server certificate is used, some additional configuration is needed. Depending on the actual JDBC driver this may include importing
certificates to a truststore using the Java keytool. Some drivers allow this truststore to be configured per connection instead of for the whole Java VM.
When using a truststore that affects the whole JVM special considerations must be taken.

Using a truststore for the whole JVM
Many forums on the net suggests using the Java keytool to import the certificate into the Java VM's default truststore. The drawback with that solution is
that it does not survive a Java upgrade; when the Java VM bundled with DbVisualizer is used, upgrading DbVisualizer effectively causes SSL connections
to fail. We therefore recommend creating a truststore separate from the Java VM (e.g. in /Users/me/MyTrustStore) and import the certificate to that Trust
Store.

Note that setting the truststore on Java VM level may affect other functionality of DbVisualizer as well as other database connections. E.g. if the
certificate of dbvis.com cannot be verified neither Help->Contact Support nor Help->Check for Update will work.

When creating the truststore you should always start with a trust store containing the needed certificates (E.g. the default java Trust Store) and add/
import your custom certificate to it.

Do the following:

Copy the Java default truststore to your location (e.g. /Users/me/MyTrustStore).
The location of the Java default truststore is in most cases
<Java Home>/lib/security/cacerts
Import your server certificate to the truststore using keytool. The password of the Java VM truststore is in most cases changeit. Following is an
example of using the keytool when importing a certificate.

keytool -importcert -alias mycert -file ca.pem -keystore /Users/me/MyTrustStore -storepass changeit

Replace the paths to your fit your environment.

Java VM properties for pointing to the truststore can then be added in Tools->Tool Properties, in the Java VM Properties area in the General category:

-Djavax.net.ssl.trustStore=/Users/me/MyTrustStore
-Djavax.net.ssl.trustStorePassword=mytruststore_password

There is also a Java VM property that can be used to get debugging information from the SSL handshake process.

-Djavax.net.debug=all

Mutual authentication – two way authentication
There is also a Java VM property that can be used to get debugging information from the SSL handshake process

Some database servers can be configured to require clients connecting to authenticate using a certificate.

The configuration on the client side (DbVisualizer) resembles the way a truststore is configured. In this case you may create a keystore containing a single
certificate. DbVisualizer functionality is not depending on any keys in the JVM keystore.

Java VM properties for pointing to the keystore can then be added in Tool Properties, in the Java VM Properties area in the General category.

-Djavax.net.ssl.keyStore=/Users/me/MyKeyStore
-Djavax.net.ssl.keyStorePassword=mykeystore_password

Again, there may be drivers supporting configuration of keystores (and truststores) per connection. If this is supported this is the preferred way of
configuration.

Example
For an example on how such a certificate can be created, see description below. Note that this and the following commands are just examples and
should only be seen as a guideline.

http://dbvis.com

Database Connection Options

DbVisualizer 13.0 Users Guide 328 of 445

Create your local keystore directory, for example as /users/me/MyKeyStore. Go to this directory and create your keystore and key pair with a
command like below:

keytool -genkey -alias dbvisuser -keyalg RSA -validity 365 -keystore client.keystore -storetype pkcs12

Give a password to be used for the keystore and answer the questions. As a result you will finally have the keystore in a created file with name as
given: client.keystore

You can now view your keystore with command:

keytool -list -v -keystore client.keystore

And, you can create a certificate (in the example given the name mydomain.crt) to be used by a database server with command:

keytool -export -alias dbvisuser -file mydomain.crt -keystore client.keystore

This new certificate file can then be given to the DBA(s) for the database that you connect to.

19.11.3 Common problems
Establishing an SSH tunnel may result in various errors and problems due to algorithms, key lengths, and much more. Here we list a few of them and
possible solutions.

"invalid privatekey: [B@........"
This error is reported when using a private key file that is not in a valid format. If you are sure it is a valid private key this error may also occur when using
keys that are in the "new OpenSSH" format rather than classic. One potential fix on the OpenSSH problem is to ensure you generate the keys with the -t
PEM option to ssh-keygen. The following example shows the command used to create new keys and the other how to convert existing keys.

Create new keys with the -m PEM option
ssh-keygen -t rsa -m PEM

Converting existing keys with -m PEM option
ssh-keygen -p -f /home/me/.ssh/id_rsa -m PEM

19.11.4 Single Sign-On (SSO)
Availability and configuration of SSO options depend on the database and JDBC driver. Please refer to our support portal for more details.

19.12 Read-Only Connections
There are situations where you may want to prevent accidental or intentional write operations to a database.

This said, depending on your JDBC Driver and the server you connect to, DbVisualizer can offer some help.

19.12.1 Permission Mode
Modify the connection properties and set the desired type (Development/Test/Production) and then define permissions in the SQL Commander to
prevent all write operations.

The default settings for the Production type will prompt for confirmation before doing any write operations. You can change this to Deny for extra
safety.

Note: this will only affect SQL Commander and will not prevent operations like "Alter Table" when called from a menu.

Note!

There is no way to securely prevent write operations from the client. A proper security solution must be implemented by the DBA at the server
using roles and permission.

https://support.dbvis.com/support/solutions/folders/1000232850
http://confluence.dbvis.com/display/UG/Configuring+Connection+Properties#ConfiguringConnectionProperties-ToolProperties
http://confluence.dbvis.com/display/UG/Using+Permissions+in+the+SQL+Commander

Database Connection Options

DbVisualizer 13.0 Users Guide 329 of 445

Database Connection Options

DbVisualizer 13.0 Users Guide 330 of 445

19.12.2 java.sql.connection.setReadOnly
Depending on the database and JDBC driver, you may be able to set the session in read-only mode by defining the connection
property java.sql.connection.setReadOnly = true (see Configuring Connection Properties).

The effect of this is not guaranteed; the server may silently ignore this setting and still operate in read/write mode.

19.12.3 Setting a Driver Property
Some drivers offer properties for setting read-only mode (see example below). Please refer to the driver documentation for more information.

Database Connection Options

DbVisualizer 13.0 Users Guide 331 of 445

19.12.4 Connection Hook
Finally, you can create a connection hook, i.e. an SQL statement that is run whenever you connect or disconnect to a database. Exactly what statement to
run depends on the database.

19.13 Using Oracle TNS Names
All information for connecting to an Oracle database may be stored in a tnsnames.ora file, with each database instance defined by a TNS alias. If you want
to create a connection in DbVisualizer that uses the information from this file, you must first tell DbVisualizer where it is stored by setting either the
TNS_ADMIN environment variable to the path of the folder holding the file, or making sure it is located in the ORACLE_HOME/network/admin folder and
that the ORACLE_HOME environment variable is set.

When this configuration is done, you can select TNS from the Connection Type list for the Oracle connection and then pick the TNS alias from a list of all
aliases found in the file.

http://confluence.dbvis.com/display/UG/Executing+SQL+at+Connect+and+Disconnect

Database Connection Options

DbVisualizer 13.0 Users Guide 332 of 445

1.
2.
3.
4.

19.14 Changing an Oracle Password
If your Oracle password has expired, you get a message about this in the Connection Message area for the database connection when you try to connect.
For Oracle 12c or later, you can change the password from within DbVisualizer if you use the Oracle Thin JDBC driver (version 12.2 and later):

Open the Object View tab for the connection if it is not already open,
Check the Change Password checkbox in the Authentication area,
Enter the new password in the New Password field,
Click Connect.

The connection is then established and the password is changed. The Database Password field is updated with the new password automatically.

You can also change the password as described at any time, even if it hasn't expired.

On macOS, environment variables set in .bash_profile or similar are not available to applications started via Spotlight or by double-
clicking an app icon. The launchctl command can be used to set these environment variables instead, for instance from the
.bash_profile script. This thread discusses an alternative solutions for Yosemite and El Capitan:
http://stackoverflow.com/questions/25385934/setting-environment-variables-via-launchd-conf-no-longer-works-in-os-x-yosemite

http://stackoverflow.com/questions/25385934/setting-environment-variables-via-launchd-conf-no-longer-works-in-os-x-yosemite

Database Connection Options

DbVisualizer 13.0 Users Guide 333 of 445

•
•
•
•

19.15 Using Variables in Connection Fields
Variables can be used in some of the Connection tab fields. You can use variables in the Name, Userid and Password (both Database and SSH) fields
with the Server Info settings format, or in the Database URL field when using this settings format. This can be a useful alternative to having a lot of
similar database connection objects. Several variables can be defined in a single field, and default values can be set for each variable. The following
figure shows an example with variables, described in more detail in the Using DbVisualizer Variables page.

The following variables appear in the figure:

${Name}$
${Database Host||dbhost2||||choices=[dbhost1,dbhost2,dbhost3]}$
${Port||1521}$
${SID||ORCL}$

All of these variables define a default value after the "||" delimiter, except for the ${Name}$ variable, which has no default value. The default values
appear in the connect dialog when you ask for a connection to be established. The ${Database Host}$ variable includes the choices option, with a
comma separated list of choices that should appear in a drop-down list. The drop-down list is editable, so the user is not locked into the choices from the
list.

The following figure shows the connect dialog based on the connection definition shown above.

Enter the appropriate information in the fields and then press the Connect button to establish the connection. When the connection is established,
DbVisualizer automatically substitutes the variables in the Connection tab with the values entered in the connect dialog. At disconnect from the
database, they revert back to the original variable definitions.

19.16 Automatically Connecting at Startup
If you want to automatically connect to a database when you start DbVisualizer there are three ways to achieve this:

The first way will hold for one or more database connections and is:

Database Connection Options

DbVisualizer 13.0 Users Guide 334 of 445

1.
2.

1.
2.
3.

1.
2.
3.

1.
2.

1.
2.
3.

•
•
•

•
•
•

1.
2.
3.

From the Databases tree, select the top node and open the Connections Object View. See Edit Multiple Database Connections.
For each Database Connection that you want to automatically connect, set the Connect All check box

The second option will have the same result but for one database connection at the time. Then you do:

From the Databases tree, select a specific database connection node and open the Database Connection Object View
Select the Properties tab
In the left tree, select the database node and set the Connect when "Connect All" check box in the right panel

The third option will hold for all database connections of a certain type. Then you do:

Open the Tool Properties window
Under the Database tab, select the specific database
Set the Connect when “Connect All” check box.

Finally after one or more of the alternatives above, the auto connect function must be activated at startup with the following steps:

Open Tools->Tool Properties and select the Database Connection category under the General tab,
Set the Run "Connect All" at Startup check box.

If you enable Connect when "Connect All" but do not enable Run "Connect All" at Startup, you can instead use the Database->Connect All main
menu choice to manually connect all connections marked this way.

Note that while the Database->Connect All main menu choice, will only connect all database that have Connect All selected, the Database-
>Disconnect All main menu choice, will disconnect all database connections.

19.17 Executing SQL at Connect and Disconnect
Connection hooks defines optional SQL commands that are sent to the database at connect and just before disconnect. They are typically used to
initialize the database session with custom settings and to clean up various resources at disconnect.

You can enter the SQL you want to execute in the Properties tab for the connection, in the Connection Hooks category.

You can also set this for all database connection of a certain type. Then you instead do.

Open the Tool Properties window
Under the Database tab, select the specific database and the Connection Hooks category from the tree
Enter the SQL in the shown Database Connection Hooks panel.

19.18 Using a Single Shared Physical Connection
By default, DbVisualizer uses multiple physical connections to a database. Each SQL Commander tab is allocated its own connection. Other processes
that update the database, such as saving grid edits or importing data to a table, also use their own connections. Finally most read-only operations, such
as navigating the database objects tree, use a separate shared connection. This is normally the most efficient way to access the database, but in certain
circumstances it is important to instead use one single shared physical connection for all operations. Some examples are:

Only one session per account is allowed in the target database,
Locking issues when modifying the same table in the Data tab and in an SQL Commander (when a pending transaction locks the whole table)
When using one-time passwords, new physical connections cannot be established without prompting for a new password.

For situations like these, you can force DbVisualizer to use a single shared physical connection.

Selecting the Single Shared Physical Connection Mode
Data Manipulation with a Single Shared Physical Connection
Transaction Handling with a Single Shared Physical Connection

19.18.1 Selecting the Single Shared Physical Connection Mode
To use a single shared physical connection:

Open the Object View tab for the connection node,
Select the Properties tab,
Select the Physical Connection category and enable Use a Single Shared Physical Connection.

Database Connection Options

DbVisualizer 13.0 Users Guide 335 of 445

19.18.2 Data Manipulation with a Single Shared Physical Connection
Executing a script in an SQL Commander tab, using an Action, editing a table in a grid and importing data to a table are all operations that (potentially)
modify data in the database. When a single shared physical connection is used, only one such operation may be performed at a time. If you try to start an
operation like this while another one is already being processed, a dialog will pop up asking you to try again later.

19.18.3 Transaction Handling with a Single Shared Physical Connection
If you have Auto-Commit disabled with Single Shared Physical Connection enabled, commits or rollbacks done in one part of the GUI affect changes
done in any other part of the GUI. For instance, if you have executed UPDATE or INSERT statements in an SQL Commander tab and then edit a table in its
Data tab and commit those changes, you are also committing the changes made by the UPDATE or INSERT statements. To make this clear, all GUI
controls for transaction handling for shared physical connections are shown in a separate Single Physical Connections window.

This window pops up when you connect to a database with Single Shared Physical Connection enabled, or when clicking any of the transaction control
buttons in an SQL Commander tab for such a database. You can also click the corresponding button in the DbVisualizer status bar to bring it up. From this
window, you can enable or disable Auto-Commit and manually commit or rollback a pending transaction.

You also get prompted to commit, rollback or continue working within the same transaction every time an operation results in data changes. Before
potentially making lots of changes, you get prompted to enable Auto-Commit, since making lots of changes (e.g. importing lots of data) may fill up redo
logs if running with Auto-Commit disabled.

19.19 JDBC-ODBC Bridge Driver Alternatives
Java has included a JDBC/ODBC Bridge driver as a transitional solution for accessing ODBC data sources, but it has always been considered a very limited
driver and the recommendation has always been to use a pure JDBC driver instead. Starting with Java 8, the bridge driver is no longer provided.

For most databases, you can find JDBC drivers from the database vendor or a third party. Try searching the net for the name of your database plus "JDBC
driver".

If you cannot find a JDBC driver for a database that can be accessed via ODBC, you find a few alternatives below. Note that we have have no relationship
with any of the organizations behind these drivers and have not thoroughly tested any of the drivers with DbVisualizer. In other words, please make sure
that the driver works for you before committing to one.

Finding Database Objects and Data

DbVisualizer 13.0 Users Guide 336 of 445

1.
2.
3.
4.
5.

6.
7.
8.

19.19.1 The UCanAccess Driver for MS Access
This is an Open Source driver specifically for Microsoft Access databases, not for ODBC data sources in general. You can download it here:

http://ucanaccess.sourceforge.net/site.html

To use it, you need to download the following JAR files:

UCanAccess-4.0.4-bin.zip (unzip to find JAR file; ucanaccess-4.0.4.jar) from
https://sourceforge.net/projects/ucanaccess/files/

jackcess-2.1.11.jar from
http://sourceforge.net/projects/jackcess/files/

commons-lang-2.6-bin.zip (unzip to find JAR file) from
http://commons.apache.org/proper/commons-lang/download_lang.cgi

commons-logging-1.1.3-bin.zip (unzip to find JAR file) from
http://commons.apache.org/proper/commons-logging/download_logging.cgi

hsqldb-2.3.1.zip (unzip to find JAR files hsqldb.jar and sqltool.jar) from
http://sourceforge.net/projects/hsqldb/files/

apache-log4j-2.1-bin.zip (unzip to find JAR file; you only need log4j-1.2-api-2.1.jar) from
http://logging.apache.org/log4j/2.x/download.html

poi-3.11-20141221.zip (unzip to find JAR file) from
http://poi.apache.org/download.html

Then start DbVisualizer and open Tools->Driver Manager and

Create a new Driver and name it UCanAccess,
Load all the JAR files in the User Specified tab in the order listed above,
Close the Driver Manager,
Open the Object View tab for your MS Access connection and set the Driver to UCanAccess,
Enter the JDBC URL in this format:
jdbc:ucanaccess://<absolute_path_to_the_ms_access_file>
Open the Properties tab for the connection and select the Delimited Identifiers category,
Change the Begin Identifier to [and the End Identifier to] and click Apply,
Switch back to the Connection tab and click Connect.

19.19.2 Easysoft JDBC-ODBC Bridge Driver
This is a commercial JDBC-ODBC Bridge Driver, available here:

http://www.easysoft.com/products/data_access/jdbc_odbc_bridge/

The "Working with ODBC data in DbVisualizer" page at the Easysoft web site explains how to use it with DbVisualizer.

19.19.3 CData JDBC-ODBC Bridge
This is a commercial JDBC-ODBC Bridge Driver, available here:

https://www.cdata.com/drivers/bridge/jdbc/

The "Using JDBC / DbVisualizer" page at the CData web site explains how to use it with DbVisualizer.

20 Finding Database Objects and Data
DbVisualizer provides ways to find all kinds of things, from parts of a script and data in a grid to objects in a connection tree.

For any technical assistance setting up or using these drivers, please contact respective author.

http://ucanaccess.sourceforge.net/site.html
https://sourceforge.net/projects/ucanaccess/files/
http://sourceforge.net/projects/jackcess/files/
http://commons.apache.org/proper/commons-lang/download_lang.cgi
http://commons.apache.org/proper/commons-logging/download_logging.cgi
http://sourceforge.net/projects/hsqldb/files/
http://logging.apache.org/log4j/2.x/download.html
http://poi.apache.org/download.html
http://www.easysoft.com/products/data_access/jdbc_odbc_bridge/#section=tab-1
http://www.easysoft.com/blog/dbvisualizer.html
https://www.cdata.com/drivers/bridge/jdbc/
http://www.easysoft.com/blog/dbvisualizer.html

Finding Database Objects and Data

DbVisualizer 13.0 Users Guide 337 of 445

•

•

•
•

•
•

20.1 Finding and Replacing Text in the Editor
The Edit main menu and the editor right-click menu contain two choices for finding text (Find and Find with Dialog) and one choice for replacing text
(Replace).

Find displays a Quick Find field where you can type text to look for, and use the Up and Down keys (and F3 and Shift-F3, by default) to find the
next or previous occurrence. Use the Escape key to close the field.
Find with Dialog shows a dialog where you can enter what to look for, either as text, a regular expression or using wildcards. You can also limit
the search to the current selection and use other options for a more precise search.
You can use Find Next and Find Previous to navigate to other matches, by default mapped to the F3 and Shift-F3 keys.

When using a regular expression or wildcards, the button next to the expression opens a helper menu with common symbols.
Replace shows a dialog identical to Find with Dialog but with an additional field for entering the replacement text.

When using a regular expression , the button next to the expression opens a helper menu with common symbols.
When you use a regular expression with group expressions in the Find what field, you can reference the captured text in the Replace
with field using the dollar sign ($) plus the group number (e.g. $1 for the first group).

20.1.1 Regular Expression Example:
Text in editor:

SELECT
 firstname,
 lastname
FROM
 person;

Find what:

^(\s+)(\w+)(,?)$

Replace with:

$1person.$2$3

Deselect Match whole word, select Entire scope and Use Regular Expression.

When you click Find and choose All in the following dialog, you get the following result:

Resulting text:

SELECT
 person.firstname,
 person.lastname
FROM
 person;

20.2 Finding Data in a Grid
The right-click menu for a grid contains the Find Data and Find Column choices.

Find Data shows a Quick Find field where you can type text to look for, and use the Up and Down keys to find the next or previous occurrence. Use
the Escape key to close the field.

Find Column works the same, except it locates a column with the name you type.

20.3 Locating an Object in an SQL Statement
To open an Object View tab for an object named in an SQL statement (e.g. a table in a SELECT statement) in the SQL Commander tab, place the caret in
or next to the name and choose Show Object at Cursor from the right-click menu.

Finding Database Objects and Data

DbVisualizer 13.0 Users Guide 338 of 445

20.4 Locating an Object in the Databases tab
With a node selected in the Databases tab, typing any character shows a Quick Find field where you can type the name of an object you want to locate.
Use the Escape key to close the field.

20.5 Searching a Connection

The Search tab in the Object View tab for a connection is used to search among the objects in the tree by object name. The types of objects that are
searchable depends on the database you are connected to. For instance, columns are included in the tree for some databases but not for others.

Search by specifying the name of the object, or name pattern, and press the Search button. You can use asterisk (*) as a wildcard in a pattern, or you can
use a regular expression pattern if you enable it by checking the Regular Expression checkbox. You can also specify where in the tree to start the search,
and whether to do a case sensitive search.

Note that only the visible, expanded, nodes are searched. To search among all nodes for a connection, see Searching a Connection.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Finding Database Objects and Data

DbVisualizer 13.0 Users Guide 339 of 445

•
•

You can interrupt a search operation with the Stop button in the grid toolbar. Use the Show Object Path toolbar toggle button to include or exclude a
column for the complete path for each found object in the grid. This path is the same as if navigating to each object manually in the objects tree. Other
grid toolbar buttons let you export and print the search result grid.

Double-click on a row to switch to the Object View to see detailed information about an object.

20.6 Synchronizing object tab selection and selection in the tree
By use of this functionality it is possible to set up DbVisualizer to automatically select the database tree node when the corresponding object view tab is
selected and vice versa.

This is done through the Open selected object(s) dropdown in the toolbar of the Databases tab tree.

The two options controlling this are

Autoscroll TO Object View tab Automatically open the object in an object view tab when the tree node is selected
Autoscroll FROM Object View tab Automatically select the tree node whenever its object view tab is clicked

The default values for Autoscroll can be configured in Tool Properties -> General -> Database Objects Tree.

20.7 Search in all open editors
Search Open Editors is available in the File menu and in the editor right-click menu under Find.

Note that if you have tree filters or any other property that limits the content of the tree enabled, the search is performed only for those
objects that match the filters.

Transfer DbVisualizer settings

DbVisualizer 13.0 Users Guide 340 of 445

•
•

1.
2.
3.
4.
5.

In the search dialog the following options are available:

Match Case - determines whether or not the search will be case-insensitive. This setting applies even when searching using a regular expression.
Regex Search - if this checkbox is checked the search string will be parsed and interpreted as a regular expression.
Max Entries - the maximum number of search results which will be displayed. If this is set to - or to any negative number the maximum number
of search results will be unlimited.

Each search result in the list shows the line where the result was found as well as which editor contains the result and the line number. Double clicking on
a search result will display the editor containing that result, scroll to the line and select the search result. The highlighting color can be configured
under Tools->Tool Properties by changing the Quick Filter background color in the Appearance/Grid Colors category under the General tab.

21 Transfer DbVisualizer settings
Transfer DbVisualizer settings to new environment
Transfer the DbVisualizer Pro license to new machine

21.1 Transfer DbVisualizer settings to new environment
To move your DbVisualizer settings from one machine to another, do as follows:

Install DbVisualizer on your new machine.
Use File->Export Settings in the old machine
Transfer the settings.jar file to your new machine
Open DbVisualizer on your new machine and choose File->Import Settings to import the settings.jar file
Once done, re-start DbVisualizer. (Your settings from your old machine are now migrated)

Read more about the Export and Import Settings function.

21.2 Transfer the DbVisualizer Pro license to new machine
First make sure you have followed the steps in Transfer DbVisualizer settings to new environment.

http://confluence.dbvis.com/display/UG/Exporting+and+Importing+Settings

Exporting and Importing Settings

DbVisualizer 13.0 Users Guide 341 of 445

1.
2.
3.
4.
5.
6.

•
•

The location for the license file is listed in DbVisualizer Pro, license file location
Copy the dbvis.license file from the old machine to the Download folder on your new machine
Start DbVisualizer on your new machine and open Help->License Key
Select the dbvis.license file in your Download folder
Re-start DbVisualizer when prompted
Remove the dbvis.license file in the old machine

22 Exporting and Importing Settings
Sometimes it may be necessary to migrate all your settings for DbVisualizer and import them in second DbVisualizer installation. This is very handy if you
are migrating from one machine to another, or if you want to setup an exact copy on your home computer, or if you would like to share you settings with
other users. Another key reason is for backup purposes. Loosing all database connection configurations can be really frustrating.

Export Settings
Import Settings

22.1 Export Settings
The Export Settings feature is available from the File->Export Settings main window menu choice.

http://confluence.dbvis.com/display/UG/Installing+a+Pro+Edition+License#InstallingaProEditionLicense-DbVisualizerPro,licensefilelocation

Exporting and Importing Settings

DbVisualizer 13.0 Users Guide 342 of 445

The default settings ensures that all settings are exported, but you can selectively exclude certain items. Once you've made the adjustments you want,
press OK and the settings will be saved in the specified file. The structure of this JAR file is the same as the content in your DbVisualizer preferences
directory.

Exporting and Importing Settings

DbVisualizer 13.0 Users Guide 343 of 445

Note that when you export a Connection it may be wise to export the Driver Definition it uses if you have some specific configurations done for the driver.
This ensures that the connection works as specified (if Driver Definition is not exported, the import will try to assign a matching driver).

If Master Password is enabled for DbVisualizer and passwords are not excluded in the export you must specify an export password. The export password
is used to protect the passwords that are exported. This export password is used later when importing the settings.

22.2 Import Settings
The Import Settings dialog is launched from the File->Import Settings main window menu choice.

Import Settings is used to import settings as previously exported with Export Settings. Import examines the content of the specified file and present the
choices available.

The Relative File Paths option will transform all path definitions in the exported file to be relative to the DbVisualizer installation directory
and your personal settings directory. This is useful if you will import the settings on another machine or share it with other users. Note that
the DbVisualizer version importing relative file paths must be 7.1 or later to work properly (importing in earlier versions than 7.1 will not fail
but path information will be erroneous for things such as drivers, favorites, etc.)

You should not use your master password as the export password.

Exporting and Importing Settings

DbVisualizer 13.0 Users Guide 344 of 445

Use the Import To list to set where the imported database connections will appear in the objects tree.

Note how some of the databases and folders are pre-selected. DBVisualizer will automatically pre-select databases and folders depending on differences
between the current connection settings and the imported connection settings. In this example, the icon decorations for the pre-selected connections
show that the HR Production and HR Test Data connection already exist but the imported settings are different, and that the Lab connection exists only
in the imported settings. All the other connections exists with the same settings as in the imported settings.

If the imported data has been exported with an export password you will be prompted to enter it. You can optionally click Cancel to clear the passwords
for all the connections.

Command Line Interface

DbVisualizer 13.0 Users Guide 345 of 445

•
•

•
•
•
•
•

•
•
•

Note: if the Driver Definition you import already exist, it will be reused and not imported.

23 Command Line Interface

In addition to the DbVisualizer GUI tool, there is also a pure command line interface for running scripts. We recommend that you use this interface for
tasks that you schedule via the operating system's scheduling tool, or when you need to include database tasks in a command script for a larger job. It is
also the right tool for execution of large scripts, such as a script generated by the DbVisualizer Export Schema feature.

Command Line Options
Examples

Executing single statements
Executing scripts
Controlling the output
Using variables - prompting for values
Combining OS scripts, the command line interface and DbVisualizer variables

Setting up the connection properties on the command line
Exit codes from dbviscmd
Generating a Command From SQL Commander

On Windows and Linux/Unix, you find this command as a BAT file (dbviscmd.bat) or a shell script (dbviscmd.sh) in the DbVisualizer installation directory.
For macOS, the shell script is located in /Application/DbVisualizer-<Version>.app/Contents/Resources/app.

23.1 Command Line Options
The command line interface supports the following options:

Usage: dbviscmd (-connection <name> |
 -url <URL> -drivername <name> |
 -url <URL> -driverclass <name> -driverpath <p1:p2...>)
 [-userid <userid>] [-password <password>]
 [-masterpw <password>]
 (-sql <statements> |
 -sqlfile <filename> [-encoding <encoding>])
 [-catalog <catalog>] [-schema <schema>]
 [-maxrows <max>] [-maxchars <max>]
 [-stoponerror] [-stoponsqlwarning] [-stoponnorows]
 [-stripcomments (true | false)]
 [-processvariables]
 [-emptypromptvalue <string>]
 [-listconnections]

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Don't forget to check all client-side commands that can also be used in the scripts executed with the command-line interface.

Command Line Interface

DbVisualizer 13.0 Users Guide 346 of 445

•

•

 [-output (all | none | log | result)] [-outputfile <filename>]
 [-debug [-debugfile <filename>]]
 [-errordir <directory>]
 [-prefsdir <directory>]
 [-help] [-version]

Options:
 -connection <name> Database connection name (created with the GUI)
 -url <URL> Database URL
 -drivername <name> Database driver name (created with the GUI)
 -driverclass <name> Full name of the JDBC Driver class name
 -driverpath <p1:p2...> Paths to the jar files constituting the JDBC driver.
 Each path separated by a ":" on Linux/macOS and ";" on Windows.
 -userid <userid> Userid to connect as.
 -password <password> Password for userid.
 -masterpw <password> Master Password for encrypted database passwords
 -sql <statements> One or more delimited SQL statements
 -sqlfile <filename> SQL script file to execute
 -encoding <encoding> Encoding for the SQL script file
 -catalog <catalog> Catalog to use for unqualified identifiers
 -schema <schema> Schema to use for unqualified identifiers
 -maxrows <max> Maximum number of rows to display for a result set
 -maxchars <max> Maximum number of characters to display for a column
 -stoponerror Stop execution when getting an error
 -stoponsqlwarning Stop execution when getting an SQL warning
 -stoponnorows Stop execution when empty result set or no affected rows
 -stripcomments <true/false> Strip comments before sending to database.
 Default is the setting made in the GUI
 -output <out> "all" (default), output both log msgs and result sets
 "none", suppress both log messages and result sets
 "log", output only log messages
 "result", output only result sets
 -outputfile <filename> Script execution output file. Default is stdout
 -processvariables Process variables
 -emptypromptvalue <string> String to use when entering an empty value when
 prompted for variable(s)
 -listconnections Lists all database connections

 -debug Write debug messages
 -debugfile <filename> File for debug messages. Default is stderr
 -errordir <directory> Use an alternate location for error logs
 -prefsdir <directory> Use an alternate user preferences directory
 -help Display this help
 -version Show version info

There are two options to to specify which database to connect to:

Using a connection already defined by the DbVisualizer tool. This is done by using the -connection parameter. If you have forgot the
connection name, use the -listconnections option to get a list of all existing names.
Specifying the connection properties by using the parameter -url. The -url parameter specifies the JDBC URL for the database to connect to.
For information about the JDBC url see Create a New Database Connection. There are also some examples below showing how to specify
connection properties using the -url parameter

23.2 Examples

23.2.1 Executing single statements
You can use the command line interface to execute a single SQL statement:

> dbviscmd.bat -connection "Oracle" -sql "select * from hr.countries"
14:34:48 START Executing Command Line, Database Connection: Oracle Database Type: ORACLE Catalog: null Schema:
SYSTEM
14:34:48 INFO Physical database connection acquired for: Oracle
COUNTRY_ID COUNTRY_NAME REGION_ID
---------- ------------------------ ---------
AR Argentina 2

Command Line Interface

DbVisualizer 13.0 Users Guide 347 of 445

AU Australia 3
BE Belgium 1
BR Brazil 2
CA Canada 2
CH Switzerland 1
CN China 3
DE Germany 1
DK Denmark 1
EG Egypt 4
FR France 1
HK HongKong 3
IL Israel 4
IN India 3
IT Italy 1
JP Japan 3
KW Kuwait 4
MX Mexico 2
NG Nigeria 4
NL Netherlands 1
SG Singapore 3
UK United Kingdom 1
US United States of America 2
ZM Zambia 4
ZW Zimbabwe 4
14:34:48 SUCCESS [SELECT - 25 rows, 0.007 secs] Result set fetched
select * from hr.countries;
14:34:48 END Execution 1 statement(s) executed, 25 row(s) affected, exec/fetch time: 0.007/0.005 secs [1
 successful, 0 errors]

If you like to execute just a few statements, you can pass in a list of statements:

> dbviscmd.bat -connection "Oracle" -sql "select * from hr.countries; select * from hr.regions"
14:42:21 START Executing Command Line, Database Connection: Oracle Database Type: ORACLE Catalog: null Schema:
SYSTEM
14:42:21 INFO Physical database connection acquired for: Oracle
COUNTRY_ID COUNTRY_NAME REGION_ID
---------- ------------------------ ---------
AR Argentina 2
AU Australia 3
BE Belgium 1
BR Brazil 2
CA Canada 2
CH Switzerland 1
CN China 3
DE Germany 1
DK Denmark 1
EG Egypt 4
FR France 1
HK HongKong 3
IL Israel 4
IN India 3
IT Italy 1
JP Japan 3
KW Kuwait 4
MX Mexico 2
NG Nigeria 4
NL Netherlands 1
SG Singapore 3
UK United Kingdom 1
US United States of America 2
ZM Zambia 4
ZW Zimbabwe 4
14:42:21 SUCCESS [SELECT - 25 rows, 0.004 secs] Result set fetched
select * from hr.countries;
REGION_ID REGION_NAME
--------- ----------------------
5 Australia
6 South America

Command Line Interface

DbVisualizer 13.0 Users Guide 348 of 445

1 Europe
2 Americas
3 Asia
4 Middle East and Africa
14:42:21 SUCCESS [SELECT - 6 rows, 0.003 secs] Result set fetched
select * from hr.regions;
14:42:21 END Execution 2 statement(s) executed, 31 row(s) affected, exec/fetch time: 0.007/0.002 secs [2
 successful, 0 errors]

23.2.2 Executing scripts
If you frequently want to execute a number of statements, it's best to put them into a script file. Here's how to execute a script that contains the two
statements from the example above:

> dbviscmd.bat -connection "Oracle" -sqlfile "myscript.sql"

14:45:11 START Executing Command Line, Database Connection: Oracle Database Type: ORACLE Catalog: null Schema:
SYSTEM
14:45:11 INFO Physical database connection acquired for: Oracle
COUNTRY_ID COUNTRY_NAME REGION_ID
---------- ------------------------ ---------
AR Argentina 2
AU Australia 3
BE Belgium 1
BR Brazil 2
CA Canada 2
CH Switzerland 1
CN China 3
DE Germany 1
DK Denmark 1
EG Egypt 4
FR France 1
HK HongKong 3
IL Israel 4
IN India 3
IT Italy 1
JP Japan 3
KW Kuwait 4
MX Mexico 2
NG Nigeria 4
NL Netherlands 1
SG Singapore 3
UK United Kingdom 1
US United States of America 2
ZM Zambia 4
ZW Zimbabwe 4
14:45:11 SUCCESS [SELECT - 25 rows, 0.004 secs] Result set fetched
select * from hr.countries;
REGION_ID REGION_NAME
--------- ----------------------
5 Australia
6 South America
1 Europe
2 Americas
3 Asia
4 Middle East and Africa
14:45:11 SUCCESS [SELECT - 6 rows, 0.003 secs] Result set fetched
select * from hr.regions;
14:45:11 END Execution 2 statement(s) executed, 31 row(s) affected, exec/fetch time: 0.007/0.002 secs [2
 successful, 0 errors]

23.2.3 Controlling the output
You can use options to control how much output to generate. If you only want to see the results, use the -output option with the result keyword:

Command Line Interface

DbVisualizer 13.0 Users Guide 349 of 445

> dbviscmd.bat -connection "Oracle" -sqlfile "myscript.sql" -output result
COUNTRY_ID COUNTRY_NAME REGION_ID
---------- ------------------------ ---------
AR Argentina 2
AU Australia 3
BE Belgium 1
BR Brazil 2
CA Canada 2
CH Switzerland 1
CN China 3
DE Germany 1
DK Denmark 1
EG Egypt 4
FR France 1
HK HongKong 3
IL Israel 4
IN India 3
IT Italy 1
JP Japan 3
KW Kuwait 4
MX Mexico 2
NG Nigeria 4
NL Netherlands 1
SG Singapore 3
UK United Kingdom 1
US United States of America 2
ZM Zambia 4
ZW Zimbabwe 4
REGION_ID REGION_NAME
--------- ----------------------
1 Europe
2 Americas
3 Asia
4 Middle East and Africa

For other scripts, for instance a script containing INSERT statements, you may only want to see the log messages:

> dbviscmd.bat -connection "Oracle" -sqlfile "myscript.sql" -output log
14:25:29 START Executing Command Line, Database Connection: Oracle Database Type: ORACLE Catalog: null Schema:
SYSTEM
14:25:30 INFO Physical database connection acquired for: Oracle
14:25:30 SUCCESS [SELECT - 25 rows, 0.012 secs] Result set fetched
select * from hr.countries;
14:25:30 SUCCESS [SELECT - 4 rows, 0.009 secs] Result set fetched
select * from hr.regions;
14:25:30 END Execution 2 statement(s) executed, 29 row(s) affected, exec/fetch time: 0.021/0.004 secs [2
 successful, 0 errors]

23.2.4 Using variables - prompting for values
The DbVisualizer command line execution supports the DbVisualizer Variables as described in Using DbVisualizer Variables. To enable this you will need
to use the option -processvariables.

> dbviscmd.bat -connection "Oracle" -sql "SELECT FIRST_NAME FROM HR.EMPLOYEES where FIRST_NAME LIKE ${Name||A%||
String||}$;" -processvariables
dbviscmd: Valid inputs: Enter '_B_' for empty, '(null)' for null
dbviscmd: Variable 'Name' (Literal) [A%]: B%
11:25:26 START Executing Command Line for: 'Oracle' [Oracle], Schema: SYSTEM
11:25:26 INFO Physical database connection acquired for: Oracle
FIRST_NAME

Bruce
Britney
11:25:26 SUCCESS [SELECT - 2 rows, 0.047 secs] Result set fetched
SELECT FIRST_NAME, LAST_NAME, PHONE_NUMBER FROM HR.EMPLOYEES where EMPLOYEES.FIRST_NAME LIKE B%;

Command Line Interface

DbVisualizer 13.0 Users Guide 350 of 445

11:25:26 END Execution 1 statement(s) executed, 2 row(s) affected, exec/fetch time: 0.047/0.000 secs [1
 successful, 0 errors]

23.2.5 Combining OS scripts, the command line interface and DbVisualizer
variables

For more complex tasks, you can call the command line interface from a shell script, for instance a Bourne shell script on Unix or a BAT file on Windows.
You can also use DbVisualizer variables to pass information between the shell script and the SQL script. In this example, we have a simple SQL script
(cmdtest.sql) that contains a SELECT statement with a variable in place for the table name:

cmdtest.sql

select * from ${table}$

A text file (tables.txt) contains the table names we want to execute the SQL script with:

tables.txt

hr.countries
hr.regions

In a command shell (Bourne or Bash), we can then execute the script using the table names from the text file:

for name in `cat tables.txt`;
 do ./dbviscmd.sh -connection "oracle" -sql "@run cmdtest.sql \${table||$name||||nobind}\$; ";
done

15:01:19 START Executing Command Line, Database Connection: oracle Database Type: ORACLE Catalog: null Schema:
SYSTEM
15:01:20 INFO Physical database connection acquired for: oracle
15:01:20 RUNNING [@run ...ntries||||nobind}$ - - secs]
@run cmdtest.sql ${table||hr.countries||||nobind}$;
COUNTRY_ID COUNTRY_NAME REGION_ID
---------- ------------------------ ---------
AR Argentina 2
AU Australia 3
BE Belgium 1
BR Brazil 2
CA Canada 2
CH Switzerland 1
CN China 3
DE Germany 1
DK Denmark 1
EG Egypt 4
FR France 1
HK HongKong 3
IL Israel 4
IN India 3
IT Italy 1
JP Japan 3
KW Kuwait 4
MX Mexico 2
NG Nigeria 4
NL Netherlands 1
SG Singapore 3
UK United Kingdom 1
US United States of America 2
ZM Zambia 4
ZW Zimbabwe 4
15:01:20 SUCCESS [SELECT - 25 rows, 0.016 secs] Result set fetched
select * from hr.countries;
15:01:20 SUCCESS [@run ...ntries||||nobind}$ - 0.016 secs] Script processed
@run cmdtest.sql ${table||hr.countries||||nobind}$;
15:01:20 END Execution 1 statement(s) executed, 25 row(s) affected, exec/fetch time: 0.016/0.012 secs [1
 successful, 0 errors]

Command Line Interface

DbVisualizer 13.0 Users Guide 351 of 445

java -cp /Users/ulf/work/github/dbvis/trunk/pureit/apps/dbvis/classes:/Users/ulf/work/github/dbvis/trunk/pureit/
apps/dbvis/resources:/Users/ulf/work/github/dbvis/trunk/pureit/apps/dbvis/external/* -Xmx512M
-Djava.awt.headless=true -Ddbvis.home=/Users/ulf/work/github/dbvis/trunk/pureit/apps/dbvis
com.onseven.dbvis.DbVisualizerCmd -masterpw stairway -connection oracle -sql @run cmdtest.sql ${table||
hr.regions||||nobind}$;
15:01:23 START Executing Command Line, Database Connection: oracle Database Type: ORACLE Catalog: null Schema:
SYSTEM
15:01:23 INFO Physical database connection acquired for: oracle
15:01:23 RUNNING [@run ...egions||||nobind}$ - - secs]
@run cmdtest.sql ${table||hr.regions||||nobind}$;
REGION_ID REGION_NAME
--------- ----------------------
5 Australia
6 South America
1 Europe
2 Americas
3 Asia
4 Middle East and Africa
15:01:23 SUCCESS [SELECT - 6 rows, 0.001 secs] Result set fetched
select * from hr.regions;
15:01:23 SUCCESS [@run ...egions||||nobind}$ - 0.001 secs] Script processed
@run cmdtest.sql ${table||hr.regions||||nobind}$;
15:01:23 END Execution 1 statement(s) executed, 6 row(s) affected, exec/fetch time: 0.001/0.000 secs [1
 successful, 0 errors]

The command line interface is called with the -sql option, specifying the client-side command @run. A DbVisualizer variable is passed to the @run
command with the value taken from the shell variable. This DbVisualizer variable value is then available to the script executed by the @run command.

Note that you may need to escape certain characters that the shell would otherwise interpret, like the dollar signs that are part of the DbVisualizer
variable delimiters.

23.3 Setting up the connection properties on the command line
As an alternative to using a connection already set-up through the DbVisualizer tool you may use the -url parameter. In combination with the
parameters -drivername, -driverclass, and -driverpath these parameters enables you connect without prior specification using the DbVisualizer
tool.

Following are some examples.

Executing SQL towards a MySQL instance running on localhost port 3306. The parameter "-drivername MYSQL" specifies that we are using a JDBC
driver specified in the DbVisualizer tool named MYSQL. For listing of the existing drivers use the Tools->Driver Manager in the DbVisualizer tool. Read
more in Installing a JDBC Driver.

Note that if a user driver is specified using Maven or Remote artifacts, and the driver files has not yet been downloaded, the download will be performed
when running dbviscmd.

Using -url and -drivername parameters

./dbviscmd.sh -url jdbc:mysql://localhost:3306/
 -drivername MYSQL
 -sql "select * from sakila.actor"
 -userid root

An alternative to use the -drivername you may use the parameters -driverclass and -driverpath to specify the JDBC driver.

Using -driverclass and -driverpath parameters

./dbviscmd.sh -url jdbc:oracle:thin:@localhost:1521/ORCL
 -driverclass oracle.jdbc.OracleDriver
 -driverpath "ojdbc6.jar:orai18n.jar:xdb.jar:xmlparserv2.jar"
 -sql "select * from HR.COUNTRIES"
 -userid system
 -password oracle

The above example connects to an Oracle instance on localhost and port 1521. Note that the separator character ':' between the different jar files is
platform dependant. On Windows-based desktop platforms, the value of this field is the semicolon ";".

Command Line Interface

DbVisualizer 13.0 Users Guide 352 of 445

•
•

•

23.4 Exit codes from dbviscmd
These are the exit codes when running dbviscmd

Code Meaning

0 OK

1 Other error

2 Connect error

3 Script execution resulted in an error. Execution stopped

4 Script execution resulted in errors

5 Script execution failed unexpectedly

23.5 Generating a Command From SQL Commander
From time to time, you may want to use some SQL that you have tested in the GUI and run it in the command-line interface. You can generate the string
with all parameters and paste that string on the command line or a script. Use menu option SQL Commander -> Generate Command for dbviscmd to
open a dialog where you can specify the options. Some options are selected and some are disabled depending on the editor contents.

If you generate a command from an anonymous script (a script that has not been saved to file) with more than one line, you will be prompted to save the
file or to generate a temporary file. If you generate the command from a file that is modified, you will be prompted to save the file before generating the
command.

Besides the Command Line Options, there are a few settings in the dialog:

You can use a predefined (named) or an anonymous connection; this will enable and disable connection options accordingly.
You can choose whether or not to Include SQL Commander Options; this is a convenient way to enable or disable all corresponding options.
You can still enable or disable individual options as desired.
You can choose whether or not to Include Output Options; this is a convenient way to enable or disable all corresponding options. You can still
enable or disable individual options as desired.

Database Profiles

DbVisualizer 13.0 Users Guide 353 of 445

24 Database Profiles
A Database Profile is the foundation for database specific support in DbVisualizer. Technically the database profile is a single XML file declaring what
object types, actions and viewers/editors should be available in the DbVisualizer user interface for each specific database.

Database Profiles

DbVisualizer 13.0 Users Guide 354 of 445

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

24.1 Understanding Database Profiles
A database profile is, somewhat simplified, a definition of the kind of information that is presented in the database objects tree and in the various object
views for a specific database engine. In addition, the profile defines the actions for the object types defined in the profile. DbVisualizer loads the matching
database profile when you connect to a database. If no matching profile is found, DbVisualizer uses a Generic profile with just the general database
information and actions included.

DbVisualizer currently offer database specific support (database profiles) for the following databases (click links for details):

Azure SQL Database
Db2 LUW
Elasticsearch
Exasol
Greenplum
H2
Informix
JavaDB/Derby
MariaDB
Mimer SQL
MySQL
Netezza
NuoDB
Oracle
PostgreSQL
Presto
Redshift
Snowflake
SQL Server
SQLite
Sybase ASE
Trino
Vertica
Yellowbrick

The specialized database profiles define different object types, so the database objects tree may look different depending on which database you are
connected to. The structure and organization of a database profile is also something that may impact the layout of the objects tree, even though the
provided ones are similar in their structure. There are two root nodes in the majority of the provided profiles:

Schema Objects
DBA objects

Schema objects are, for example, tables, views, triggers, and functions, while DBA objects most often are objects that require administration privileges
in the database in order to access them. The convention in DbVisualizer is to put all DBA objects under the DBA Views tree node. If you connect to a
database using an account with insufficient privileges to access a DBA object, you may see error messages if you try to select nodes under the DBA Views
node. The following is an example of the DBA sub tree for Oracle:

For databases that have no specific profile, DbVisualizer uses the Generic profile. DbVisualizer supports a wide range of databases. The nature of the
databases and what they support differ from vendor to vendor, so the appearance and structure of the tree below the database connection objects for
different databases differ as well. The generic database profile displays objects based on what JDBC offers in terms of database information (aka

https://www.dbvis.com/database/azure-sql/support/
https://www.dbvis.com/database/db2-luw/support/
https://www.dbvis.com/database/elasticsearch/support/
https://www.dbvis.com/database/exasol/support/
https://www.dbvis.com/database/greenplum/support/
https://www.dbvis.com/database/h2/support/
https://www.dbvis.com/database/informix/support/
https://www.dbvis.com/database/javadb-derby/support/
https://www.dbvis.com/database/mariadb/support/
https://www.dbvis.com/database/mimer/support/
https://www.dbvis.com/database/mysql/support/
https://www.dbvis.com/database/netezza/support/
https://www.dbvis.com/database/nuodb/support/
https://www.dbvis.com/database/oracle/support/
https://www.dbvis.com/database/postgresql/support/
https://www.dbvis.com/database/presto/support/
https://www.dbvis.com/database/redshift/support/
https://www.dbvis.com/database/snowflake/support/
https://www.dbvis.com/database/sqlserver/support/
https://www.dbvis.com/database/sqlite/support/
https://www.dbvis.com/database/sybase-ase/support/
https://www.dbvis.com/database/trino/support/
https://www.dbvis.com/database/vertica/support/
https://www.dbvis.com/database/yellowbrick/support/

Database Profiles

DbVisualizer 13.0 Users Guide 355 of 445

metadata information). DbVisualizer asks the JDBC driver for all schemas, databases, tables and procedures, and then builds the tree based on what the
driver returns.

The advantage of using JDBC to get database metadata is that it is a standard way to access the information, independent of the database engine type;
the JDBC driver layer hides the proprietary details about where and how the information is really stored. The drawback with using JDBC is that JDBC
doesn't offer access to all metadata a database may hold. While the information presented by the generic profile, with its reliance on JDBC, is sufficient
for many tasks, a database specific profile offers far more details as well as more features.

The generic database profile when used for an Oracle connection look as follows:

The appearance of the generic database profile may include schema objects and/or catalog objects depending on whether the database supports these
objects. The Procedures object always appear in the tree, regardless if the database connection supports procedures or not. There is no DBA Views node
in the generic profile.

24.1.1 Affected DbVisualizer features
One of the most important and central features in DbVisualizer is the database objects tree, used to navigate databases, and the object view, showing
details about specific objects. The general problem exploring any database is that they are all different with respect to the information describing what's
in the database (also called system tables or database meta data). This basically means that it's rather complex to implement a multi-database support
product, such as DbVisualizer, since each database must be handled specifically. All databases also support different object types, apart from the most
common ones, such as table, view, index, etc.

The database profile framework is used to simplify the process of defining what information DbVisualizer will display and operate on for a specific
database. Technically, a database profile is an XML file with all of the logic, structure and actions mapped to the visual components in DbVisualizer.
Another great benefit of separating the database specific logic from the implementation of DbVisualizer is that anyone with some degree of domain
knowledge can create a database profile. All that is needed is a text editor (preferably with XML support) and some ideas of what should be the final
result.

A great source for inspiration (except for related sections in the users guide) is all the existing database profiles that comes with DbVisualizer. All
database profiles that comes with DbVisualizer are stored in the DBVIS-HOME/resources/profiles directory (exact path is OS dependent).

The following figure illustrates which features in DbVisualizer are controlled by the database profile.

Database Profiles

DbVisualizer 13.0 Users Guide 356 of 445

•
•

•

The red box at the left shows the database objects tree. This tree is used to navigate the objects in the database. Selecting an object in the tree shows
the object view (blue box) for the selected object type. An object view may have several data views (green), showing object information. DbVisualizer
shows these as labeled tabs. The green box in the screenshot shows the content of the data view labeled Columns. The type of viewer that is presenting
the data in the screenshot is the grid viewer. Read more about all data viewers in the Viewers section.

Common to both the database objects tree and the object view are the SQL commands that are used to fetch the information from the database. The
associated SQL is executed by DbVisualizer whenever a node in the tree is expanded (to expose any child objects) or when a node is selected (to fill the
object data views).

Right-clicking the mouse on an object in the tree or clicking the Actions button in the object view shows a menu with all valid actions for the selected
object. These are also defined per database profile and object type. Read more about the capabilities of actions in the definition of user actions section.

The mapping from the visual components in the user interface described earlier and the element definitions in the XML file is, briefly, as follows:

The database objects tree (green box) is described by the ObjectsTreeDef root element,
The object views (green and blue boxes) are described by the ObjectsViewDef root element,
The commands used to execute the SQL to get the information for ObjectsTreeDef, ObjectsViewDef and ObjectsActionDef definitions are defined
by the Commands root element,
All Actions for an object are defined by the ObjectsActionDef root element.

Database Profiles

DbVisualizer 13.0 Users Guide 357 of 445

1.
2.

•
•
•
•
•
•

24.1.2 How a Database Profile is loaded
DbVisualizer automatically detect what database profile to use based on the Database Type setting for a database connection. A database profile can
also be manually specified in the connection properties.

A database profile is located using the search paths defined in Connection Properties tab and the Database Profile category. The standard directories
in the search path are:

PREFSDIR\ext\profile
DBVIS-HOME\resources\profiles

PREFSDIR is the .dbvis directory located in the users home directory and it keeps all user settings for DbVisualizer. The list of paths may be reorganized
and directories can be added. Profile files are searched in the specified order.

If the actual database profile is found in the search path it is loaded and any parent profile(s) it extends are also loaded and finally merged.

If there is no matching profile then the generic profile is automatically used. This is very basic profile and shows only basic information about the objects
in the database and should support most databases with a JDBC driver.

A database profile other than the generic is built for a specific database. Manually selecting for example a database profile for Oracle while connecting to
Db2 will result in all sorts of errors.

24.2 Creating a Database Profile
At a first glance creating and developing a database profile in XML may seem difficult. However, all definitions forming the functionality for a specific
database are expressed in a single file and the XML elements are well formed. The general recommendation is to use one of the existing database profiles
as base (copy/paste) and then step-by-step modify it for the actual database. You may use an external text editor (preferably with XML support) or the
SQL editor in DbVisualizer to edit the file. Once new changes has been made, save the file, reconnect the database connection in DbVisualizer to test the
layout and functionality changes.

Creating a new database profile should only be made for databases with no database profile available. If you are looking into changing one of the existing
database profiles by adding or modifying existing functionality, it should be extended.

For more information how to create a new database profile or extending an existing database profile check the Extending a Database Profile section.

24.3 Extending a Database Profile
Extending Commands
Extending Database Objects Tree
Extending Actions
Extending Object Views
Remove an Element
Complete sample Database Profile

All database profiles must extend the generic database profile. The generic profile handles the very basic object types in a relational database such as
Tables, Columns, Indexes and Procedures. Its implementation is based entirely on what the JDBC driver provide in terms of database meta data. Due to
the tight connection between the generic profile and the JDBC driver, the generic profile can be used to access almost any database with a JDBC driver.

The selection on what database profile should be used is determined with the Database Type setting for the database connection. Some of the database
types that can be picked have a dedicated database profile with extended support while others have not. For databases with no database profile
available, the generic one is used. It is also possible to manually choose the generic profile in the Connection Properties / Database Profiles settings.

The most important area in the database profile as seen from the DbVisualizer user interface is the section describing the database objects tree. This is
the browser or navigator showing database objects. This is also the place that connects actions used to operate on database objects and views (not
database views) used to display detailed information.

This section of the users guide is mainly focused on extending an existing database profile (not the generic profile) rather than creating a completely new
profile (which should extend the generic database profile).

For information where custom database profiles should be saved check the How a Database Profile is loaded is section.

Extending a database profile is not only about adding functionality to an existing profile but also the process of changing and removing
existing definitions in any of the profiles that are extended.

Database Profiles

DbVisualizer 13.0 Users Guide 358 of 445

24.3.1 Extending Commands
Extending the Commands and InitCommands elements is simple as every command should be uniquely identified. To add a Command just insert the
new command.

 <Commands extends="true">
 <Command id="sample.getLoginSchema">
 <SQL>
 <![CDATA[
select '${schema}' as schema from dual
]]>
 </SQL>
 </Command>
 </Commands>

To override the definition of an existing command in the parent profile, just make sure the id of the new command match the id of the parent profile
command. It will then be replaced.

24.3.2 Extending Database Objects Tree
Extending or modifying the database objects tree (ObjectsTreeDef) require some attention since the modifications must match the exact object paths as
defined in the parent profile. The object path is determined by the GroupNode and DataNode structure in the ObjectsTreeDef with the addition of the
type attribute. The following is an example of the object path to the Columns sub node for a Table node:

GroupNode[@type='Schemas']/DataNode[@type='Schema']/GroupNode[@type='Tables']/DataNode[@type='Table']/
GroupNode[@type='Columns']

(The analyze database profile utility will report object paths in the above xpath format).

Consider the following example showing the objects tree (for Oracle) with the Schemas node being expanded to show all schemas in the database:

The hierarchy of GroupNode and DataNode is important when extending the database objects tree since the exact same hierarchy must be
implemented in the extended profile. This also involve any conditional elements such as If/Else/ElseIf that are used in the parent profile.

https://www.w3schools.com/xml/xpath_intro.asp

Database Profiles

DbVisualizer 13.0 Users Guide 359 of 445

Instead of showing all schema objects in the database we want to adjust so that only the default schema is displayed at the top level (below the Oracle
database connection node). The default schema node should in addition only show table objects rather than all 20 (or so) object types being displayed in
the standard Oracle database profile.

Database Profiles

DbVisualizer 13.0 Users Guide 360 of 445

The previous screenshot shows the new My Schema: HR node at the top while the Schemas node has been renamed All Schemas. To accomplish the
above a custom database profile has been created in the ${dbvis.prefsdir}/ext/profiles/sample-ext-oracle.xml file with the following content required for
the ObjectsTreeDef definition:

<!--Commands used in this profile-->
<Commands extends="true">
 <Command id="sample.getLoginSchema">
 <SQL>
 <![CDATA[
select '${schema}' as schema from dual
]]>
 </SQL>
 </Command>
</Commands>

<ObjectsTreeDef extends="true">
 <!--The following "Schema" definition shows the login schema directly below-->
 <!--the Database Connection for faster access. It is limited to only show-->
 <!--tables (by setting the "Table" DataNode to isLeaf="true")-->
 <DataNode type="Schema" label="My Schema: ${sample.getLoginSchema.SCHEMA}" order-before="0">
 <SetVar name="schema" value="${sample.getLoginSchema.SCHEMA}"/>
 <Command idref="sample.getLoginSchema">
 <Input name="schema" value="${#db.loginSchema}"/>
 </Command>

 <DataNode type="Table" label="${oracle.getTables.TABLE_NAME}" isLeaf="true">
 <SetVar name="objectname" value="${oracle.getTables.TABLE_NAME}"/>
 <SetVar name="rowcount" value="true"/>

Database Profiles

DbVisualizer 13.0 Users Guide 361 of 445

 <SetVar name="acceptInQB" value="true"/>
 <Command idref="oracle.getTables">
 <Input name="owner" value="${schema}"/>
 <Input name="temporary" value="N"/>
 <ProcessDataSet action="sortcolumn" index="getTables.TABLE_NAME"/>
 <Filter index="getTables.TABLE_NAME" label="Table"/>
 </Command>

 <!--These are needed for the viewers defined in the parent profile-->
 <!--associated with the "Table" type-->
 <SetVar name="theTableName" value="${objectname}"/>
 <SetVar name="theParentName" value="${objectname}"/>
 <SetVar name="triggersCondition" value="and table_name = '${theTableName}'"/>

 </DataNode>
 </DataNode>

 <!--Renaming the standard Schemas node to "All Schemas"-->
 <GroupNode type="Schemas" label="All Schemas"/>
</ObjectsTreeDef>

In the Commands section there is a new Command that run a dummy SQL SELECT only to create a result set containing a single row/column with the
value of the ${schema} variable. The value for the ${schema} variable is provided in the Command element for DataNode type="Schema" using the $
{#db.loginSchema} variable value as input. This variable is maintained by DbVisualizer and contain the login schema as specified in the connection
setup. For Oracle this is the userid.

<Command idref="sample.getLoginSchema">
 <Input name="schema" value="${#db.loginSchema}"/>
</Command>

The command above is used to present the default schema as in the following DataNode declaration.

<DataNode type="Schema" label="My Schema: ${sample.getLoginSchema.SCHEMA}" order-before="0">
 <SetVar name="schema" value="${sample.getLoginSchema.SCHEMA}"/>
 <Command idref="sample.getLoginSchema">
 <Input name="schema" value="${#db.loginSchema}"/>
 </Command>

 <DataNode type="Table">
 ...
 </DataNode>
</DataNode>

The label for this Schema type is label="My Schema: ${sample.getLoginSchema.SCHEMA}". The ${sample.getLoginSchema.SCHEMA} variable name
consists of two parts, the name of the command: sample.getLoginSchema and the column name: SCHEMA in the result set the produced by the
command.

As a sub node to the My Schema node there is the DataNode type="Table" definition for the Table object type. The complete declaration for the Table
element and its sub elements has been copied from the parent profile:

<DataNode type="Table" label="${oracle.getTables.TABLE_NAME}" isLeaf="true">
 <SetVar name="objectname" value="${oracle.getTables.TABLE_NAME}"/>
 <SetVar name="rowcount" value="true"/>
 <SetVar name="acceptInQB" value="true"/>
 <Command idref="oracle.getTables">
 <Input name="owner" value="${schema}"/>
 <Input name="temporary" value="N"/>
 <ProcessDataSet action="sortcolumn" index="TABLE_NAME"/>
 <Filter index="TABLE_NAME" label="Table"/>
 </Command>

 <!--These are needed for the viewers defined in the parent profile-->
 <!--associated with the "Table" type-->
 <SetVar name="theTableName" value="${objectname}"/>
 <SetVar name="theParentName" value="${objectname}"/>
 <SetVar name="triggersCondition" value="and table_name = '${theTableName}'"/>
</DataNode>

Database Profiles

DbVisualizer 13.0 Users Guide 362 of 445

The Table objects in the extended profile should not show any sub nodes such as columns or triggers and these declarations are then removed in the
copied DataNode for the Table object. The isLeaf="true" attribute specifies that there will be no child nodes.

The new All Schemas node in the extended profile is supposed to have the exact same content and definition as in the parent profile when it was called
Schemas. The following definition will just rename the label of the existing node.

<GroupNode type="Schemas" label="All Schemas"/>

This example show adding a new Role node under all DBA / Users / User objects.

In the parent Oracle profile there are no child nodes below User. To handle this all nodes from DBA down to User must be specified (aka the object type
path). The only requirement is that the type attribute is specified and that it match the type in the parent profile. In addition, this example specify the
label attribute for some of the nodes just to show that overridden attributes will replace any parent equvivalent node attributes.

<GroupNode type="DBA" label="Database Administration">
 <GroupNode type="Users">
 <!--The "User" type don't allow child nodes in the parent profile.-->
 <!--Setting isLeaf="false" is needed to override this and allow the-->
 <!--new "Role" child node-->
 <DataNode type="User" isLeaf="false">
 <!--Here comes the new child "Role" DataNode-->
 <DataNode type="Role" isLeaf="true" label="${oracle.getGranteeRoles.GRANTED_ROLE} - ext">
 <SetVar name="objectname" value="${oracle.getGranteeRoles.GRANTED_ROLE}"/>
 <Command idref="oracle.getGranteeRoles">
 <Input name="grantee" value="${objectname}"/>
 </Command>
 </DataNode>
 </DataNode>
 </GroupNode>
</GroupNode>

The following are specified only to redefine the position of the Locks and Sessions nodes. One of order-before and order-after attributes are used to
either identify a type for which the node should be positioned before or after, or an index. The index is the fixed position or 0 which means first or a
somewhat high number means last. The following will move the Sessions first among the DBA child nodes.

<GroupNode type="Sessions" order-before="0"/>
<!--The following will move the "Locks" node before "Sessions"-->
<GroupNode type="Locks" order-before="Sessions"/>

24.3.3 Extending Actions
Extending ActionGroup and Action elements follow the same rules as for extending ObjectsTreeDef section. The following example show removing
the oracle-schema-stringsearch action for the Schema object type in the parent profile. A new ActionGroup: Extended Schema Actions is added with
a single new Action: sample-schema-sample-action.

<ObjectsActionDef extends="true">
 <ActionGroup type="Schema">
 <!--Remove action from parent profile for "Schema"-->
 <Action id="oracle-schema-stringsearch" action="drop"/>
 <!--Adds an "Extended Schema Actions" sub menu in the "Schema" actions menu-->
 <ActionGroup type="sample-schema-test" label="Extended Schema Actions">
 <!--Sample action that does nothing-->
 <Action id="sample-schema-sample-action" label="Sample Action"
 reload="true" resetcatalogs="true" icon="remove">
 <Input label="Text Field" name="textField" style="text" editable="true"/>
 <Command>
 <SQL><![CDATA[Sample Action "${textField}"]]></SQL>
 </Command>
 <Confirm>
 Really run Sample Action "${textField}"?
 </Confirm>
 <Result>

Only attributes for GroupNode and DataNode can be overridden. If you need to override for example a SetVar in a DataNode then all of the
attributes in the DataNode and all its sub elements must be specified.

Database Profiles

DbVisualizer 13.0 Users Guide 363 of 445

 Sample Action "${textField}" processed!
 </Result>
 </Action>
 </ActionGroup>
 </ActionGroup>
</ObjectsActionDef

24.3.4 Extending Object Views
Extending <ObjectView> and <DataView> elements follow the same rules as previously explained.

<ObjectsViewDef extends="true">
 <!--Schema is dropped in the Oracle profile. Redefine it here and show the-->
 <!--dictionary views. That data is really not associated with the single schema-->
 <!--defined in this profile but is a way to have it quickly accessed from-->
 <!--a single node.-->
 <ObjectView type="Schema">
 <DataView id="sample-schema-dict" label="Dictionary"
 icon="sample-schema-dict" viewer="grid">
 <Command idref="sample.getDict"/>
 <Message>
 <![CDATA[
<html>
Simple viewer showing all dictionary tables with description. Easily accessed
by opening the Schema viewer since that is empty anyway in the
parent oracle profile.
</html>
]]>
 </Message>
 </DataView>
 </ObjectView>
</ObjectsViewDef>

24.3.5 Remove an Element
Removing an object in the parent profile is easy, just add the action="drop" attribute to any of GroupNode, DataNode, ObjectView, DataView,
ActionGroup and Action elements. If there are any sub elements for the object being dropped, these are also removed.

24.3.6 Complete sample Database Profile
This document describe the different parts of a extended sample database profile for an Oracle database. Here follow the complete sample database
profile. If you would like to test it with your Oracle database, then just copy and paste it to your $HOME\.dbvis\ext\profiles folder as sample-oracle.xml. In
DbVisualizer open Connection Properties for your Oracle connection and click Database Profiles category. In the list of profiles choose sample-oracle,
click Apply and then connect.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd">

<!--
 Copyright (c) DbVis Software AB. All Rights Reserved.
-->

<DatabaseProfile
 desc="Sample profile extending the Oracle profile"
 extends="oracle"
 minver="9.5">

 <!--Commands used in this profile-->
 <Commands extends="true">
 <Command id="sample.getLoginSchema">
 <SQL>
 <![CDATA[
select '${schema}' as schema from dual
]]>

Database Profiles

DbVisualizer 13.0 Users Guide 364 of 445

 </SQL>
 </Command>

 <Command id="sample.getDict">
 <SQL>
 <![CDATA[
select * from dict order by table_name
]]>
 </SQL>
 </Command>
 </Commands>

 <ObjectsActionDef extends="true">
 <ActionGroup type="Schema">
 <!--Remove action from parent profile for "Schema"-->
 <Action id="oracle-schema-stringsearch" action="drop"/>

 <!--Adds an "Extended Schema Actions" sub menu in the "Schema" actions menu-->
 <ActionGroup type="sample-schema-test" label="Extended Schema Actions">
 <!--Sample action that does nothing-->
 <Action id="sample-schema-sample-action" label="Sample Action" reload="true"
 resetcatalogs="true" icon="remove">
 <Input label="Text Field" name="textField" style="text" editable="true"/>
 <Command>
 <SQL><![CDATA[Sample Action "${textField}"]]></SQL>
 </Command>
 <Confirm>
 Really run Sample Action "${textField}"?
 </Confirm>
 <Result>
 Sample Action "${textField}" processed!
 </Result>
 </Action>
 </ActionGroup>
 </ActionGroup>
 </ObjectsActionDef>

 <ObjectsTreeDef extends="true">
 <!--The following "Schema" definition shows the login schema directly below-->
 <!--the Database Connection for faster access. It is limited to only show-->
 <!--tables (by setting the "Table" DataNode to isLeaf="true")-->
 <DataNode type="Schema" label="My Schema: ${sample.getLoginSchema.SCHEMA}" order-before="0">
 <SetVar name="schema" value="${sample.getLoginSchema.SCHEMA}"/>
 <Command idref="sample.getLoginSchema">
 <Input name="schema" value="${#db.loginSchema}"/>
 </Command>

 <DataNode type="Table" label="${oracle.getTables.TABLE_NAME}" isLeaf="true">
 <SetVar name="objectname" value="${oracle.getTables.TABLE_NAME}"/>
 <SetVar name="rowcount" value="true"/>
 <SetVar name="acceptInQB" value="true"/>
 <Command idref="oracle.getTables">
 <Input name="owner" value="${schema}"/>
 <Input name="temporary" value="N"/>
 <ProcessDataSet action="sortcolumn" index="TABLE_NAME"/>
 <Filter index="TABLE_NAME" label="Table"/>
 </Command>

 <!--These are needed for the viewers defined in the parent profile-->
 <!--associated with the "Table" type-->
 <SetVar name="theTableName" value="${objectname}"/>
 <SetVar name="theParentName" value="${objectname}"/>
 <SetVar name="triggersCondition" value="and table_name = '${theTableName}'"/>

 </DataNode>
 </DataNode>

 <!--Renaming the standard Schemas node to "All Schemas"-->

Database Profiles

DbVisualizer 13.0 Users Guide 365 of 445

 <GroupNode type="Schemas" label="All Schemas"/>

 <!--The main purpose with the following is to add a "Role" child DataNode -->
 <!--for each "User". In the parent Oracle profile there are no child-->
 <!--nodes below "User". To handle this all nodes from "DBA" down to "User"-->
 <!--must be specified. The only requirement is that the type attribute is-->
 <!--specified and that it match the type in the parent profile.-->

 <!--In addition, this example specify the label attribute for some of the-->
 <!--nodes just to show that overridden attributes will replace any parent-->
 <!--equvivalent node attributes.-->
 <GroupNode type="DBA" label="Database Administration">
 <GroupNode type="Users">
 <!--The "User" type don't allow child nodes in the parent profile.-->
 <!--Setting isLeaf="false" is needed to override this and allow the-->
 <!--new "Role" child node-->
 <DataNode type="User" isLeaf="false">
 <!--Here comes the new child "Role" DataNode-->
 <DataNode type="Role" label="${oracle.getGranteeRoles.GRANTED_ROLE} - ext" isLeaf="true">
 <SetVar name="objectname" value="${oracle.getGranteeRoles.GRANTED_ROLE}"/>
 <Command idref="oracle.getGranteeRoles">
 <Input name="grantee" value="${objectname}"/>
 </Command>
 </DataNode>
 </DataNode>
 </GroupNode>

 <!--The following are specified only to re-define the position of the-->
 <!--"Locks" and "Sessions" nodes. One of "order-before" and "order-after" -->
 <!--attributes are used to either identify a type for which the node should-->
 <!--be positioned before or after, or an index. The index is the fixed position-->
 <!--or 0 which means first or a somewhat high number means last.-->

 <!--The following will move the "Sessions" first among the "DBA"-->
 <!--child nodes-->
 <GroupNode type="Sessions" order-before="0"/>

 <!--The following will move the "Locks" node before "Sessions"-->
 <GroupNode type="Locks" order-before="Sessions"/>
 </GroupNode>
 </ObjectsTreeDef>

 <ObjectsViewDef extends="true">
 <!--Schema is dropped in parent profile. Re-define it here and show the-->
 <!--dictionary views. That data is really not associated with the single schema-->
 <!--defined in this profile but is a way to have it quickly accessed from-->
 <!--a single node.-->
 <ObjectView type="Schema">
 <DataView id="sample-schema-dict" label="Dictionary" icon="sample-schema-dict" viewer="grid">
 <Command idref="sample.getDict"/>
 <Message>
 <![CDATA[
<html>
Simple viewer showing all dictionary tables with description. Easily accessed
by opening the Schema viewer since that is empty anyway in the
parent oracle profile.
</html>
]]>
 </Message>
 </DataView>
 </ObjectView>
 </ObjectsViewDef>

</DatabaseProfile>

Database Profiles

DbVisualizer 13.0 Users Guide 366 of 445

•

•

•

•

•

24.4 Top level XML Elements
The top level XML elements in a database profile is as follows:

InitCommands (optional)
Defines SQLs that are executed before the profile is being loaded,
Commands
Defines the SQLs for the ObjectsTreeDef, ObjectsViewDef and ObjectsActionDef,
ObjectsActionDef (optional)
Defines actions for object types,
ObjectsTreeDef
Defines the structure and what objects should be visible in the objects tree,
ObjectsViewDef
Defines the object views for a specific object type.

All database connections loads a database profile from an XML file and if there is no matching database profile, the generic profile is used. This profile
use standard JDBC metadata requests to obtain information about the (some) objects in the database. The generic profile is located in DBVIS-
HOME\resources\profiles\generic.xml.

24.4.1 XML template
The following show an overview of a database profile with the top level XML elements.

The DOCTYPE identifier at row 2 defines the DTD that is used to validate the XML.

The root element for the database profile framework is the DatabaseProfile element setting various attributes. Continue to the next sections for
information about XML elements forming a database profile.

24.4.2 XML element - DatabaseProfile
The DatabaseProfile is the root element in the XML file. It is required and have the following attributes:

<DatabaseProfile desc="Profile for Sybase ASE"
 minver="9.5"
 extends="generic">

<?xml version="1.0" encoding="UTF-8"?>1
<!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd">2
 3
<DatabaseProfile desc="Profile for Sybase ASE"4
 version="$Revision: 20369 $"5
 date="$Date: 2016-05-24 17:29:25 +0200 (Tue, 24 May 2016) $"6
 minver="9.5"7
 extends="generic">8
 9
 <InitCommands extends="true">10
 ...11
 </InitCommands>12
 13
 <Commands extends="true">14
 ...15
 </Commands>16
 17
 <ObjectsActionDef extends="true">18
 ...19
 </ObjectsActionDef>20
 21
 <ObjectsTreeDef extends="false">22
 ...23
 </ObjectsTreeDef>24
 25
 <ObjectsViewDef extends="true">26
 ...27
 </ObjectsViewDef>28
 29
</DatabaseProfile>30

Database Profiles

DbVisualizer 13.0 Users Guide 367 of 445

 ...
</DatabaseProfile>

Attribute Description

desc The description of the profile

minver The minimum version of DbVisualizer that is required for the profile to work

abstract Used in a sub profile to indicate that the profile should not be selectable in DbVisualizer. An example is
the mysql-base which can only be selected using the extended profiles for MySQL and MariaDB. The
default is false

extends The parent profile that is extended. In most situations at least generic should be specified

Most attributes except extends are informative and are displayed in the Database Profile list when selecting the connection properties for a database
connection:

Database Profiles

DbVisualizer 13.0 Users Guide 368 of 445

24.4.3 XML element - InitCommands
The InitCommands element define initialization commands that are executed just before the rest of the database profile is loaded. These commands are
typically used to determine characteristics of the target database and database session. The result of these commands are stored in variables that can
be used in conditions that are evaluated when the rest of the profile is loaded. A common use case is to find out the authorization level of the current user
as defined in the database. If the user have limited privileges then some object types, views and actions should be disabled.

Multiple commands may be defined in the InitCommands element and these are executed in order.

Database Profiles

DbVisualizer 13.0 Users Guide 369 of 445

1.

2.

The main purpose with the following sample and the commands is to first determine the database version by querying a system table. Based on the
database version a condition controls which of two queries will be executed to find out another property from the database. The result of the executed
query is stored in a the METACAT variable.

<InitCommands extends="true">
 <Command id="neoview.getDbVersion" method="runBeforeConditionsEval">
 <SQL>
 <![CDATA[
SELECT SUBSTRING(SYSTEM_VERSION FROM 10)
FROM (GET VERSION OF SYSTEM) V(SYSTEM_VERSION)
]]>
 </SQL>
 <Output id="DBVERSION" index="1"/>
 </Command>

 <Command id="neoview.getMaster">
 <If test="#DBVERSION gte 2400">
 <SQL>
 <![CDATA[
SELECT MIN(SYSTEM_CATALOGS) AS MASTER_CAT
FROM (GET SYSTEM CATALOGS) V(SYSTEM_CATALOGS)
WHERE SYSTEM_CATALOGS LIKE _ISO88591'NONSTOP_SQLMX_%'
]]>
 </SQL>
 </If>
 <Else>
 <SQL>
 <![CDATA[
SELECT 'NONSTOP_SQLMX_${#dp.METACAT}'
FROM (VALUES(1)) AS T1
]]>
 </SQL>
 </Else>
 <Output id="METACAT" index="1"/>
 </Command>
</InitCommands>

The extends="true" attribute specifies that the list of commands will extend the list of commands defined in the profile being extended.

Initialization commands are processed in two stages:

First stage is to execute all commands having the attribute method="runBeforeConditionsEval" set. As the attribute reveal, these commands
are execute before any conditions are evaluated,
The second and last stage will execute all commands with no method="runBeforeConditionsEval" set. This time any conditions are evaluated.

The reason for these stages is that the processing of initialization commands may also rely on conditions.

Here is an example how the new METACAT variable is used in the rest of the database profile:

<Command id="neoview.getCatalogs">
 <SQL>
 <![CDATA[
SELECT
 TRIM(CAT_NAME) AS CATALOG_NAME
FROM
${METACAT}.SYSTEM_SCHEMA.CATSYS C
WHERE
 CAT_NAME NOT LIKE _ISO88591'NONSTOP_SQLMX_%'
 AND CAT_NAME NOT IN (_ISO88591'NSMWEB', _ISO88591'NVSCRIPT', _ISO88591'METRIC',
 _ISO88591'MATRIX', _ISO88591'GENUSCAT', _ISO88591'MANAGEABILITY')
ORDER BY
 CATALOG_NAME
FOR READ UNCOMMITTED ACCESS
]]>
 </SQL>
</Command>

Here is another example for Oracle getting the instance_type property from the v$parameter table and put the value in the INSTANCE_TYPE variable.

<InitCommands extends="true">

Database Profiles

DbVisualizer 13.0 Users Guide 370 of 445

•
•
•
•
•
•
•

 <Command id="oracle.initGetInstanceType" method="runBeforeConditionsEval">
 <SQL>
 <![CDATA[
select value from v$parameter where name = 'instance_type';
]]>
 </SQL>
 <Output id="INSTANCE_TYPE" index="1"/>
 </Command>
</InitCommands>

Below show that only if INSTANCE_TYPE have the value RDBMS schema objects should be displayed in the database objects tree:

<ObjectsTreeDef extends="false">
 <If test="#INSTANCE_TYPE eq 'RDBMS'">
 <GroupNode type="Schemas" label="Schemas">
 ...
 </GroupNode>
 </If>

 <GroupNode type="Properties" label="Session Properties" isLeaf="true"/>
 <GroupNode type="DBA" label="DBA Views">
 ...
 </GroupNode>
</ObjectsTreeDef>

One more example showing the use of <OnError> and <Message> element <InitCommands>. Based on the database major version it runs one of two
SQLs. If any 924 error (table not found) is raised the message will be logged in the DbVisualizer log. The type="info" defines that the log entry should
be logged without further notification. Leaving the type out or setting it to type="warning" will also raise the error balloon in the DbVisualizer tool. Use
this only when really necessary.

<InitCommands extends="true">
 <Command id="oracle.initInstanceNumber">
 <If test="#util.isDatabaseVersionLT(9)">
 <SQL><![CDATA[select -1 from dual;]]></SQL>
 <Output name="OWN_INSTANCE_NUMBER" index="1"/>
 </If>
 <Else>
 <SQL><![CDATA[select instance_number from v$instance;]]></SQL>
 <Output name="OWN_INSTANCE_NUMBER" index="1"/>
 </Else>
 <OnError>
 <If test="#result.getErrorCode() eq 942" context="runtime">
 <Message type="info">
 <![CDATA[
Could not to retrieve own INST_ID (probably due to missing privileges) which is needed to browse DBA->Sessions, etc.
DbVisualizer will work fine but related features will be disabled
]]>
 </Message>
 </If>
 </OnError>
 </Command>
</InitCommands>

Click these links for more information about the command element and conditions.

24.4.4 XML element - Commands
The Commands element is a simple grouping element for Command elements.

XML element - Command
Result Set
XML element - Input
XML element - Output
Filter
ProcessDataSet
Convert SQL Warning to DataSet

<Commands extends="true">

Database Profiles

DbVisualizer 13.0 Users Guide 371 of 445

•

•

•

 <Command id="profileName.xxx">
 ...
 </Command>

</Commands>

The extends="true" attribute specifies that the list of commands will extend the list of commands defined in the profile being extended.

XML element - Command
The main purpose with the Command element is to run a single SQL statement or a script of SQL statements. In most cases, the script should return a
result set with 0 or multiple rows with the exception for actions which not necessarily need to return a result set, e.g., a "drop" action). The following
show the command element, its attributes with default values, and valid sub elements.

<Command id="sybase-ase.getLogins"
 method="dynamic"
 exectype="script"
 processmarkers="true"
 autocommit="true"
 whensuccess="commit"
 whenerror="rollback">

 <SQL>
 ...
 </SQL>

 <Input>
 ...
 </Input>

 <Output>
 ...
 </Output>

 <Filter>
 ...
 </Filter>

 <ProcessDataSet>
 ...
 </ProcessDataSet>

 <ProcessSQLWarning>
 ...
 </ProcessSQLWarning>

</Command>

Attribute Description

id The command element is identified with a unique id attribute. This id is referred
in ObjectsTreeDef, ObjectsViewDef and ObjectsActionDef definitions using the idref attribute. The id
naming convention for command elements is to prefix with the name of the profile and a dot.
Example oracle.xxx, sqlserver.xxx, and so on.

method dynamic
this is the default value and define that the SQL is a dynamic SQL statement as opposed to setting
it to JDBC which defines that the SQL is really a JDBC meta data call
rather than SQL,
jdbc
See description for dynamic,
runBeforeConditionsEval
this value is only considered if the command is define in the InitCommands section.

Database Profiles

DbVisualizer 13.0 Users Guide 372 of 445

•
•
•

•
•

•
•
•

•
•
•
•

Attribute Description

exectype script
asis
explain

The default behavior is that the SQL may contains multiple SQL statements each delimited by a semi
colon (';'). Set this attribute to false to disable multiple SQL statements.

autocommit true
false

whensuccess commit
rollback
ask

whenerror commit
rollback
ask
ignore

The following command queries login information in Sybase ASE.

<Command id="sybase-ase.getLogins">
 <SQL>
 <![CDATA[
SELECT name "Name", suid "SUID", dbname "Default Database", fullname "Full Name",
language "Default Language", totcpu "CPU Time", totio "I/O Time", pwdate "Password Set"
FROM master.dbo.syslogins ORDER BY 1
]]>
 </SQL>
</Command>

The id for this command is sybase-ase.getLogins. The reason for prefixing the id with the name of the profile is that profiles can be extended and id's
need to be unique.

Result Set
This is the result set for the previous query:

Name SUID Default Database Full Name Default Language CPU Time I/O Time Password Set

probe 3 master (null) (null) 0 10 2009-12-22 09:53:50

sa 2 subsystemdb (null) (null) 0 0 2009-12-22 08:37:35

tester 1 master (null) (null) 182 168723 2009-12-22 08:36:54

How DbVisualizer handle the result set depends on whether the command is executed as a request in the database objects tree (ObjectsTreeDef) or in the
object view (ObjectsViewDef). If executed in the database objects tree, each row in the result set will be represented by a node in the tree. If executed in
the object view, it is the viewer component that decide how the result will be displayed.

Another important difference between the database objects tree and the object view is that the tree is a hierarchical structure of objects while the object
view presents information about a specific object. An object that is inserted in the database objects tree is a 1..1 mapping to a row from the result set. The
end user will see these objects (nodes) by some descriptive label, as defined in the ObjectsTreeDef. All data for the row from the original result set is
stored with the object in the tree and may be used in the label, variables, conditions, etc. This is not the case in the ObjectsViewDef.

The following example put some light on this. Consider the previous result set and that it is used to create objects in the database objects tree. The end
user will see the following in DbVisualizer. (The label for each row is the name column in the result set.):

This SQL example show a command with a SELECT statement using column aliases. If no aliases are specified the column names should be
used to refer the data.

Database Profiles

DbVisualizer 13.0 Users Guide 373 of 445

Each of the probe, sa, and tester nodes have all their respective data from the result set associated with the nodes. The data is referenced as
commandId.columnName, i.e., sybase-ase.getLogins.Name, sybase-ase.getLogins.Default Database, etc. All associated data for the sa node in the
example is listed next:

sybase-ase.getLogins.Name = sa
sybase-ase.getLogins.suid = 1
sybase-ase.getLogins.Default Database = master
sybase-ase.getLogins.Full Name = (null)
sybase-ase.getLogins.Default Language = (null)
sybase-ase.getLogins.CPU Time = 182
sybase-ase.getLogins.I/O Time = 168716
sybase-ase.getLogins.Password Set = 2009-12-22 08:36:54.576

The DataNode element definition presenting probe, sa, and tester nodes in the previous screenshot use the associated data for the label as follows:

<DataNode type="Login" label="${sybasease.getLogins.Name}" isLeaf="true">
 <SetVar name="objectname" value="${sybasease.getLogins.Name}"/>
 <Command idref="sybasease.getLogins">
 <Output id="sybasease.getLogins.Name" index="1"/>
 <Output id="sybasease.getLogins.suid" index="2"/>
 </Command>
</DataNode>

XML element - Input

There are two types of commands, with and without dynamic input. The difference is that dynamic commands accepts input data that is typically used to
form the WHERE clause in SELECT SQLs. The previous example illustrates a static SELECT statement (without dynamic data).

To allow for dynamic input, just add variables at the positions (can be anywhere) in the SQL statement that should be replaced with dynamic values. The
following is an extension of the previous example that allows for dynamic input.

<Command id="sybase-ase.getLogins">
 <SQL>
 <![CDATA[
SELECT name "Name", suid "SUID", dbname "Default Database", fullname "Full Name",
language "Default Language", totcpu "CPU Time", totio "I/O Time", pwdate "Password Set"

The Input sub element for a Command is only used when a command is being referred with the idref attribute in any of ObjectsActionDef,
ObjectsTreeDef or ObjectsViewDef. It has no effect specifying it for a Command in the Commands section.

Database Profiles

DbVisualizer 13.0 Users Guide 374 of 445

FROM master.dbo.syslogins WHERE name = '${name}' and suid = '${suid}' ORDER BY 1
]]>
 </SQL>
</Command>

This example add two input variables: ${name} and ${suid}. Values for these variables should then be supplied wherever the command is referred for
execution via the Input element.

The following is an example from the ObjectsTreeDef that specify the Input sub elements to map values to the variables defined in the SQL.

<GroupNode type="Logins" label="Logins">
 <DataNode type="Login" label="${sybase-ase.getLogins.Name} isLeaf="true">
 <SetVar name="objectname" value="${sybase-ase.getLogins.Name}">
 <Command idref="sybase-ase.getLogins">
 <Input name="name" value="sa">
 <Input name="suid" value="${sybase-ase.getProcesses.suid}">
 </Command>
 </DataNode>
</GroupNode>

(Note that the Command element refer the command via the idref attribute which is then matched with the corresponding id for the Command).

The ${name} variable in the SQL will be replaced with string sa.

The value for the ${suid} variable will in this case get the value of another variable, sybase-ase.getProcesses.suid. So where is this variable defined? As
explained in the Result Set section, all the data for a row in the result set is associated with the corresponding node in the database objects tree. In
addition, it is possible to use all the data kept by the node and even its parent nodes (as presented in the objects tree) in the input to commands. So to
evaluate the ${sybase-ase.getProcesses.suid} variable, DbVisualizer first look for the variable in the current node. If it doesn't exist, it continues to look
through the parent nodes until it reaches the root, which is the Connections node in the objects tree. If the variable is not found, it will be set to the string
representation for null, which is (null) by default. Whenever a matching variable is found, DbVisualizer use its value and stops searching.

XML element - Output
As mentioned earlier, a specific column value in a result set row is referenced by the name of the column and then prefixed by the command id.
Sometimes this is not desirable and the Output definition can be used to change this behavior. The following identifies a column in the result set by its
index number, starting from 1, and then force its name to be set.

<Output index="1" name="sybase-ase.getLogins.Name"/>
<Output index="2" name="sybase-ase.getLogins.suid"/>

(The index attribute accepts either the name of the column or index number in the result set starting from the first column at index 1).

Filter
The Filter element assists the Database Objects Tree filtering what fields are available for the user to filter on. The label attribute for DataNode is always
available for filtering. Declaring a specific Filter is useful if for example using the label1 attribute to show additional information about an object and it
should be possible to filter its label.

Here is an example of the Column sub-node to Table objects showing a filter definition:

<GroupNode type="Columns" label="Columns">
 <DataNode type="Column" label="${getColumnDefinitions.COLUMN_NAME}"
 label1="${getColumnDefinitions.TYPE_NAME}" isLeaf="true"
 icon="#dataMap.get('getColumnDefinitions.IS_PRIMARY_KEY') eq true ? 'PrimaryKey' : 'Column'">
 <SetVar name="objectname" value="${getColumnDefinitions.COLUMN_NAME}"/>
 <Command idref="getColumnDefinitions">
 <Input name="schema" value="${schema}"/>
 <Input name="objectname" value="${theTableName}"/>
 <Input name="tableType" value="Table"/>
 <Filter index="TYPE_NAME" label="Type"/>
 </Command>
 </DataNode>
</GroupNode>

Above is filter is defined for the TYPE_NAME column in the result set. The label for it as it will appear in the filtering pane in DbVisualizer is Type.

The Show Default Database/Schema pre-defined filter in DbVisualizer requires a Filter for the DataNode type="schema" command. The
label for this filter must be Name:

Database Profiles

DbVisualizer 13.0 Users Guide 375 of 445

ProcessDataSet
The ProcessDataSet element is used to process the result set generated by a command. This process is performed just after the result set has been
retrieved and before any Output elements are handled. Examples:

<ProcessDataSet action="addcolumn" index="Added Column" value="Add column with value 'Static string ${dbvis-
jdbcURL}'"/>
<ProcessDataSet action="addrow" index="first" value="${#db.loginDatabase}"/>
<ProcessDataSet action="convertnullvalues" index="1" value=""/>
<ProcessDataSet action="convertsqlwarningtodataset"/>
<ProcessDataSet action="distinct" index="Country"/>
<ProcessDataSet action="dropcolumn" index="AUTO_INCREMENT"/>
<ProcessDataSet action="dropidenticalcolumns" name="datname"/>
<ProcessDataSet action="movecolumn" index="datname" value="first"/>
<ProcessDataSet action="printdataset"/>
<ProcessDataSet action="removeisnullrows" index="VALUE"/>
<ProcessDataSet action="removerowsifequalto" index="DATA_LENGTH" value="16384"/>
<ProcessDataSet action="renamecolumn" index="2" name="NewName"/>
<ProcessDataSet action="sortcolumn" index="LAST_NAME, FIRST_NAME"/>
<ProcessDataSet action="trimcolumn" index="PAD_COLUMN"/>
<ProcessDataSet action="truncatedataset" value="keeplast 5"/>

Explanation of the actions. The index attribute for actions that process columns, the start index is 1, while actions processing rows start with index 0.

action Description

addcolumn Adds a new column to all rows with the value specified in the value attribute. The value may
contain variables using the ${...} notation

addrow Adds a new row in the result set at the specified position which can be "first", "last" or a
specific row index starting at 0. The value attribute is a TAB separated list of column values.
The first element will go into column 0 in the result set, the second in column 1, and so on.
Variables may be used in the value.

convertnullvalues Converts any null values in the specified column to the literal specified in the value attribute.

convertsqlwarningtodataset Converts any SQL Warnings generated by the command to a result set

distinct This action is used to remove all duplicates identified by the specified column index. What
rows are removed may be different from time to time since matching is done on a single
column value

dropcolumn Drops the specified column

dropidenticalcolumns Drops identically named columns (keeps first)

movecolumn Moves the column specified by the index attribute by index or name to the position specified
by the value attribute. The latter can be expressed as "first", "last" or a specific column index.

printdataset Prints the result set to the debug log which is useful during profile development. Debug
DbVisualizer must be enabled in the Tool->Debug Window.

removeisnullrows Removes the row if the value in the specified result set column is null

<DataNode type="Schema" label="${oracle.getSchemas.TABLE_SCHEM}">
 <SetVar name="schema" value="${oracle.getSchemas.TABLE_SCHEM}"/>
 <Command idref="oracle.getSchemas">
 <Filter index="TABLE_SCHEM" label="Name"/>
 </Command>

 ...

Database Profiles

DbVisualizer 13.0 Users Guide 376 of 445

•
•
•
•

•
•

•
•
•
•

action Description

removerowsifequalto Removes the row if the data in the specified column is equal to the specified value

renamecolumn Renames the result set column identified by the index

sortcolumn Enter one or several column names (or indexes) separated with command (',') which are used
to sort the result set

trimcolumn Trims the data in the specified column index by removing all leading and trailing whitespaces

truncatedataset Truncates, i.e. removes a number of rows, from the start or the end of the result set:

keepfirst <n>
keeplast <n>
removefirst <n>
removelast <n>

truncatedataset is useful in for example <DataNode ... viewer="graph"> uses.

Convert SQL Warning to DataSet
The convertsqlwarningtodataset element will look for any SQLWarning raised during execution of the command and convert it to a result set.

<InitCommands extends="true">
 <Command id="netezza.supportsMultipleSchemas">
 <SQL>
 <![CDATA[
show enable_schema_dbo_check
]]>
 </SQL>
 <ProcessDataSet action="convertsqlwarningtodataset"/>
 <Output index="1" name="SUPPORTS_MULTIPLE_SCHEMAS"/>
 </Command>
</InitCommands>

Note: The SQLWarning support is quite brute as it will remove any other data sets produced by the command, and insert the SQLWarning alone as the
only data set having a single 0,0 cell with the complete warning string.

The <If> condition based on the output from the previous InitCommand is:

<If test="#SUPPORTS_MULTIPLE_SCHEMAS.matches('^.*ENABLE_SCHEMA_DBO_CHECK is [12]$')">
 ...
</If>

24.4.5 XML element - ObjectsTreeDef
The ObjectsTreeDef element section controls how the database objects tree should be presented and which commands should be executed to form its
content (nodes).

XML element - GroupNode
XML element - DataNode

XML element - Command
XML element - Filter
Show only Default Database/Schema
XML element - SetVar

<ObjectsTreeDef extends="false">
 <GroupNode type="xxx" label="xxx">
 <DataNode type="yyy" label="yyy">
 ...
 </DataNode>
 </GroupNode>
</ObjectsTreeDef>

Database Profiles

DbVisualizer 13.0 Users Guide 377 of 445

Setting the extends attribute to "true" attribute specifies that the ObjectsTreeDef will extend the ObjectsTreeDef definition in the profile
being extended.

The mapping between the graphical representation in DbVisualizer and its ObejctsTreeDef XML is as quite straight forward:

Representation in DbVisualizer XML specification

<ObjectsTreeDef extends="false">
 <GroupNode type="Databases">
 <DataNode type="Catalog">
 <GroupNode type="Schemas">
 <DataNode type="Schema">
 <GroupNode type="Tables">
 <DataNode type="Table"/>
 </GroupNode>
 <GroupNode type="SystemTables">
 <DataNode type="SystemTable"/>
 </GroupNode>
 <GroupNode type="Views">
 <DataNode type="View"/>
 </GroupNode>
 <GroupNode type="Indexes">
 <DataNode type="Index"/>
 </GroupNode>
 <GroupNode type="Triggers">
 <DataNode type="Trigger"/>
 </GroupNode>
 <GroupNode type="Procedures">
 <DataNode type="Procedure"/>
 </GroupNode>
 <GroupNode type="Functions">
 <DataNode type="Function"/>
 </GroupNode>
 </DataNode>
 </GroupNode>
 <GroupNode type="Users">
 <DataNode type="User">
 </GroupNode>
 <GroupNode type="Groups">
 <DataNode type="Group"/>
 </GroupNode>
 <GroupNode type="Types"/>
 </DataNode>
 </GroupNode>

 <GroupNode type="DBA">
 <GroupNode type="ServerInfo"/>
 <GroupNode type="Logins">
 <DataNode type="Login"/>
 </GroupNode>
 <GroupNode type="Devices">
 <DataNode type="Device"/>
 </GroupNode>
 <GroupNode type="RemoteServers"/>
 <GroupNode type="Processes"/>
 <GroupNode type="ServerRoles">
 <DataNode type="ServerRole"/>
 </GroupNode>
 <GroupNode type="Transactions"/>
 <GroupNode type="Locks"/>
 </GroupNode>
</ObjectsTreeDef>

The screenshot in the above example show all nodes representing the GroupNode definitions in the ObjectsTreeDef. One exception is the Logins object,
which has been expanded (jstask, probe and sa child objects) to illustrate how DataNode objects look like. The ObjectsTreeDef in the example has been
simplified to show only the type attribute. (The label of the nodes as they appear in the screenshot is not listed in the example XML). The difference

Database Profiles

DbVisualizer 13.0 Users Guide 378 of 445

between a GroupNode and a DataNode is that GroupNode represent a static object in the tree while DataNode is dynamically created based on result sets
produced by running a SQL statement. See GroupNode as a container holding other GroupNodes and DataNodes.

The database objects tree in DbVisualizer is the core visual component and it is the place where the user open object details and launch actions. To
connect object actions and object views with a node in the objects tree, the type attribute is used. The type should be a descriptive word for a node such
as Table, Schemas, MaterializedQueryTable, and so on. The type also map to a predefined icon. Check the database profile utilities for information how
to show all bundled icons and their type mappings.

There is no limitation on the number of levels in the objects tree expressed by nesting GroupNode and DataNode elements. A good rule is as always to
keep it intuitive, simple and clean.

XML element - GroupNode
The GroupNode element represents a static object in the tree. A GroupNode do not have any associated SQL and appear only once where they are
defined. A GroupNode is primarily used for structural and grouping purposes. The GroupNode element have the following attributes.

<GroupNode type="SystemTables" label="System Tables" isLeaf="false">
 ...
</GroupNode>

The isLeaf attribute is optional (default is false) and controls whether the GroupNode may have any child objects or not. It can always be set to false, the
effect in the visual database objects tree is then that an expand handle always will be visible next to the icon, even if the node don't have any child nodes.

The complete set of attributes for the DataNode element:

Attribute Value Description

type The type of node

label The label attribute must identify the object apart from other objects. This label should uniquely identify the
object in the list of objects for the same parent node. It is used as part of the object identifier when opening
object view tabs.

label1 Optional label which shows additional information about the object

isLeaf true/false Specifies if the node cannot have child objects

icon Icons are typically mapped using the type attribute with an icon name in the icon.prefs file(s). The icon
attribute for a GroupNode can be set to specify an alternative icon. Conditions can be used to identify
alternate icons (see below)

drop-label-not-equal Do not add the node if the label is not equal to this value or variable

drop-on-condition Read more in drop-on-condition attribute

order-before Specifies the order of this GroupNode among a collection of nodes having the same parent node. It can
either be an index starting at 0 (first) or a node type. Ex. order-before="Views" will order this GroupNode
before nodes defined by the type="Views" attribute

order-after Specifies the order of this GroupNode among a collection of nodes having the same parent node. It can
either be an index starting at 0 (first) or a node type. Ex. order-after="0" will order this GroupNode after the
first node definition

XML element - DataNode
The DataNode element feeds the tree with nodes produced by a Command. The example in the Command section querying for all logins in Sybase ASE
look as follow in the ObjectsTreeDef:

<GroupNode type="Logins" label="Logins">

If isLeaf is set to true and there are child Group and/or Data -nodes, these will not appear. The result may cause some frustration during the
design of the database profile.

Database Profiles

DbVisualizer 13.0 Users Guide 379 of 445

 <DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">
 <Command idref="sybase-ase.getLogins"/>
 </DataNode>
</GroupNode>

First, there is a GroupNode element with the purpose to group all child objects in a Logins node. The DataNode in this example have the same attributes
as the GroupNode, the type is however singular Login instead of plural Logins (as it is for the GroupNode). This difference is important when the user
decide to open one of the nodes, since the object view will show the matching views based on the object type. For Logins a list of all logins is displayed
while opening a Login, details for that specific login is displayed.

The DataNode definition can be seen as a template, as the associated command fetches rows of data from the database and DbVisualizer uses
the DataNode definition to create one node per row in the result set.

The label attribute for the data node introduce the use a variable. The real value for the label will, in this example, be the value in the Name column
produced by the sybase-ase.getLogins command (variable names are automatically prefixed with the command id that produced them).

The Command element uses the idref attribute to identify the command that should be executed. The command in this case produce a result set with 3
rows and 8 columns. The result will be two nodes for each row, with the label of the Name column in the result set.

The label1 attribute can be set to any other valid variable, a combination of several variables or even static text:

label1="${sybase-ase.getLogins.Default Database}"

The example above results in the following labels:

jstask master
probe subsystemdb
sa master

The complete set of attributes for the DataNode element:

Database Profiles

DbVisualizer 13.0 Users Guide 380 of 445

Attribute Value Description

type The type of node

label The label attribute must identify the object apart from other objects. This label should uniquely
identify the object in the list of objects for the same parent node. It is used as part of the object
identifier when opening object view tabs.

label1 label1 should show useful additional information about the object. For column objects, it typically
shows generic information about the columns. For index objects it typically shows the source table
name.

icon Icons are typically mapped using the type attribute with an icon name in the icon.prefs file(s). The
icon attribute for a DataNode can be set to specify an alternative icon.

A condition can be specified which is used to choose an icon based on evaluating other variables for
the node.
Ex: icon="#dataMap.get('getColumnDefinitions.IS_PRIMARY_KEY') eq true ?
'PrimaryKey' : 'Column'"

tip An optional description that is displayed when hovering the node. This is useful to describe why a
different icon is displayed for the node using the icon attribute.
Ex: tip="#dataMap.get('getColumnDefinitions.IS_PRIMARY_KEY') eq true ? 'This is
a primary key column' : ''"

actiontype Object type used for object actions

isLeaf true/false Specifies if the node cannot have child objects

drop-label-not-equal Do not add the node if the label is not equal to this value or variable

stop-label-not-equal The node will be a leaf if the label doesn't match the specified value or variable value

warnstate A condition expression returning either true or false. For true, show a warning overlay icon for the
node.
Ex: errorState="!#dataMap.get('oracle.getTriggers.STATUS'). equals('ENABLED')"

errorstate A condition expression returning either true or false. For true, show an error overlay icon for the node.
Ex: errorState="!#dataMap.get('oracle.getObjectsByType.STATUS').
equals('VALID')"

is-empty-output continue/stop If result set is empty, use this to control whether child GroupNode/DataNodes should be added
anyway

drop-on-condition Read more in drop-on-condition attribute

order-before Specifies the order of this DataNode among a collection of nodes having the same parent node. It can
either be an index starting at 0 (first) or a node type. Ex. order-before="View" will order this node
before nodes defined by the type="View" attribute

order-after Specifies the order of this DataNode among a collection of nodes having the same parent node. It can
either be an index starting at 0 (first) or a node type. Ex. order-after="0" will order this DataNode
after the first node definition

The Command definition in the example above is simple, since it doesn't use any variables in the SQL. Continue reading the next section for details about
passing input data to commands.

XML element - Command
The SQL used to generate the data used by the DataNodes are defined in the Command element.

A command is referenced by the idref attribute and that id must already be defined in the Commands section of the profile. For most DataNode
definitions input must be supplied with the command and this is done by adding Input elements as children to the Command.

Database Profiles

DbVisualizer 13.0 Users Guide 381 of 445

•
•
•
•
•
•
•
•

 <DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">
 <Command idref="sybase-ase.getLogins">
 <Input name="name" value="sa">
 <Input name="suid" value="${sybase-ase.getProcesses.suid}">
 </Command>
</DataNode>

The value for a variable specified in an Input element is evaluated using the syntax outlined in the result set section.

XML element - Filter
The Filter element is specific for Command elements that appear in the DataNode element. A filter define which data for a DataNode that can be
searched in filter. This filter functionality is commonly referred as the Database Objects Tree Filtering in DbVisualizer. The filtering setup appears below
the database objects tree, and the following example shows that filtering may be specified for these object types:

Catalog
Table
System Table
View
User
Group
Trigger
Procedure

For each of the filter definitions, one or several columns can be included in the filtering criteria.

<DataNode type="View" label="${sybase-ase.getViews.Name}" isLeaf="true">
 <Command idref="sybase-ase.getViews">
 <Filter index="TABLE_NAME" label="View Table"/>
 </Command>
</DataNode>

The above filter definition specifies a filter for the Catalog (database) object type. The index attribute should specify a column name or index in the
result set while the label attribute is the name how it appears in the object type drop-down list.

For detailed information about the capabilities with the Command element, check the Command section.

Database Profiles

DbVisualizer 13.0 Users Guide 382 of 445

•
•

•
•
•
•
•

Show only Default Database/Schema
This generic action available with any profile uses a special filter definition that must be declared for Show only Default Database/Schema to work:

For Catalog objects (name="Name" is the required name while index should identify the column in the result set):

<Filter>
 <Column index="TABLE_CAT" name="Name"/>
</Filter>

For Schema objects (name="Name" is the required name while index should identify the column in the result set):

<Filter>
 <Column index="TABLE_SCHEM" name="Name"/>
</Filter>

XML element - SetVar
The SetVar element is used in the ObjectsTreeDef for GroupNode and DataNode elements. Some object types have special meaning in DbVisualizer. Two
examples are the Catalog and Schema object types. For DataNode objects, you must use SetVar elements to identify them with the name attribute set
to catalog or schema, respectively.

Catalog:
<DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}">
 <SetVar name="catalog" value="${getCatalogs.TABLE_CAT}">
</DataNode>

Schema:
<DataNode type="Schema" label="${getSchemas.TABLE_SCHEM}">
 <SetVar name="schema" value="${getSchemas.TABLE_SCHEM}">
</DataNode>

All DataNodes except Catalog and Schema must use SetVar to set the objectname variable:

<DataNode type="View" label="${sybase-ase.getViews.Name}" isLeaf="true">
 <SetVar name="objectname" value="${sybase-ase.getViews.Name}">
 <SetVar name="rowcount" value="true">
</DataNode>

The objectname variable is used to identify the object represented by the data node, so that it can be uniformly referenced in object views and object
actions. Its value should be the identifier for the object as it is identified in the database, for example a table name or view name.

The rowcount variable is optional (default is false) and controls whether the object supports showing row count information when Show/Hide Table Row
Count right-click menu choice is enabled for the database connection.

Another optional variable (not shown in the example above) is named acceptInQB (default is false). If set to true, nodes of this type can be used in the
Query Builder. It should only be set to true for object types representing tabular data that can be queried with an SQL SELECT statement, such as tables,
views, materialized views, etc.

Variables defined with SetVar are by default invisible in for example the node form viewer. If you want to override this behavior then add
the action attribute and set its value to show. If you want to drop a variable completely from the node simply set the action attribute to drop.

Using SetVar for GroupNode's is used to set static values (since GroupNode's doesn't execute a Command). This may be used to pass a static value for
later use in an Action or DataView. See vertica.xml which illustrates using SetVar for GroupNode's.

24.4.6 XML element - ObjectsViewDef
The ObjectsViewDef element define all views for the object types in the objects tree. These views are displayed in the Object View area for the selected
object. Which views should appear when selecting a node in the tree is based on the object type for the tree node and the corresponding object view
definition.

XML element - ObjectView
XML element - DataView

Viewers
Viewer - chart
Viewer - ddl
Viewer - form
Viewer - grid

Database Profiles

DbVisualizer 13.0 Users Guide 383 of 445

•
•
•

•
•
•

•
•

•
•
•

•
•

•
•
•
•

•
•
•

•
•
•

Drill-down view
Adding custom menu items in the grid
Setting initial max column width

Viewer - message
Viewer - navigator
Viewer - node-form

Hiding columns
Viewer - node-text

Enable SQL formatting of the data
Viewer - procedure-editor
Viewer - table-data

Disable data editing
Trim cell values

Viewer - table-refs
Viewer - tables-refs
Viewer - table-rowcount
Viewer - text

Specify what column to browse
Enable SQL formatting of the data
Adding newline to each row

XML element - Command
XML element - Input
XML element - Message

<ObjectsViewDef extends="true">
 <ObjectView type="xxx">
 <DataView id="yyy" label="yyy">
 ...
 </DataView>
 </ObjectView>
</ObjectsViewDef>

The extends="true" attribute specifies that this definition will extend the ObjectsViewDef definition in the database profile being extended.

When an object is opened in the database tree (sa in the screenshot below) a corresponding object view tab is created (right in the sample). Each of the
DataView elements in the ObjectView will appear as sub tabs in the object view tab. The selected object and its information is passed to each of the data
views for processing and presentation. The following example show the Object View in DbVisualizer and its ObjectView element definition.

Representation in DbVisualizer XML definition

<ObjectView type="Logins">
 <DataView type="Logins" label="Logins"
 viewer="grid">
 <Command idref="sybase-ase.getLogins"/>
 </DataView>
</ObjectView>

<ObjectView type="Login">
 <DataView type="Info" label="Info"
 viewer="node-form"/>
 <DataView type="Databases" label="Databases"
 viewer="grid">
 <Command idref="sybase-ase.getLoginDatabases"/>
 </DataView>
 <DataView type="Roles" label="Roles"
 viewer="grid">
 <Command idref="sybase-ase.getLoginRoles"/>
 </DataView>
</ObjectView>

The screenshot and the database tree show both the Logins node and its child nodes, jstask, probe and sa. These nodes are instances of the object
types Logins (labeled Logins in the screenshot) and Login (the three sub nodes: jstask, sa and probe).

All database profiles should extend generic profile as the very top level profile.

Database Profiles

DbVisualizer 13.0 Users Guide 384 of 445

•
•
•

•
•
•

The ObjectView XML definitions above shows the data views for these two types, Logins and Login. Opening the node labeled Logins in the tree will
show the object view for the <ObjectView type="Logins"> definition while opening the node labeled jstask, probe or sa will show the object view for
the <ObjectView type="Login"> .

The example shows sa being selected. Its DataView definitions displayed as tabs in the object view are (by label):

Info
Databases
Roles

XML element - ObjectView
The ObjectView element is associated with an object type and groups all DataView elements that appear when the object type is selected in the database
objects tree. Here follows the ObjectView definition for the Login object type.

<ObjectView type="Login">
 ...
</ObjectView>

The type attribute value is used when a node is clicked in the database objects tree to map with the corresponding ObjectView definition. The following
lists the attributes for ObjectView:

Attribute Description

type The type of the ObjectView as declared in the GroupNode and DataNode elements in the ObjectsTreeDef section

layout The layout attribute is used to tile the contained DataViews so that they are all visible att once in the object view. The
default (collapse) shows all DataViews as tabs in a single tab group while tile shows them all side-by-side

tilevertical <n>
tilehorizontal <n>
collapse (default)

The number <n> specifies how many DataViews should be present in the first group (vertical or horizontal) of DataViews.

drop-on-condition Read more in drop-on-condition attribute

The layout attribute is useful to tile DataViews side-by-side, either vertically or horizontally. Leaving it out will collapse the DataView tabs in a single tab
group:

Database Profiles

DbVisualizer 13.0 Users Guide 385 of 445

layout="tilevertical"

Tiles all tabs vertically in a single column

layout="tilevertical 2"

Tiles the tabs vertically with two tabs in the first column and the rest in the
second column

Database Profiles

DbVisualizer 13.0 Users Guide 386 of 445

layout="tilehorizontal"

Tiles all tabs horizontally in a single row

layout="tilehorizontal 2"

Tiles the tabs horizontally with two tabs in the first row and the rest in the second
row 2

The previous tile examples all use the viewer="chart" for the DataView's. Please note that any supported viewer may be tiled.

Database Profiles

DbVisualizer 13.0 Users Guide 387 of 445

•
•
•
•
•
•
•
•
•
•
•
•
•

XML element - DataView
The DataView element is comparable with the DataNode element in the ObjectsTreeDef. It defines what SQL (command) should be executed, labeling,
viewer type (presentation form) and other characteristics. The following is the DataView definitions for the Login object type. (The ObjectView element is
part of the sample just for clarification).

<ObjectView type="Login">
 <DataView type="sybasease-login-info" icon="Info" label="Info" viewer="node-form"/>
 <DataView type="sybasease-login-databases" icon="Databases" label="Databases" viewer="grid">
 <Command idref="sybase-ase.getLoginDatabases"/>
 </DataView>
 <DataView type="sybasease-login-roles" icon="Roles" label="Roles" viewer="grid">
 <Command idref="sybase-ase.getLoginRoles"/>
 </DataView>
</ObjectView>

All three DataView elements have a viewer attribute identifying how the data in the view should be be presented, e.g., as a grid or a form. See the next
sections for a list of viewers. The following lists all attributes for DataView:

Attribute Description

id Every DataView element must have a unique id which is not only unique in the current profile but also with all id's in
extended profiles

label The label for the viewer as it will appear in the tab

icon The icon as defined in the icons.prefs file(s)

viewer One of:

chart
ddl
form
grid
message
navigator
node-form
procedure-editor
table-data
table-refs
tables-refs
table-rowcount
text

See the viewers section in this document for more information

drop-label-not-equal Drop the viewer if its label is not equal to the value of this attribute

class Used to specify a custom Java class used as the viewer

classargs Used to pass arguments to a custom viewer

drop-on-condition Read more in drop-on-condition attribute

doclink Relative HTML link to the related chapter in the users guide.

To make sure the id is unique use the following recommended format:
profileName-objectViewType-viewerLabel.
Ex: sybasease-login-databases
(The id should not contain any empty space or special characters other than dash ("-")).

Database Profiles

DbVisualizer 13.0 Users Guide 388 of 445

•
•
•
•
•
•
•
•
•
•
•
•
•

Attribute Description

order-before Specifies the order of this DataView among a collection of viewers having the same parent ObjectView. It can either be
an index starting at 0 (first) or a node type. Ex. order-before="sybasease-login-databases" will order this DataView
before viewers defined by the id="sybasease-login-databases" attribute

order-after Specifies the order of this DataView among a collection of viewers having the same parent ObjectView. It can either be
an index starting at 0 (first) or a node type. Ex. order-after="sybasease-login-databases" will order this DataView
after viewers defined by the id="sybasease-login-databases" attribute

Viewers
The viewer attribute for a DataView define how the data for the viewer should be presented. The following sections walk through the supported viewers:

chart
ddl
form
grid
message
navigator
node-form
procedure-editor
table-data
table-refs
tables-refs
table-rowcount
text

The following sample illustrates the viewer attribute.

<ObjectView type="Login">
 <DataView type="Info" label="Info" viewer="node-form"/>
</ObjectView>

DataView definitions may be nested and the viewers are then presented with the nested DataView in the lower part of the screen.

Viewer - chart
The chart viewer presents a result set as a chart. This is typically useful for displaying monitoring metrics, statistics, and any result set from a query from
the database. Using it with the layout attribute for the ObjectView element allows creating dashboards with charts and other viewers.

Here is a simple example defining the DataView using the chart viewer:

<DataView id="exasol-monitoringlastday-cpu" icon="Monitoring"
 label="CPU / Load" viewer="chart">
 <Command idref="exasol.getMonitorLastDay"/>

 <Input name="displayMode" value="chart"/>
 <Input name="toolbarVisible" value="false"/>

 <Input name="chart.category_column" value="Measure time"/>

 <Input name="chart.serie.0.name" value="Load"/>
 <Input name="chart.serie.0.visible" value="true"/>
 <Input name="chart.serie.1.name" value="CPU in %"/>
 <Input name="chart.serie.1.visible" value="true"/>

 <Input name="chartTitle" value="CPU/Load last hour"/>
 <Input name="xaxisHandleTimeAsText" value="false"/>
 <Input name="xaxisTitle" value="Time"/>
 <Input name="yaxisTitle" value=""/>
</DataView>

Here is the Command used in the previous example:

<Command id="exasol.getMonitorLastDay">
 <SQL>

Database Profiles

DbVisualizer 13.0 Users Guide 389 of 445

 <![CDATA[
SELECT
 MEASURE_TIME 'Measure time',
 LOAD 'Load',
 CPU 'CPU in %',
 TEMP_DB_RAM 'Temp DB RAM [MiB]',
 HDD_READ 'HDD Read [MiB/sec]',
 HDD_WRITE 'HDD Write [MiB/sec]',
 NET 'Network [MiB/sec]',
 SWAP 'Swap [MiB/sec]'
FROM
 EXA_STATISTICS.EXA_MONITOR_LAST_DAY
WHERE MEASURE_TIME >= add_minutes(CURRENT_TIMESTAMP,-60)
ORDER BY 1
]]>
 </SQL>
</Command>

And here is how it looks having the Measure Time column in the result set as the category (along the X axis) and the Load, and CPU in % as series.

All the options available to configure a chart in the DbVisualizer GUI are available as parameters using this syntax:

<Input name="displayMode" value="chart"/>

These are the parameters controlling what series should be available in the chart.

Parameter Description Values

chart.category_column Identifies the column in the original result set that should represent
the category column. These are the labels that should be displayed
along the X axis.

For chart.serie.<n>... parameters below, the <n> should be replaced with sequential integers starting with 0 and are increased with 1 for
every serie.

Database Profiles

DbVisualizer 13.0 Users Guide 390 of 445

•

•

•

•

•

•

•

Parameter Description Values

chart.serie.<n>.name Defines the column in the result set that should appear as a serie. If
you are using aliases to rename columns, use the alias name here.

chart.serie.<n>.visible Defines whether the serie should be initially visible or not. It will still
be selectable in the chart series drop-down.

Valid values: true (default) or false

chart.serie.<n>.label If the name of the column in the result set defined
by chart.serie.<n>.name needs to be changed, this parameter can
be used to set an alternative name.

The following parameters controls the appearance and content of the chart:

Parameter Description Values

displayMode Defines how the result set should be presented when displayed. The
mode can be changed by the user using the toolbar or right-click
menu.

chart, grid or text

toolbarVisible Specifies if the toolbar should be visible. true (default) or false

statusBarVisible Specifies if the status bar in the grid or text mode should be visible. true (default) or false

Chart

chartTitle The chart title displayed in big text at the top

chartType The type of chart result-set-chartviewer-line-chart-
command (default)
result-set-chartviewer-point-chart-
command
result-set-chartviewer-area-chart-
command
result-set-chartviewer-stacked-
area-chart-command
result-set-chartviewer-bar-chart-
command
result-set-chartviewer-stacked-
bar-chart-command
result-set-chartviewer-pie-chart-
command

chartFont The font for all text in the chart Syntax: <FontFamily>-<Style>-<Size>

Example: Lucida Grande-plain-13

Default: same

chartTopBackground The top background color. This is used as start color for a gradient
background

Example: #ffffff

Default is based on the current theme.

chartBottomBackground The bottom background color. This is the end color for a gradient
background

Example: #ccffcc

Default is based on the current theme.

Legend

legendVisible Check this to show legend box with labels for all series in the chart true (default) or false

legendLocation The position of the legend box North, West, South or East (default)

Database Profiles

DbVisualizer 13.0 Users Guide 391 of 445

•
•
•
•
•
•
•
•

X Axis

xaxisTitle The X axis title displayed below the X axis

xaxisTitleVisible Check this to display the X axis title true (default) or false

xaxisRotation The rotation of the X axis labels Horizontal, 45 (default) or Vertical

xaxisLabelOverlap Check this to allow X axis labels to overlap each other true or false (default)

xaxisMajorGridLines Check this to display X axis major grid lines true or false (default)

xaxisHandleTimeAsText Check to handle date true (default) or false

Y Axis

yaxisTitle The Y axis title displayed to the left of the Y axis

yaxisTitleVisible Check this to display Y axis title true (default) or false

yaxisMajorGridLines Check this to display of Y axis major grid lines true (default) or false

yaxisMinorGridLines Check this to display of Y axis minor grid lines true or false (default)

yaxisAutoStartValue Check to adjust the Y-axis start value based on the data true (default) or false

yaxisStartValue The start value for the Y-axis 0.0

yaxisAutoEndValue Check to adjust the Y-axis end value based on the data true (default) or false

yaxisEndValue The end value for the Y-axis 0.0

yaxisNumberFormat The number format for value labels #,##0.#

Format documentation.

Series

chartColorScheme Choose color scheme for the chart series These are the available color schemes.
Make sure the name is specified as
presented below.

Qualitative Set1 (9)
Qualitative Set3 (10)
Diverging Spectral (10)
HTML Color Names (140)
New Tau (10)
Tau (20) (default)
Tau Color Blind (10)
Divirgent Color Scale (13)

chartShadow Check this to display a shadow border for series true (default) or false

Line & Area Chart

chartLineType Render straight or smooth lines for line charts Straight (default) or Smooth

chartLineWidth The line width in pixels 2

chartShowPoints Check this to display points for each value true (default) or false

https://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html

Database Profiles

DbVisualizer 13.0 Users Guide 392 of 445

chartShowPointLabels Check this to display point labels true or false (default)

Bar Chart

chartBarType Render bars as raised or flat Flat (default), Raised, Cylinder or 3D

chartBarGap The gap in pixels between bars 2

chartBarGroupGap The gap in pixels between groups of bars 4

Pie Chart

chartPieType Render pie as raised Flat (default), Raised or 3D

chartPieLabelType Use this setting to specify how slice labels will be displayed Line Labels (default), Simple Labels or
No Labels

As a reference to the chart configuration in the DbVisualizer GUI, here are the same parameters (and order of appearance) as the list of parameters
explained above:

Database Profiles

DbVisualizer 13.0 Users Guide 393 of 445

Database Profiles

DbVisualizer 13.0 Users Guide 394 of 445

Viewer - ddl
The ddl viewer is special as it requires support in the DbVisualizer codebase to work properly. When supported it will show the DDL based on the actual
object's catalog, schema, and objectname variables.

<DataView id="oracle-table-ddl" icon="Source" label="DDL" viewer="ddl">
 <Input name="formatSQL" value="true"/>
 <Input name="objectType" value="Table"/>
</DataView>

The formatSQL parameter specifies if the generated DDL should be formatter (false by default). The objectType parameter is used by some DDL
generators to distinguish what object type is being processed.

Viewer - form
The form viewer displays row(s) from a result set in a form. If several rows are in the result, they are presented in a list. Selecting one row from the list
presents all columns and data for that row in a form.

Here is a sample of the XML for the form viewer:

<DataView id="mysqlbase-table-info" icon="Info" label="Info" viewer="form" order-before="0">
 <Command idref="mysqlbase.getTable">
 <Input name="catalog" value="${catalog}"/>
 <Input name="table" value="${objectname}"/>
 </Command>
</DataView>

And here is a screenshot of the Info tab based on the previous definition.

Viewer - grid
The grid viewer presents a result set in a grid with standard grid features such as search, copy, fit columns, export and so on. The result set is presented
exactly as it is produced by the associated Command and any optional Output processing.

Database Profiles

DbVisualizer 13.0 Users Guide 395 of 445

•
•

•

Here is a sample of the XML for the grid viewer:

<DataView id="mysqlbase-table-columns" icon="Columns" label="Columns" viewer="grid" order-after="mysqlbase-table-
info">
 <Command idref="mysqlbase.getColumns">
 <Input name="catalog" value="${catalog}"/>
 <Input name="table" value="${objectname}"/>
 </Command>
</DataView>

And here is a screenshot of the standard grid viewer created from the above definition.

Drill-down view

The nesting capability for grid viewers is really powerful, as it can be used to create a drill-down view of the data. Consider the scenario with
a grid viewer showing all Trigger objects. Wouldn't it be nice to offer the user the capability to display the trigger source when selecting a row in the list?
This is easily accomplished with the following definition:

<DataView id="oracle-table-triggers" icon="Trigger" label="Triggers" viewer="grid">
 <Command idref="oracle.getTriggers">
 <Input name="owner" value="${schema}"/>
 <Input name="condition" value="${triggersCondition}"/>
 </Command>
 <DataView id="oracle-table-triggers-source" icon="Source" label="Source" viewer="text">
 <Input name="dataColumn" value="text"/>
 <Input name="formatSQL" value="true"/>
 <Command idref="oracle.getTriggerSource">
 <Input name="owner" value="${OWNER}"/>
 <Input name="name" value="${TRIGGER_NAME}"/>
 </Command>
 </DataView>
 <DataView id="oracle-table-triggers-info" icon="Info" label="Info" viewer="node-form"/>
</DataView>

The first DataView element define the top grid viewer labeled Triggers and the command to get the result set for it
The next DataView is the nested text viewer labeled Source, specifying various input parameter for the viewer along with the command to get
the source for the trigger. The difference here is that the input parameters for this command reference column names in the top grid. Since this
viewer is nested, it will automatically be notified whenever an entry in the top grid is selected
The third DataView labeled Info is presented as a tab next to the Source viewer, and presents additional information about the selected trigger

The following screenshot illustrates the above sample:

Database Profiles

DbVisualizer 13.0 Users Guide 396 of 445

A drill-down type of setup can also be done with a chart as drill-down viewer showing data in the chart based on the selection in the top grid:

Database Profiles

DbVisualizer 13.0 Users Guide 397 of 445

•
•

Adding custom menu items in the grid

The grid right-click menu contain a lot of standard actions. Custom commands can be defined in the DataView element and these will appear last in the
menu.

<Input name="menuItem" value="Open in New Tab...">
 <Input name="action" value="open-object-in-new-tab-command ${schema||OWNER}${object||TABLE_NAME}"/>
</Input>
<Input name="menuItem" value="Open in Floating Tab...">
 <Input name="action" value="open-object-in-floating-tab-command ${schema||OWNER}${object||TABLE_NAME}"/>
</Input>
 <Input name="menuItem" value="Script: SELECT ALL">
 <Input name="command" value="select * from ${schema||OWNER}${object||TABLE_NAME}"/>
</Input>
 <Input name="menuItem" value="Script: DROP TABLE">
 <Input name="command" value="drop table ${schema||OWNER}${object||TABLE_NAME}"/>
</Input>

The <Input name="menuItem"> element define a menu item entry that should appear in the grid right-click menu. The value for the menuItem is the
label for the item as it will appear in the menu while the child Input element with name="command" is the SQL command that should be produced for
all selected rows when the menu item is selected. Invoking a custom menu item will not execute the produced SQL directly but rather copy the
statements to a SQL Editor. In the SQL Editor you will then need to manually execute the script and track the result.

The name="action" attribute declare that the value is a pre-defined action. Valid actions are:

open-object-in-new-tab-command
open-object-in-floating-tab-command

Any variables in the SQL statement should identify column names in the result set. The user may select any cells in the grid and choose a custom menu
item. It is only the actual rows that are picked from the selection as the columns are predefined by the menuItem declaration.

Database Profiles

DbVisualizer 13.0 Users Guide 398 of 445

The variables specified in these examples starts with ${schema=...} and ${object=...}. These define that the first variable represents a schema variable
while the second defines an object. This is needed for DbVisualizer to determine whether delimited identifiers should be used and if identifiers should
be qualified, as defined in the connection properties for the database.

Here is a sample:

Setting initial max column width

Some result sets may contain wide columns. The following parameter sets an initial maximum width for all columns in the grid.

<Input name="columnWidth" value=""/>

Viewer - message
The message viewer is really simple as it just shows a message in the DataView.

Database Profiles

DbVisualizer 13.0 Users Guide 399 of 445

<DataView id="mimer-auto-properties" icon="properties" label="Mimer SQL Auto" viewer="message">
 <Message>
 <![CDATA[
<html>
Mimer SQL Auto database server type has no capabilities to list the contents of the database schema.

Please enter the precompiled statement names in the command window to perform operations
towards the database.
</html>
]]>
 </Message>
</DataView>

It may also be useful to define viewers based on conditions such as in this example:

<If test="#ROLE_IS_SECURITY_ADMIN eq 1">
 <DataView id="snowflake-users-users" icon="Users" label="Users" viewer="grid">
 <Command idref="snowflake.getUsers">
 <Input name="catalog" value="${catalog}"/>
 </Command>
 </DataView>
</If>
<Else>
 <DataView id="snowflake-users-users" icon="Users" label="Users" viewer="message">
 <Message>
 <![CDATA[
<html>
Insufficient privileges. SECURITYADMIN Role is required to view Users.
</html>
]]>
 </Message>
 </DataView>
</Else>

Viewer - navigator
The navigator viewer defines the Navigator tab for table objects in the DbVisualizer UI.

<DataView id="generic-table-navigator" icon="Navigator" label="Navigator" viewer="navigator"/>

Viewer - node-form
The node-form viewer presents all data associated with the selected DataNode (variables). Here is a sample of the XML for the node-form viewer:

Database Profiles

DbVisualizer 13.0 Users Guide 400 of 445

Hiding columns

There may be data associated with the object that you don't want to present in the node form. The hidecolumn input parameter control what data for
the object that should be invisible and you may repeat this option as many times you like to handle multiple variables that shouldn't be displayed.

<Input name="hidecolumn" value="oracle.getKeys.TABLE_OWNER"/>

Viewer - node-text
The node-text viewer presents data from a single cell in a DataNode in a text browser (read only).

This viewer is typically used to present large chunks of data, such as source code, SQL statements, etc. where the data is already loaded and no queries
needs to be executed.

<DataView id="presto-base-queries-queries-query" icon="Query" label="Query" viewer="node-text">
 <Input name="dataColumn" value="text"/>
 <Input name="formatSQL" value="true"/>
</DataView>

The node text viewer requires the name of the column to be specified.

<Input name="column" value="query"/>

Enable SQL formatting of the data

The node text viewer has the SQL Formatting function, which when invoked formats the SQL buffer in the viewer. The formatSQL input parameter is
used to control whether formatting should be made automatically when the data first displayed. If formatSQL is not specified, no initial formatting is
made.

<Input name="formatSQL" value=""/>

Viewer - procedure-editor
The procedure-editor is special as it requires support in the DbVisualizer codebase to work properly. When supported it will open the procedure editor
for the selected code object such as procedure, function, package, package body, etc.

<DataView id="mimer-function-functioneditor" classargs="FUNCTION" icon="SourceEditor" label="Function Editor"
 viewer="procedure-editor"/>

Database Profiles

DbVisualizer 13.0 Users Guide 401 of 445

Viewer - table-data
The table-data viewer shows the data for a table in a grid with various features such as filtering and editing (if licensed) functionality. This viewer is
referred as Data tab in the DbVisualizer UI.

Here is a sample of the XML for the table-data viewer:

<DataView id="oracle-view-data" icon="Data" label="Data" viewer="table-data"/>

And here is a screenshot of the Data tab based on the previous definition.

Disable data editing

The default strategy for the table-data viewer is to automatically check whether the data can be edited or not. If editing is allowed a few related buttons
will appear in the toolbar. However, sometimes you may want to disable editing completely for the table-data viewer. Do this with the following input
element:

<DataView ...>
 <Input name="editDisabled" value="true"/>
</DataView>

Information presented in the grid is obtained automatically by the viewer via a standard SELECT * FROM table statement, i.e., the object type
having this viewer defined must be able to support getting a result set via this SQL statement.
It is important that the Database Type in the connection setup is properly set to match the database being accessed. The reason is that the
identifiers (schema, database, table) are delimited automatically. Delimiters are database specific and if having the wrong database type set it
may result in an error getting the result.

Database Profiles

DbVisualizer 13.0 Users Guide 402 of 445

Trim cell values

Data is presented as-is as retrieved from the database. Some databases returns whitespace padded data which may not be desired. Use the following
input element to trim (remove leading and trailing whitespaces) the data in every cell:

<DataView ...>
 <Input name="trimCellValues" value="true"/>
</DataView>

Viewer - table-refs
The table-refs viewer shows the references graph for the current object (this must be an object supporting referential integrity constraints, such as a
Table),

Here is a sample of the XML for the table-refs viewer:

<DataView id="generic-table-references" icon="References" label="References" viewer="table-refs"/>

And here is a screenshot of the References tab based on the previous definition.

Viewer - tables-refs
The tables-refs viewer shows the references graph for several tables in the result set (the result set must contain objects supporting referential integrity
constraints, such as a Table). Here is a sample of the XML for the tables-refs viewer:

<DataView id="oracle-tables-references" icon="References" label="References" viewer="tables-refs">
 <Command idref="oracle.getTables">
 <Input name="owner" value="${schema}"/>
 <ProcessDataSet action="renamecolumn" index="OWNER" name="TABLE_SCHEM"/>
 <ProcessDataSet action="renamecolumn" index="TABLE_NAME" name="TABLE_NAME"/>
 </Command>
</DataView>

And here is a screenshot of the References tab based on the previous definition.

Database Profiles

DbVisualizer 13.0 Users Guide 403 of 445

Viewer - table-rowcount
The table-rowcount viewer shows the row count for a (table) object.

Here is a sample of the XML for the table-rowcount viewer:

<DataView id="generic-table-rowcount" icon="RowCount" label="Row Count" viewer="table-rowcount"/>

Viewer - text
The text viewer presents data from one column in a result set in a text browser (read only). This viewer is typically used to present large chunks of data,
such as source code, SQL statements, etc. If the result set contain several rows, the text viewer reads the data in the column for each row and present the
combined data.

Here is a sample of the XML for the text viewer:

<DataView id="oracle-table-triggers-source" icon="Source" label="Source" viewer="text">
 <Input name="dataColumn" value="text"/>
 <Input name="formatSQL" value="true"/>
 <Input name="newline" value""/>
 <Command idref="oracle.getTriggerSource">
 <Input name="owner" value="${OWNER}"/>
 <Input name="name" value="${TRIGGER_NAME}"/>
 </Command>
</DataView>

And here is a screenshot of the Source tab based on the previous definition.

The row count is obtained automatically by the viewer via a traditional SELECT COUNT(*) FROM table statement, i.e., the object type having
this viewer defined must be able to support getting a result set via this SQL statement.
It is that the Database Type in the connection setup is properly set to match the database being accessed. The reason is that the identifiers
(schema, database, table) are delimited automatically. Delimiters are database specific and if having the wrong database type set it may
result in an error getting the result.

Database Profiles

DbVisualizer 13.0 Users Guide 404 of 445

Specify what column to browse

By default, the text viewer uses the data in first column. This behavior can be controlled by using the dataColumn input parameter. Simply specify the
name of the column in the result set or its index (starting at 1 from the left).

<Input name="dataColumn" value=""/>

Enable SQL formatting of the data

The text viewer has the SQL Formatting function, which when invoked formats the SQL buffer in the viewer. The formatSQL input parameter is used to
control whether formatting should be made automatically when the data first displayed. If formatSQL is not specified, no initial formatting is made.

<Input name="formatSQL" value=""/>

Adding newline to each row

For a result set containing multiple rows and all rows should be displayed in a text viewer, the newline parameter define the character(s) that should
separate the rows in the viewer. A \n somewhere in the value will be converted to a platform dependent newline sequence in the viewer. By default there
is no newline sequence between multiple rows.

<Input name="newline" value="\n"/>
<Input name="newline" value="as-sql"/>

The as-sql value will append an SQL statement delimiter and a platform specific newline sequence at the end of every row.

XML element - Command
Check the commands section for more information.

XML element - Input
The Input element is supported for some of the viewers. Check the viewer sections for more information.

Database Profiles

DbVisualizer 13.0 Users Guide 405 of 445

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

XML element - Message
The Message element is very simple as it just define a message that should appear at the top of the viewer. The text in the message may contain HTML
tags such as (bold), <i> (italic),
 (line break), etc.

Here is a sample of the XML for using the message element in a grid viewer:

<ObjectView type="RecycleBin">
 <DataView id="oracle-recyclebin-recyclebin" icon="RecycleBin" label="Recycle Bin" viewer="grid">
 <Command idref="oracle.getRecycleBin">
 <Input name="schema" value="${schema}"/>
 <Input name="login_schema" value="${dbvis-defaultCatalogOrSchema}"/>
 </Command>
 <Message>
 <![CDATA[
<html>
These are the tables currently in the recycle bin for this schema. Right click on a bin
table in objects tree to restore or permanently purge it.

Note: The recycle bin is always empty if not looking at the bin for your
login schema (default).
</html>
]]>
 </Message>
 </DataView>
</ObjectView>

And here is a screenshot of the Recycle Bin tab based on the previous definition.

24.4.7 XML element - ObjectsActionDef
Introduction
Variables
XML element - ActionGroup
XML element - Action

XML element - Input
Style - check (true/false, on/off, selected/unselected)
Style - check-list (large number non exclusive choices)
Style - grid (configurable multi row/columns input)
Style - label
Style - list (large number of exclusive choices)
Style - note
Style - number
Style - password
Style - radio (limited number of choices)
Style - separator (visual divider between input controls)
Style - text (single line)

Database Profiles

DbVisualizer 13.0 Users Guide 406 of 445

•
•

•
•
•
•
•
•

Style - text-editor (multi line)
Style - wrapped-text-editor (multi line)

XML element - SetVar
XML element - Confirm
XML element - Result
XML element - Command
XML element - Message
Action showing just a message

Introduction
Objects actions (ObjectsActionDef) define what operations are available for the object types defined in the ObjectsTreeDef. Object actions are powerful,
as they offer an extensive number of features to define actions for almost any type of object operation.

In DbVisualizer, the object actions menu is accessed via the right-click menu in the Databases tab or via the Actions button in the object view.

All of the operations for the current Table object in the figure above are expressed in the ObjectsActionDef section in the database profile. The
implementation for these actions are either declared entirely in XML via standard definitions, or via custom definitions. (The Java API for action handlers
is not yet documented). The following screenshot shows the dialog appearing when executing an action via a standard XML definition:

The right-click menu in the Databases tab is context sensitive meaning that the listed actions in the menu depends on the selected object
type.

Database Profiles

DbVisualizer 13.0 Users Guide 407 of 445

The first field in the dialog, Database Connection, is always present and shows the alias of the database connection the current object is associated with.
At the bottom, there is a Show SQL control that, when checked, displays the final SQL for the action. The bottom right buttons are used to run the action
(the label of the button may be Execute or Script based on the action mode), or to Cancel the action completely.

Database Profiles

DbVisualizer 13.0 Users Guide 408 of 445

Variables
Variables are used to reference data for the object for which the action was launched, and the data for all its parent objects in the objects tree. Variables
are also used to reference input data specified by the user in the actions dialog. Variables are typically used in
the Command, Confirm, Result and SetVar elements.

Variables are specified in the following format:

${variableName}

The following is an example for a Rename Table action. It first shows the name of the database connection (which is always present) with information
about the table being renamed. The last two input fields should be entered by the user and identify the new name of the table. The New
Database component is a list from which the user should select the name of the new database. The new table name should be entered in the New Table
Name field.

If the Show SQL control is checked, you will see any edits in the dialog being reflected immediately in the final SQL Preview.

The complete action definition for the previous Rename Table action is as follows:

<Action id="mysql-table-rename" label="Rename Table" reload="true" icon="rename">
 <Input label="Database" style="text" editable="false">
 <Default>${catalog}</Default>
 </Input>

 <Input label="Table" style="text" editable="false">
 <Default>${objectname}</Default>
 </Input>

 <Input label="New Database" name="newCatalog" style="list">
 <Values>
 <Command><SQL><![CDATA[show databases]]></SQL></Command>
 </Values>
 <Default>${catalog}</Default>
 </Input>

 <Input label="New Table Name" name="newTable" style="text"/>

 <Command>
 <SQL>
 <![CDATA[
rename table `${catalog}`.`${objectname}` to `${newCatalog}`.`${newTable}`
]]>
 </SQL>
 </Command>

 <Confirm>
 <![CDATA[
Confirm rename of ${catalog}.${objectname} to ${newCatalog}.${newTable}?

Database Profiles

DbVisualizer 13.0 Users Guide 409 of 445

]]>
 </Confirm>

 <Result>
 <![CDATA[
Table ${catalog}.${objectname} renamed to ${newCatalog}.${newTable}!
]]>
 </Result>
</Action>

First, there is the Action element with some attributes specifying the label of the action, icon and whether the objects tree (and the current object
view) should be reloaded after the action has been executed.

The next block of elements are Input fields defining the data for the action. As you can see in the example, there is a ${catalog} variable in
the Default element for the Database input and an ${objectname} variable in the Default element for the Table input. The values for these variables are
fetched from the current object in the objects tree (GroupNode or DataNode). Variables are evaluated by first checking if the variable is in the scope of
the action dialog (i.e., another input field), then if the variable is defined for the object for which the action was launched, and then if it is defined for any
of the parent objects until the root object in the tree (Connections node) is reached. If a variable is not found, its value is set to (null).

In the XML sample, the value of the ${catalog} variable is the name of the database in which the table object is stored. The ${objectname} is the current
name of the table (these variables are described in the ObjectsTreeDef section).

The New Database input field is a list component showing a list of databases based on the result set of the specified SQL command. The Default setting
for the database will be the database in which the table is currently stored based on the ${catalog} variable.

The New Table Name input field is a simple text field in which the user may enter any text (the new table name).

Both the New Database and New Table Name fields are editable and should be specified by the user. This data is then available via the variables
specified in the name attribute, i.e., newCatalog and newTable.

The Command element declares the SQL statement that should be executed by the action. In this example, the SQL combines static text with variables.

XML element - ActionGroup
The ActionGroup element is a container and groups a collection of ActionGroup, Action and Separator elements. It is used to define what actions
should be present for a particular object type. It also define in what order the actions should appear in the menu and where any separators should be
located. ActionGroup elements can be nested and these will be displayed as sub menus in DbVisualizer.

<ActionGroup type="Table">
 <Action id="xxx">
 ...
 </Action>
</ActionGroup>

The attributes for an ActionGroup are:

Attribute Value Description

type This defines what object type the ActionGroup is mapped to. This attribute is required and valid only for top level
ActionGroup elements (not nested ActionGroup elements). An example is the Table object type, the
corresponding <ActionGroup type="Table"> will only be displayed when the current object is a Table

label This attribute is required for nested ActionGroup elements and is the label displayed in the sub menu. (This
attribute have no effect on top level ActionGroup elements)

drop-on-condition Read more in drop-on-condition attribute

order-before Specifies the order of this ActionGroup among a collection of ActionGroup elements located at the same level. It
can either be an index starting at 0 (first) or a node type. Ex. order-before="Views" will order this ActionGroup
before ActionGroup elements defined by the type="Views" attribute

order-after Specifies the order of this ActionGroup among a collection of ActionGroup elements located at the same level. It
can either be an index starting at 0 (first) or a node type. Ex. order-after="Views" will order this ActionGroup
after ActionGroup elements defined by the type="Views" attribute

Database Profiles

DbVisualizer 13.0 Users Guide 410 of 445

XML element - Action
The Action element defines the characteristics of the action. The following show the complete definition of the Drop Table action in Oracle.

<Action id="oracle-table-drop" label="Drop Table" reload="true" icon="remove">
 <Input label="Schema" style="text" editable="false">
 <Default>${schema}</Default>
 </Input>
 <Input label="Table" style="text" editable="false">
 <Default>${objectname}</Default>
 </Input>
 <Input label="Drop Referential Integrity Constraints" name="cascade" style="check"
 tip="Enable this to drop all referential integrity constraints
 that refer to primary and unique keys in the dropped table">
 <Values>cascade constraints</Values>
 </Input>
 <If test="#util.isDatabaseVersionGTE(10)">
 <Input label="Purge Space" name="purge" style="check"
 tip="Enable this if you want to drop the table and
 release the space associated with it in a single step">
 <Values>purge</Values>
 </Input>
 </If>
 <Else>
 <SetVar name="purge" value="''"/>
 </Else>
 <Command>
 <SQL>
 <![CDATA[drop table "${schema}"."${objectname}" ${cascade} ${purge}]]>
 </SQL>
 </Command>
 <Confirm>
 Really drop table ${schema}.${objectname}?
 </Confirm>
 <Result>
 Table ${schema}.${objectname} has been dropped!
 </Result>
</Action>

The available attributes for the Action element:

Attribute Value (bold = default) Description

id Every Action element must have a unique id which is not
only unique in the current profile but also with all id's in
extended profiles.

icon The name of the icon that should be displayed next to
the label in the actions menu

label The label for the action as it should be displayed in the list
of actions and in the actions dialog

reload true/false Specifies if the parent node (in the objects tree) should be
reloaded after successful execution. This is recommended
for actions that change the visual appearance of the object,
such as remove, add or name change

The recommended format is profileName-
actionGroupType-action.
Ex: oracle-table-drop

Database Profiles

DbVisualizer 13.0 Users Guide 411 of 445

•

•

•
•

•

•

•

•
•
•
•
•
•
•
•

Attribute Value (bold = default) Description

mode script
show the action dialog, process user input and
send the final SQL to the SQL Commander
without executing the command
script-immediate
will not show the action dialog but instead pass
the final SQL directly to the SQL Commander
without executing the command

Specifies how the action will be prepared and displayed

resultaction mergeasscript
mergeastext

mergeastext will merge multiple result sets to to a
single result tab
mergeasscript will merge multiple result sets to a
single result tab, each row will be terminated with a
semi-colon (";")

Default is that result sets are displayed in individual tabs

resulttarget editor Only applicable if the resultaction attribute is specified.
With the value editor the merged results will be opened in a
new SQL Commander tab

hideif There may be situations when an action should be dropped
due to a condition. The hideif attribute is used to express a
condition which is evaluated when the list of actions is
created. Example: hideif="#dataMap.get('actionlevel')
neq 'toplevel'"

resetcatalogs true/false Setting this attribute to true will reset any cached
databases for the actual database connection. Useful when
for example the action create, rename or delete a database

resetschemas true/false Setting this attribute to true will reset any cached schemas
for the actual database connection. Useful when for
example the action create, rename or delete a schema

supportsmultipleobjects true/false An action support processing multiple objects if the style
attribute for all input elements is one of:

check
check-list
list
radio
separator
node
label
read-only text

The supportsmultipleobjects="true" attribute is used to
disable multi object processing even if the previous criteria
is satisfied

class Used to specify a custom Java class used as the action

classargs Used to pass arguments to a custom action

doclink Relative HTML link to the related chapter in the users guide

drop-on-condition Read more in drop-on-condition attribute

Database Profiles

DbVisualizer 13.0 Users Guide 412 of 445

Attribute Value (bold = default) Description

order-before Specifies the order of this Action among a collection of
Action elements located at the same level. It can either be
an index starting at 0 (first) or a node type. Ex. order-
before="View" will order this Action before Action
elements defined by the type="View" attribute

order-after Specifies the order of this Action among a collection of
Action elements located at the same level. It can either be
an index starting at 0 (first) or a node type. Ex. order-
after="View" will order this Action after Action elements
defined by the type="View" attribute

XML element - Input
An Input element specifies the characteristics of a field component in the actions dialog. The label attribute is recommended and is presented to the left
of input field. If a label is not specified, the input field will occupy the complete width of the action dialog. All input fields are editable by default.
The name attribute is required for editable fields and should specify the name of the variable in which the user input is stored.

Attribute Value (bold = default) Description

label The label for the input component

name For editable input this should be the name of the variable
holding the value specified by the user

tip Message displayed when hovering over the component

editable true/false Enables or disables editing of the component

linebreak true/false If set to true, no line break will be made after the input
component. This is useful when for example having
multiple <Input style="check"> elements in a single row

style list, radio, text, check, check-list, password,
number, text-editor, wrapped-text-editor, grid,
separator, label, note

The style of the input element. See following sections for
more details

hideif There may be situations when an Input element should
be dropped due to a condition. The hideif attribute is
used to express a condition which is evaluated when the
action is initialized.
Example: hideif="#dataMap.get('actionlevel') neq
'toplevel'"

runsetdefaultwhenvaluechanged The runsetdefaultwhenvaluechanged attribute defines
what other inputs default command should be triggered
when the value for the input is changed

This is a minimal definition of an input field. It will show a read-only text field control labeled Size.

<Input label="Size" editable="false"/>

If the input field is changed to be editable, the name attribute must be used to specify the identifier for the variable name.

<Input label=Size" editable="true" name="theSize"/>

Any input element may contain the tip attribute. It is used to briefly document the purpose of the input field and is displayed as a tooltip when the user
hover the mouse pointer over it.

<Input label=Size" editable="true" name="theSize" tip="Please enter the size of the new xxx"/>

Database Profiles

DbVisualizer 13.0 Users Guide 413 of 445

The hideif attribute is useful to limit what input fields should appear for an action. The condition specified in the hideif attribute have the same syntax as
described in the <SetVar> section. Example:

<Input label="Unit" hideif="#dataMap.get('actionlevel') neq 'toplevel'">

Input fields can be aligned on a single row with the linebreak attribute. The default behavior is that every input field is displayed on a single row. Use the
linebreak="false" attribute to define that the next input field will be arranged on the same line. To re-start the automatic line breaking feature you must
use the linebreak="true" attribute.

<Input name="size" label="Size" style="number" linebreak="false">
 <Default>10</Default>
</Input>
<Input name="unit" label="Unit" style="list" linebreak="true">
 <Labels>KB|MB</Labels>
 <Values>K|M</Values>
 <Default>M</Default>
</Input>

The previous example show the use of the linebreak attribute. The Size number field and the Unit list will appear in the same row.

Specifying the default value as a result from an SQL statement is a trivial task:

<Input label=Size" editable="true" name="theSize">
 <Default>
 <Command>
 <SQL>
select size from systables where tablename = '${objectname}'
 </SQL>
 </Command>
 </Default>
</Input>

The Default definition above will execute a SQL statement, it will automatically pick the value in the first row's first column and present it as the default
value for the input component. SQL may be specified in the Default element for all styles while SQL in Values and the Labels elements are valid only for
list, radio, and check styles. In some rare situations it may not be possible to express a SQL statement that will return a single column that should be
displayed for Values, Labels and Default. An example is when data is collected via a stored procedure. To solve this problem specify the column attribute.
Its value must be a column name or column index in the result set.

column index (column="2" attribute):

<Input label=Size" editable="true" name="theSize">
 <Default column="2">
 <Command idref="getSize">
 <Input name"objectname" value="${objectname}"/>
 </Command>
 </Default>
</Input>

or by column name (column="THE_SIZE" attribute):

<Input label=Size" editable="true" name="theSize">
 <Default column="THE_SIZE>
 <Command idref="getSize">
 <Input name"objectname" value="${objectname}"/>
 </Command>
 </Default>
</Input>

An alternative to embedding the SQL in the element body, as in one of the previous examples, is to refer to a command via the standard idref attribute:

<Input label=Size" editable="true" name="theSize">
 <Default>
 <Command idref="getSize">
 <Input name"objectname" value="${objectname}"/>
 </Command>
 </Default>
</Input>

Instead of having duplicated SQLs in multiple actions, consider using <Command idref="xxx"> elements instead.

Database Profiles

DbVisualizer 13.0 Users Guide 414 of 445

•
•
•

The following sections presents the supported styles that can be used in the Input element.

Style - check (true/false, on/off, selected/unselected)
The check style is suitable for yes/no, true/false, here/there types of input. Its checked state indicates that the Value for the input will be set in the final
variable. If the check box is unchecked, the variable value is blank.

<Input label="Cascade Constraints" name="cascade" style="check">
 <Values>compact</Values>
</Input>

This will create a check component with the label Cascade Constraints
Checking the check box will set the value of the variable identified by name (cascade) to the value of Value, which is compact
If the check box is unchecked, the variable value will be blank

Style - check-list (large number non exclusive choices)
The check-list style is much like the list style except that each choice have a check box in front allowing multiple values to be selected

<Input label="Weekdays" name="weekdays" style="check-list">
 <Arg name="output" value="jschours[${value}] = true"/>
 <Arg name="newline" value=", "/>
 <Labels>Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday</Labels>
 <Values>00|11|22|33|44|55|66</Values>
 <Default>22|44</Default>
</Input>

To produce a desirable output from the check-list it is possible to define how each choice should be generated in the final result. The output argument
and its value attribute is used to define how each value should be generated. In the example each choice will be formatted as: jschours[22] = true. The
newline argument defines any delimiter between each choice. If the user selects both Monday and Friday in the action window the following will be
generated:

jschours[00] = true, jschours[44] = true

Style - grid (configurable multi row/columns input)
The grid input style is presented as a grid with user controls to add, remove and move rows. The columns that should appear in the grid are defined by
using any of the primitive styles: text, number, password, check, list and radio. The grid style is useful for data that allows the user to define multiple
entries. Examples are, defining columns that should appear in a table index, setup data files for a tablespace or databank.

This example show a grid style definition that will ask the user for parameters that will be part of a create procedure action.

<Input name="parameters" style="grid">
 <Arg name="output" value="${direction} ${name} ${type}${_default}"/>
 <Arg name="newline" value=", "/>

 <Input name="name" label="Name" style="text">
 <Default>p1</Default>
 </Input>
 <Input name="direction" label="Direction" style="list">
 <Values>IN|INOUT|OUT</Values>
 <Default>IN</Default>
 </Input>
 <Input name="type" label="Type" style="text">
 <Default>VARCHAR(20)</Default>
 </Input>
</Input>

Here is the result:

Referring commands in actions via the idref attribute is recommended when the same SQL is used in several actions. Use Input elements for
the Command to pass parameters to the command.

Database Profiles

DbVisualizer 13.0 Users Guide 415 of 445

•

•

•

•

The sub elements for the grid style is different from the other input styles as it accepts nested Input elements. These input styles define what columns
should appear in the grid and the first input style will appear to the leftmost and the last in the rightmost column.

This example doesn't specify the label attribute as we want the grid to extend the full width of the actions dialog. The grid style use the Arg elements to
customize the appearance and function of the field. The following arguments are handled by the grid style:

output
Defines the output format for each row in the grid. The value may contain variables and static text. To create conditional output check the
SetVar element below
newline
Defines the static text that should separate every row in the grid. A "\n" somewhere in the value will be converted to a newline sequence in the
final output
rowprefix
Specifies any prefix for every row in the grid
rowsuffix
Specifies any suffix for every row in the grid

The resulting parameter list is created automatically by the control and is available in the variable name specified in the example to be parameters.

The SetVar element in the context of a grid style is used to process the data that will appear as defined by the <Arg name="output"> element. It is used
to process the data for every row in the grid. Let's say that the output must contain the word " default " if the value in a column named Default is
entered. SetVar is used to handle this:

<SetVar name="_default" value='#default.equals("") ? "" : " default " + #default'/>

The #default input value is here evaluated and if it is not empty the " default " text s prefixed to the value of the #default value. The result is stored in the
_default variable which is also refered in the output argument above.

Database Profiles

DbVisualizer 13.0 Users Guide 416 of 445

Style - label
The label style is useful when the standard left aligned label should not be displayed. The following example will show seven check boxes each labeled
individually and all displayed in the same row.

<Input style="label" linebreak="false"/>
<Input label="Mon" name="mon" style="check">
 <Values>mon</Values>
</Input>
<Input label="Tue" name="tue" style="check">
 <Values>tue</Values>
</Input>
<Input label="Wed" name="wed" style="check">
 <Values>wed</Values>
</Input>
<Input label="Thu" name="thu" style="check">
 <Values>thu</Values>
</Input>
<Input label="Fri" name="fri" style="check">
 <Values>fri</Values>
</Input>
<Input label="Sat" name="sat" style="check">
 <Values>sat</Values>
</Input>
<Input label="Sun" name="sun" style="check">
 <Values>sun</Values>
</Input>

Style - list (large number of exclusive choices)
The list style displays a list of choices in a drop-down component. Only one choice can be selected. The list can be editable, meaning that the field
showing the selection may be editable by the user. Here is a sample XML for the list style.

<Input label="Select index type" name="type" style="list">
 <Values>Pizza|Pasta|Burger</Values>
 <Default>Pasta</Default>
</Input>

The Values element should, for static entries, list all choices separated by a vertical bar (|) character. A Default value can either list the name of the
default choice or the index number (first choice starts at 0). In the example above, setting Default to {2} would set Burger to the default selection.

It is also possible to use the Labels element. If present, this should list all choices as they will appear in the actions dialog. Consider the following
example and the labels shown to the user, while Values in this case should list the choices that will go into the final SQL via the variable.

<Input label="Select index type" name="type" style="list">
 <Values>Pizza|Pasta|Burger</Values>
 <Labels>Pizza the French style|Pasta Bolognese|Texas Burger</Labels>
 <Default>Pasta</Default>
</Input>

If the users selects Texas Burger then the value for variable type will be Burger.

The following show how to use SQL to feed the list of values:

<Input label="New Database" name="newCatalog" style="list">
 <Values>
 <Command>
 <SQL>
 <![CDATA[
show databases
]]>
 </SQL>
 </Command>
 </Values>
 <Default>${catalog}</Default>
</Input>

Here a Command element is specified as a sub element to Values. The result of the show databases SQL will be presented in the list component.

Database Profiles

DbVisualizer 13.0 Users Guide 417 of 445

•
•

To make the list editable, specify the attribute editable="true".

Style - note
The note style is just s simple label that can be put after for example input fields. Often used in combination with the linebreak attribute.

<Input label="Sleep Between Each Statement" name="sleep" style="number" linebreak="false">
 <Default>1000</Default>
</Input>
<Input label="millis" style="note" linebreak="true"/>

Style - number
A number style is the same as text except that it only accept number values.

<Input label="Size" name="size" style="number" editable="true"/>

Style - password
A password field is the same as text except that it masks the value as ***.

<Input label="Password" name="pw" style="password" editable="true"/>

Style - radio (limited number of choices)
The radio style display a list of choices organized as button components. The only difference between the radio and list styles are:

All choices for a radio style are displayed on the screen (better overview of choices but suitable only for a limited number of choices)
The <Arg name="direction" value="vertical"/> element can be specified for radio style to present the radio choices vertically (default is
horizontally)

See the list style for complete capabilities of the radio style.

Style - separator (visual divider between input controls)
The separator style is not really an input element but is used to visually divide input components in the in the action dialog. If the label attribute is
specified, it will be presented to the left of the separator line. If no label is specified, only the separator is displayed.

<Input label="SQL Mode" style="separator"/>

The separator is a useful substitute for the standard label presented to the left of every input field. Here is a sample:

Database Profiles

DbVisualizer 13.0 Users Guide 418 of 445

•

•

The figure shows the use of separators and two fields that extend to the full width of the action dialog. The separators for Parameters and SQL Mode are
here used as alternatives to labels for the fields below them.

Style - note

The note style is especially useful when a description or text should be anchored directly after another input.

<Input label="Sleep Between Each Statement" name="sleep" style="number" linebreak="false">
 <Default>1000</Default>
</Input>
<Input label="millis" style="note" linebreak="true"/>

The previous sample looks like this:

Style - text (single line)
The text style is used to present single-line data in a text field.

<Input label="Enter your userid" name="userid" style="text">
 <Default>agneta</Default>
</Input>

The optional Default element is used to define a default value for the field. Variables, static text and Command elements can be used to define
the default value.
A text input is editable by default. To make it read only specify editable="false"

Database Profiles

DbVisualizer 13.0 Users Guide 419 of 445

•
•
•
•

Style - text-editor (multi line)
A text-editor field is the same as the text style except that it presents a multi-line field.

<Input label="Description" name="desc" style="text-editor" editable="true">
 <Arg name="height" value="30"/>
</Input>

The Arg element defines the height (in DLU) for the text-editor. The default height is 80 DLU's.

Style - wrapped-text-editor (multi line)
This is exactly the same as text-editor except that the wrapped-text-editor wraps long lines.

XML element - SetVar
The SetVar element is used to do conditional processing and create new variables based on the content of other variables or static text.

Consider an SQL statement for creating new users in the database:

create user 'user' identified by 'password'

In this case it is quite easy to map the user field to an Input element for the action since it is a required field. The question arise for password which is
optional. The identified by clause should only be part of the final SQL if the password is entered by the user. The solution for this scenario is to use
the SetVar element. Here is the complete action definition:

<Action id="mydb-user-create" label="Create User" reload="true" icon="add">
 <Input label="Userid" name="userid" style="text"/>
 <Input label="Password" name="password" style="password"/>

 <SetVar name="_password" value='#password.equals("") ? "" : " identified by \"" + #password + "\""'/>

 <Command>
 <SQL>
 <![CDATA[
create user ${userid} ${_password}
]]>
 </SQL>
 </Command>
</Action>

The SetVar element accepts three attributes:

Attribute Description

name The name of the new variable

value Should contain the expression that will be evaluated. The expression is based on the OGNL toolkit.
This is an expression library that mimics most of what is being supported by Java. Variables are
referenced as #variableName

action This attribute is optional and can have any of the following values:

show - default and indicates that the variable (and its value will appear in node-form viewers)
hide - the variable will not display in node-form viewers
drop - the SetVar element is not evaluated when actions is being processed
runwheninit - runs the SetVar only during initialization of the action (before window is
displayed)

The expression in the example above checks whether the password variable is empty. If it is empty, a blank value is being assigned to
the _password variable. If it is not empty, the value for _password will be set to identified by theEnteredPassword.

The SQL in the Command element now refer the new ${_password} variable instead of the original ${password}.

It is recommended that variables produced via SetVar elements are prefixed with an underline (_) to highlight were they come from.

http://commons.apache.org/proper/commons-ognl/

Database Profiles

DbVisualizer 13.0 Users Guide 420 of 445

•
•

XML element - Confirm
The Confirm element is displayed to the user when a request to Execute the action is made. If there are only read-only input fields in the action, this
message is displayed in the body of the action dialog. Otherwise the message is displayed in a confirmation dialog.

<Confirm>Really drop table ${table}?</Confirm>

XML element - Result
The Result element is optional and if specified, it is shown in a dialog after successful execution.

<Result>Table ${table} has been dropped!</Result>

The Result message will be displayed in a dialog after successful execution.
If the execution fails, a generic error dialog is displayed and the Result is not displayed.

XML element - Command
The Command element specifies the SQL code that is executed by the action.

 <Command>
 <SQL>
 <![CDATA[
drop table ${table} mode ${mode} including constraints ${includeconstraints}
]]>
 </SQL>
</Command>

For more information about the Command element check the XML element - Commands section.

XML element - Message
The Message element can be used to specify a highlight message that will appear at the top of the action window.

<Message>
 <![CDATA[<html>
This action will be deprecated in a future version as it use database calls that has been declared by the
database vendor as extremely bad performing.</html>
]]>
</Message>

You may use simple HTML tags in the message content.

Action showing just a message
There may be situations when an action should show a message in a simple dialog with just an OK button. One scenario when this is useful is when a
condition is evaluated for an action requiring certain DB privileges to run it. If proper authorization is missing a message should be displayed.

This is accomplished by having a single Confirm element for the Action element. The following illustrates an example:

<If test="#SUPERUSER">
 <Action id="vertica-table-analyze-workload" label="Analyze Workload For Table" resultaction="show">

A SetVar having "password" in its name attribute will be displayed as "***" in the SQL Preview pane.

Note that the message text can be composed of HTML tags such as , <i>,
, etc.

Result elements are currently not displayed in DbVisualizer. It is however recommend that you specify these as they will most likely appear in
some way or another in a future version. If you want to test the appearance of Result elements then open the DBVIS-HOME/resources/dbvis-
custom.xml file in a text editor and make sure dbvis.showactionresult is set to true.

Database Profiles

DbVisualizer 13.0 Users Guide 421 of 445

 <Input label="Schema" style="text" editable="false">
 <Default>${schema}</Default>
 </Input>
 <Input label="Table" style="text" editable="false">
 <Default>${objectname}</Default>
 </Input>
 <Command>
 <SQL>
 <![CDATA[SELECT analyze_workload('${schema}.${objectname}')]]></SQL>
 </Command>
 <Confirm>
 Really Analyze Workload on ${schema}.${objectname}?
 </Confirm>
 </Action>
</If>
<Else>
 <Action id="vertica-table-analyze-workload-INFO" label="Analyze Workload For Table">
 <Confirm>
 <![CDATA[
 This feature requires the super user authorization.
]]>
 </Confirm>
 </Action>
</Else>

24.5 Icons

24.5.1 Introduction
Icons related to functionality defined in a database profile are displayed in the database objects tree, actions and object viewers. Icons are declared by
mapping a logical name with the file name for the icon. For database profiles provided with DbVisualizer, the type="xxx" attribute for GroupNode and
DataNode elements map the xxx with a matching icon file name. Icons are normally of minor interest until you decide to build your own database profile
or extend an existing one.

The following show the use of the icon attribute for a DataNode element. A condition control what icon to use based on the value
of getCatalogs.TABLE_CAT.

<DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}"
 icon="#dataMap.get('getCatalogs.TABLE_CAT').equals('sales') ? 'salesIcon' :
 (#dataMap.get('getCatalogs.TABLE_CAT').equals('support') ? 'supportIcon' : null)">
</DataNode>

The following sections explain how icons are handled and what choices you have to add your own icons.

24.5.2 icons.prefs file
Icons are defined in a simple text file with each row in the format: name=iconFileName. In DbVisualizer there is a icons.prefs file provided with the
installation and it maps all icons used not only in database profiles but for all features. Here is a sample of the icons.prefs file.

PhysicalStandby= server_certificate
Plan= FIX_execute_explain
PrimaryKey= key
Privileges= key
Procedure= gears
Procedures= gears
Process= cpu
Processes= cpu
Program= hat_green
Programs= hat_green
Properties= control_panel
PublicDatabaseLinks= FIX_public_link
PublicDatabaseLink= FIX_public_link

Database Profiles

DbVisualizer 13.0 Users Guide 422 of 445

•
•
•
•

•
•
•
•
•

1.

2.

The first name is the logical name used in the database profile. For all object types such as Table, Column, View, Source and so on these names are
defined in the icons.prefs file. For non object types icons are named with the name the icon represents such as cut, copy, paste, open and so on. The
value for each logical name is the file name without the extension .png.

24.5.3 Icons Search Path
The database profile search path defined in Tool Properties / General / Database Connection / Database Profile not only define what directories are
searched for profiles but also icons. These are the default folders searched:

${dbvis.prefsdir}/ext/profiles
${dbvis.home}/resources/profiles

${dbvis.prefsdir} is replaced with the setting directory for DbVisualizer on the platform being used. On Windows this is C:\Users\<user>\.dbvis
while ${dbvis.home} is the installation directory for DbVisualizer. If there is an icons.prefs file available in the scanned directories the actual icon files
bust be available in the images/16x16 and images/24x24 sub directories such as ${dbvis.prefsdir}/ext/profiles/images/16x16. The 16x16
directory should contain a 16 by 16 sized icon and the 24x24 a 24 by 24 sized icon.

This is an example of the ${dbvis.prefsdir}/ext/profiles/icons.prefs file:

sample-schema-dict=dict

The actual icon represented by the dict file name is located in:

${dbvis.prefsdir}/ext/profiles/images/16x16/dict.png
${dbvis.prefsdir}/ext/profiles/images/24x24/dict.png

24.6 Conditional Processing
Introduction
Conditional processing when database connection is established
Conditional processing during command execution
drop-on-condition attribute

24.6.1 Introduction
Conditional processing simply means that a profile can adjust its content based on certain conditions. A few examples:

Which version of the database is being accessed
The format of the database URL
The client environment i.e Java version, vendor, etc.
User properties
Database connection properties

Conditional processing is especially useful when adapting the profile for different versions of the database (and/or JDBC driver). Another use is to replace
generic error messages with more user friendly messages.

If you have some programming skills conditions are expressed using If, Elseif and Else statements.

There are two phases when conditions are processed:

Conditional processing when database connection is established
If, ElseIf and Else elements can be specified almost everywhere in the profile
Conditional processing during command execution
The OnError element is used to define a message that will appear in DbVisualizer if a command fails. Conditions are used to control what
message should appear

DbVisualizer uses the type attribute to determine which If elements should be executed in which of the two phases. If this attribute is set to the
value runtime, it will be processed in the second phase. If it is not specified, it will be processed in the first phase.

The object type may refer grouping objects (GroupNode) such as Tables, Views, Procedures and specific a objects (DataNode) such as
Table, View, Procedure. The general recommendation is to name the object type for a GroupNode in a plural form and in singular form for
DataNode objects. The icon representing for example Tables and Table is in most cases the same, still there must be two definitions in the
icons.prefs file.

Database Profiles

DbVisualizer 13.0 Users Guide 423 of 445

24.6.2 Conditional processing when database connection is established
These are the call signatures for the utilities used when processing conditions:

boolean #util.isNull(String string)
boolean #util.isNullOrWhitespace(String string)
boolean #util.isDatabaseVersionLT(Integer major)
boolean #util.isDatabaseVersionLT(Integer major, Integer minor)
boolean #util.isDatabaseVersionLTE(Integer major)
boolean #util.isDatabaseVersionLTE(Integer major, Integer minor)
boolean #util.isDatabaseVersionEQ(Integer major)
boolean #util.isDatabaseVersionEQ(Integer major, Integer minor)
boolean #util.isDatabaseVersionGTE(Integer major)
boolean #util.isDatabaseVersionGTE(Integer major, Integer minor)
boolean #util.isDatabaseVersionGT(Integer major)
boolean #util.isDatabaseVersionGT(Integer major, Integer minor)
boolean #util.isDatabaseType(String type)
boolean #util.isNotDatabaseType(String type)

The following example shows the use of conditions that are processed during connect of the database connection.

<Command id="sybase-ase.getLogins">
 <If test="#util.isDatabaseVersionLTE(5)">
 <SQL>
 <![CDATA[
select name from master.dbo.syslogins
]]>
 </SQL>
 </If>
 <ElseIf test="#util.isDatabaseVersionEQ(9)">
 <SQL>
 <![CDATA[
select name, suid from master.dbo.syslogins
]]>
 </SQL>
 </ElseIf>
 <Else>
 <SQL>
 <![CDATA[
select name, suid, dbname from master.dbo.syslogins
]]>
 </SQL>
 </Else>
</Command>

The above means that if the major version of the database being accessed is less than or equal to 5, the first SQL is used. If the major version is equal to 9,
the second SQL is used, and the last SQL is used for all other versions. The test attribute may contain conditions that are ANDed or ORed. Conditions can
contain multiple evaluations, combined using parenthesis. The If, ElseIf and Else elements may be placed anywhere in the XML file.

Here is another example that controls whether certain nodes will appear in the database objects tree or not.

<!-- Getting Table Engines was added in MySQL 4.1 -->
<If test="#util.isDatabaseVersionGTE(4, 1)">
 <GroupNode type="TableEngines" label="Table Engines" isLeaf="true"/>

 <!-- "Errors" was added in MySQL 5 -->
 <If test="#util.isDatabaseVersionGTE(5)">
 <GroupNode type="Errors" label="Errors" isLeaf="true"/>
 </If>
</If>
<Commands>
 <OnError>
 <!-- The ORA-942 error means "the table or view doesn't exist" -->
 <!-- It is catched here since these errors typically indicates -->
 <!-- that the user don't have privileges to access the SYS and/or -->
 <!-- V$ tables. -->
 <If test="#result.getErrorCode() eq 942" context="runtime">
 <Message>

Database Profiles

DbVisualizer 13.0 Users Guide 424 of 445

•
•
•
•
•
•

 <![CDATA[
You don't have the required privileges to view this object.
]]>
 </Message>
 </If>
 <ElseIf test="#result.getErrorCode() eq 17008" context="runtime">
 <Message>
 <![CDATA[
Your connection with the database server has been interrupted!
Please reconnect to re-establish the connection.
]]>
 </Message>
 </ElseIf>
 </OnError>
 ...
</Commands>

As you can see, this example contains nested uses of If.

24.6.3 Conditional processing during command execution
Using conditional processing to evaluate any errors from a Command may be useful to rephrase error messages to be more user friendly.

<Commands>
 <OnError>
 <!-- The ORA-942 error means "the table or view doesn't exist" -->
 <!-- It is catched here since these errors typically indicates -->
 <!-- that the user don't have privileges to access the SYS and/or -->
 <!-- V$ tables. -->
 <If test="#result.getErrorCode() eq 942" context="runtime">
 <Message>
 <![CDATA[
You don't have the required privileges to view this object.
]]>
 </Message>
 </If>
 <ElseIf test="#result.getErrorCode() eq 17008" context="runtime">
 <Message>
 <![CDATA[
Your connection with the database server has been interrupted!
Please reconnect to re-establish the connection.
]]>
 </Message>
 </ElseIf>
 </OnError>
 ...
</Commands>

The OnError element can be used in Commands and Command elements. If used in Commands element, its conditions are processed for all its
commands. If it's part of a specific Command, it is processed only for that command.

24.6.4 drop-on-condition attribute
The drop-on-condition attribute is processed during profile load and may have the constant value "always" or a boolean statement that is evaluated.
This attribute is valid for the following XML elements:

Action
ActionGroup
GroupNode
DataNode
ObjectView
DataView

This will drop the element if the database version is less than 4.1:

Database Profiles

DbVisualizer 13.0 Users Guide 425 of 445

•
•
•
•
•
•

<GroupNode type="TableEngines" label="Storage Engines"
 drop-on-condition="#util.isDatabaseVersionLT(4,1)">

This will drop the element unconditionally which is useful in a sub profile needing to for example drop a parent DataView defined in the same ObjectView:

<DataView id="generic-catalog-tables" drop-on-condition="always"/>

If you are looking to drop for example the parent ObjectView and all its DataView elements, and then add a replacement for the ObjectView in the sub
profile, you need to drop each of the DataView elements in the sub profile rather than first doing a drop of the parent ObjectView and then re-define it in
the sub profile. Here is an example that will not work resulting that both ObjectView="Procedures" definitions will be removed:

<ObjectView type="Procedures" drop-on-condition="always"/>

<ObjectView type="Procedures">
 <DataView id="redshift-procedures-Procedures" icon="Procedures" label="Procedures" viewer="grid">
 ...
 </DataView>
</ObjectView>

Instead you need to override the ObjectView and in it, drop the DataView:

<ObjectView type="Procedures">
 <DataView id="generic-procedures-procedures" drop-on-condition="always"/>

 <DataView id="redshift-procedures-Procedures" icon="Procedures" label="Procedures" viewer="grid">
 ...
 </DataView>
</ObjectView>

The same apply for all elements supporting the drop-on-condition attribute.

24.7 Database Profile Utilities
In the Database Profiles list in Connection Properties there is a right-click menu with various commands to process the database profile and list of
profiles. These

commands are useful while developing a database profile. Read the following sections for more details about each command.

Analyze Database Profile
Show All Type and Icon Attributes
Show Available Icons
Export Merged Profile
Configure Search Path
Reload Database Profiles List

24.7.1 Analyze Database Profile
This command verify the loaded database profile and perform various consistency checks and may report:

Check

GroupNode and DataNode elements with no matching ObjectView (by "type" attribute)

ObjectView elements with no matching GroupNode or DataNode (by "type" attribute)

ActionGroup elements with no matching GroupNode or DataNode (by "type" attribute)

DataView elements located in the same ObjectView having same "label" attribute

No matching icon for these elements (by the "type" or "icon" attributes)

Database Profiles

DbVisualizer 13.0 Users Guide 426 of 445

24.7.2 Show All Type and Icon Attributes
This command examine the loaded profile and report all used icons (logical name) as referenced by the object type and specific icon attributes. The
following is an example doing running this command with the MySQL profile loaded.

These are all "type" and "icon" references in the profile:
add
catalog
catalogs
charset
collation
column
columns
data
databases
dba
edit
errors
event
events
export
function
functions
import
index
indexes
info
login
navigator
primarykey
privileges
procedure
procedures
process
processes
references
remove
rename
role
rowcount
rowid
schema
schemas
scriptobject
slavestatus
source
sourceeditor
stateerror
status
table
tableengine
tableengines
tableprivileges
tables
trigger
triggers
users
variables
view
views
warning
warnings

24.7.3 Show Available Icons
This will show a window with all available icons, their name, icon file name and an indicator if the icon is used in the loaded database profile.

Database Profiles

DbVisualizer 13.0 Users Guide 427 of 445

24.7.4 Export Merged Profile
This will export the currently loaded profile. If the profile has been merged using the extend attribute the exported profile file is the complete and
processed profile.

24.7.5 Configure Search Path
This will open Tool Properties / General / Database Connection / Database Profile pane used to configure the search path for database profile loading.

24.7.6 Reload Database Profiles List
This will reload the list of database profiles in case a new profile has been added (or renamed) since last launch of DbVisualizer.

Database Profiles

DbVisualizer 13.0 Users Guide 428 of 445

•

•

•
•
•

•
•

•
•
•
•
•

•

•

•
•

•

24.8 Database Profile changes in 13.0
This document collects changes in the database profile framework in DbVisualizer 13.0.

New "node-text" viewer for DataView elements

24.8.1 New "node-text" viewer for DataView elements
The DataView element now supports the new node-text viewer.

viewer="node-text"

Read more in: Viewer - node-text

24.9 Database Profile changes in 11.0
This document collects changes in the database profile framework in DbVisualizer 11.0.

Common attribute changes
New attributes for the ProcessDataSet sub element for Command
New attributes for the ObjectView element

24.9.1 Common attribute changes
The action="drop" attribute replaced with drop-on-condition="..."

Read more in drop-on-condition attribute

24.9.2 New attributes for the ProcessDataSet sub element for Command
The ProcessDataSet definition defines if and how a DataSet generated by a Command should be processed after retrieved from the database.

The following new actions for ProcessDataSet are new in 11.0:

addrow
convertnullvalues
convertsqlwarningtodataset
movecolumn
truncatedataset

Read more in XML element - Commands

24.9.3 New attributes for the ObjectView element
The DataView element now supports this new attribute:

layout="tilehorizontal/tilevertical/collapse"

Read more in: XML element - ObjectView

24.9.4 New "chart" viewer for DataView elements
The DataView element now supports the new chart viewer.

viewer="chart"

Read more in: Viewer - chart

24.10 Database Profile changes in 9.5
This document collects changes in the database profile framework in DbVisualizer 9.5.

New/changed attributes for Command
Action element improvements

New runsetdefaultwhenvaluechanged attribute

Database Profiles

DbVisualizer 13.0 Users Guide 429 of 445

•
•
•

•
•
•

•
•

•
•

•
•

•
•

•
•

•
•
•

•
•

•

•
•

Check list style
Check style
Action layout

Changes for DataNode and GroupNode
New utility class
Changed icons definition

24.10.1 New/changed attributes for Command
These are the changes in the attributes for the Command element.

exectype="script/asis/explain" (replaces parsesql="true/false")
script will execute each individual statement in a multi statement script, asis will execute all of the SQL as one statement and explain
will try generate an explain plan for the single statement

processmarkers="true/withdriver"
Defines whether markers such as :name, ? should be processed either internally by DbVisualizer or by letting the driver (if it supports it)
do the parsing

autocommit="true/false"
Specifies if the command should be auto committed after execution

whensuccess="commit/rollback/ask"
If autocommit="false" then this attribute defines what to do after successful execution

whenerror="commit/rollback/ask/ignore"
If autocommit="false" then this attribute defines what to do after failed execution

24.10.2 Action element improvements
Moved processmarkers="true|false" to Command processmarkers="true|withdriver"
Removed execute value for the mode attribute (since it is default)
Removed resulttype="resultset|dbmsoutput" and replaced by using the @set server output client side
command in script when needed
Replaced resultaction="ask|show|showtext|script" with resultaction="mergeastext/mergeasscript"
Added resulttarget="editor"

Notes:

If none of resultaction and resulttarget is present and there are results generated, the results are presented as tabs (same as SQL
Commander). The result set tab option to Merge All Result Sets tabs is available
If resultaction is present all result sets will be merged into a single result tab
If resulttarget is present it will copy the merged results to a new SQL Commander tab

New runsetdefaultwhenvaluechanged attribute
The runsetdefaultwhenvaluechanged attribute defines what other inputs should be triggered when the value for the input is changed. Whenever this
happens the other inputs Default commands are executed. This is useful if there are for example two list inputs. Changing the selected entry in the first
list will then notify the second input so that its Default command is re-executed using the new value as condition.

<Action id="postgresql-settings-alter" label="Alter Setting" reload="true" icon="edit">
 <Input name="setting" label="Setting" runsetdefaultwhenvaluechanged="value,desc" style="list">
 <Values>
 <Command><SQL><![CDATA[select name from pg_settings]]></SQL></Command>
 </Values>
 </Input>
 <Input name="value" label="Value" style="text">
 <Default>
 <Command><SQL><![CDATA[select setting from pg_settings where name = '${setting}']]></SQL></Command>
 </Default>
 </Input>
 <Input name="desc" label="Description" style="text" editable="false">
 <Default>
 <Command><SQL><![CDATA[select short_desc from pg_settings where name = '${setting}']]></SQL></Command>
 </Default>
 </Input>
 <Command>
 <SQL><![CDATA[alter system set ${setting} = ${value}]]></SQL>

Database Profiles

DbVisualizer 13.0 Users Guide 430 of 445

•
•
•

•

•

•

 </Command>
 <Confirm>
 Really alter setting ${setting}?
 </Confirm>
</Action>

Check list style
The new check-list input shows a list with options allowing multiple selections.

<Input label="Weekdays" name="weekdays" style="check-list">
 <Arg name="output" value="jschours[${value}] = true"/>
 <Arg name="newline" value=", "/>
 <Labels>Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday</Labels>
 <Values>00|11|22|33|44|55|66</Values>
 <Default>22|44</Default>
</Input>

The <Arg name="output" value="jschours[${value}] = true"/> defines that for each selected value in the list (ex Monday, Thursday, Friday),
the output in the weekdays variable will be:

jschours[11] = true, jschours[33] = true, jschours[44] = true

The newline argument defines the string used to separate the output entries.

Check style
Check inputs now supports a second values argument:

<Input label="Check with true/false value" name="enabled" style="check">
 <Values>On|Off</Values>
 <Default>Off</Default>
</Input>

The first, "On" is set if the checkbox is checked. "Off" is set if the checkbox is unchecked. If the second argument is not specified an empty string is set if
the checkbox is unchecked.

Action layout
Improved support for having input fields on the same row
Previously when using linebreak="false" any label on that row was not displayed. Now if there is a label it is shown
New: type="label" input attribute. Used to create just a label. Useful when linebreak="false" by having a general label for the row and then
each component can have their individual label. Ex: "Days: Mon: X Tue: X"
New: type="note" input attribute. Is the exact samt as "label" but can be used to specify some informative text that is not suffixed with a colon

24.10.3 Changes for DataNode and GroupNode
In addition to the label attribute the new label1 is now available. In the objects tree it will show optional information about the object. This is
displayed in italic gray text.
The sort attribute has been replaced with the ProcessDataSet action="sortcolumn"

24.10.4 New utility class
The new #util class can be used in profiles to primarily perform conditional checks such as what target database version is used. This is useful to adjust
what parts of the database profile should be visible to the user. These are the methods available:

boolean #util.isNull(String string)
boolean #util.isNullOrWhitespace(String string)
boolean #util.isDatabaseVersionLT(Integer major)
boolean #util.isDatabaseVersionLT(Integer major, Integer minor)
boolean #util.isDatabaseVersionLTE(Integer major)
boolean #util.isDatabaseVersionLTE(Integer major, Integer minor)
boolean #util.isDatabaseVersionEQ(Integer major)
boolean #util.isDatabaseVersionEQ(Integer major, Integer minor)

Troubleshooting

DbVisualizer 13.0 Users Guide 431 of 445

1.
2.
3.
4.
5.
6.

boolean #util.isDatabaseVersionGTE(Integer major)
boolean #util.isDatabaseVersionGTE(Integer major, Integer minor)
boolean #util.isDatabaseVersionGT(Integer major)
boolean #util.isDatabaseVersionGT(Integer major, Integer minor)
boolean #util.isDatabaseType(String type)
boolean #util.isNotDatabaseType(String type)
boolean #util.replaceAll(String source, String search, String replacement)

24.10.5 Changed icons definition
Many icons are composed of a full size (16x16, 24x24) base icon and a badge icon (half the size) representing things like, new, delete, error, clock, and so
on. The badge icon is typically anchored south east on the base icon.

Prior to DbVisualizer 9.5 there were no separate badge icons as these were integrated with the base icon resulting in many duplicated base icons only
with different badge symbols.

In DbVisualizer 9.5 a new icon library was introduced and now base icons are separate from the badge icons. Any badge icons that should be attached are
defined in the icons.prefs file and the final icon is dynamically created.

25 Troubleshooting
Even though we make our very best to ensure the quality of DbVisualizer, you may run into problems of different kinds. The runtime environment for
DbVisualizer is rather complicated when it comes to tracking the source of a problem, since it's not only DbVisualizer that may cause the problem but
also the JDBC driver, or even the database engine.

There are a few things that you can try before reporting a problem, depending on the nature of the problem:

Make sure you are using the latest version of Java available for your platform (Java 8 or later),
Make sure you are using a version of the JDBC driver that we've tested DbVisualizer with, or a later, production quality version,
Read the DbVisualizer FAQ,
Check the online Forums,
Read the DbVisualizer Users Guide,
... the last resort is to post a question via the problem report form or send an email to support@dbvis.com. (Note that we generally love detailed
reports as well as screenshots when possible)

25.1 Debugging DbVisualizer
The Tools->Debug Window is useful to see what is going on in DbVisualizer and the JDBC driver(s). The checkboxes at the top of the Debug tab controls
what parts of DbVisualizer should be debugged. The Debug JDBC Drivers option will enable debug of the current JDBC driver. Note that the amount of
output is determined by the JDBC driver.

http://www.java.com/
http://www.dbvis.com/doc/database-drivers/
https://confluence.dbvis.com/display/FAQ
http://www.dbvis.com/forum/
http://confluence.dbvis.com/display/UG/Users+Guide
mailto:support@dbvis.com

Troubleshooting

DbVisualizer 13.0 Users Guide 432 of 445

•
•
•
•
•

•

The log window shows the end of the log files produced by DbVisualizer. The Debug Log tab shows the debug log file and the Error Log tab the error log
file. DbVisualizer writes its log files to a log directory which may be opened using the Open Log Directory link at the top right. DbVisualizer maintains the
content of the log directory in a way that limits the size of its content. The content of the log tabs is also automatically truncated to preserve memory.

The toolbar contains the following buttons:

Save saves the content of the visible log tab to file
Copy copies any selection to the clipboard
Clear clears the content of the log tab
Start starts monitoring of the corresponding log file. This button is of course disabled if monitoring is already started
Stop stops the monitoring of the log files (if started)

The button labeled Contact Support serves as a shortcut to open the window for Reporting Issues where you may optionally attach the content of the
DbVisualizer log files to a support ticket.

25.2 Fixing Connection Issues
There may be many reasons for why you cannot connect to a database, but some of the most common are:

Incorrect values for the Database Server or Database Port fields in the Object View tab for the connection,

Troubleshooting

DbVisualizer 13.0 Users Guide 433 of 445

•
•
•
•
•

•

•

TCP/IP access is not enabled in the database server,
A firewall between the client and the database server blocks connections to the database port,
A syntax error in a manually entered JDBC URL,
The user account is not authorized to connect from the client where you run DbVisualizer,
Native libraries for a JDBC driver are not found.

The first three problems usually results in a somewhat cryptic message about I/O errors or a time-out. You can use the Ping Server button to make sure
that the a TCP/IP network connection can be established to the specified server and port. If this test fails, please ask your system or database
administrator for help.

JDBC syntax errors typically result in one of two error messages:

"The selected Driver cannot handle the specified Database URL. The most common reason for this error is that the database URL contains a
syntax error preventing the driver from accepting it. The error also occurs when trying to connect to a database with the wrong driver. Correct
this and try again."
"java.sql.SQLException: Io exception: Invalid number format for port number Io exception: Invalid number format for port number"

In both cases, we recommend using the Server Info settings format instead of the Database URL format for the connection, and let DbVisualizer build a
valid JDBC URL for you. If you must enter a JDBC URL manually, make sure that you replace possible placeholders enclosed with "<" and ">" in a
template you have copied, such as <1521>, and look for other syntax errors. Also verify that the JDBC driver is installed correctly.

Authorization problems are usually described by more straight forward messages. Ask you database administrator to help you get it resolved.

If you get a message about native libraries not being found, e.g. "no ocijdbc11 in java.library.path" or similar, it is because you have not installed these in
a location where DbVisualizer can read them. Unless you have a very good reason for using a JDBC driver that requires native code, we recommend that
you use a pure Java JDBC driver (a Type 4 driver) instead, like the "Oracle Thin" driver for Oracle. For more information about native drivers see Using
drivers depending on native API (Type 2 JDBC driver)

If none of this helps, please contact us using the Help->Contact Support form. Most of the information we can gather about the problem is typically
already filled in, but please add any additional details that may help us figure out what is wrong.

For up-to-date articles related to connection issues please check the Database Specific section in our support portal. For security related information,
check the Security section.

25.3 Handling Dropped Connections
All tasks that may potentially take a bit of time to perform or that may not finish at all because a database connection has dropped are executed in the
background so that you can still do other things. You can see that background tasks are running by looking at an indicator icon in the status bar.

If there are tasks running, the indicator icon is animated, showing a spinning pattern.

You can see exactly which tasks are running by clicking on the icon. This opens the Task Manager window.

http://Using drivers depending on native API (Type 2 JDBC driver)
https://dbvis.freshdesk.com/support/solutions/1000128326
https://dbvis.freshdesk.com/support/solutions/folders/1000232850

Troubleshooting

DbVisualizer 13.0 Users Guide 434 of 445

You can abort a long running task by clicking the Stop button next to the progress bar.

If the task did not complete because the connection dropped, you also need to reconnect to the database. If this happens frequently, you can enable
Connection Keep-Alive to send a dummy SELECT statements to the database occasionally to prevent time-outs.

25.4 Handling Memory Constraints
DbVisualizer has a fixed amount of memory available, and things may go bad if you load so much data that you're getting close to this limit. The most
common effect is that the GUI becomes very unresponsive or freezes completely.

To minimize the risk of this happening, DbVisualizer keeps track of the memory usage when you load tables or files and similar tasks that consume
memory. If you're getting so close to the limit that problems are likely to begin to show, all memory consuming background tasks are suspended and
the High Memory Usage window pops up.

All open tabs are listed along with an estimate for how much memory each tab uses. All background tasks are also shown. You need to resolve the high
memory usage problem before you can continue working with DbVisualizer. Click on the red cross next to tabs that use lots of memory to close them and
stop tasks that consume memory.

When you have released enough memory to get below the critical level, the icon in the Continue button changes to a green checkmark. Click it to close
the window and continue to work.

If you often see this window, first consider using features that minimizes the memory usage, such as using the @run command to execute your script and
the @export command to write query results to a file. As a last resort, you can increase the amount of memory for DbVisualizer.

In rare cases, closing tabs and stopping tasks do not release enough memory to continue, possibly due to memory leaks in the DbVisualizer code. If this
happens, you can click the Create Heap Dump button. The heap dump file is named heap.bin and stored in the preferences folder, typically the .dbvis
folder in your home folder. It may help us find memory leaks and fix them, so please send it to us with a description of what you were doing when you ran
into this problem. The file can be huge, so please compress it (e.g. using the zip command) before mailing it to us.

https://support.dbvis.com/a/solutions/articles/1000231939

Troubleshooting

DbVisualizer 13.0 Users Guide 435 of 445

•
•
•

If you cannot release enough memory to continue, you can use the Shutdown DbVisualizer button to shut down and start fresh.

25.5 Reporting Issues

25.5.1 Contacting support
There following are the alternatives getting help with issues or support requests:

Using Help->Contact Support in the DbVisualizer application (Recommended)
Using the web form at https://www.dbvis.com/company/contact/
Using the forums and knowledge base at http://support.dbvis.com

Using Help-Contact Support
This is the recommend way to report an issue or support requests as it gathers information about your settings and connections that help us provide you
with better analysis of any problems without having to get back to you and ask for additional information.

Please describe as detailed as possible the actions leading to the issue.

https://www.dbvis.com/company/contact/
http://support.dbvis.com

Troubleshooting

DbVisualizer 13.0 Users Guide 436 of 445

•
•

25.5.2 Encountering Errors
DbVisualizer sometimes detects errors that need the attention from the user. This can be done in two ways

The pop up of an Error dialog
The pop up of a "Red balloon" in the status bar of DbVisualizer

The Error Dialog
If you encounter an error that causes an error alert dialog to pop up, please click the Report Problem button to open the contact form with the details of
the error filled in.

The Red Balloon - log errors
DbVisualizer constantly monitor the log entries it writes to it's log files. If log entries representing errors are detected, a "Red balloon" pops up in the
DbVisualizer status bar as indicated below.

Clicking the red button will bring up the debug window.

25.6 Using special characters in passwords
Passwords entered for connections etc. can optionally be saved between sessions by DbVisualizer. Passwords containing special characters such as ♥ can
not be saved when the default encoding for passwords is used. More specifically DbVisualizer only supports characters in the 8859-1 character set with
the default encoding; other characters are corrupted when saved.

Reference Material

DbVisualizer 13.0 Users Guide 437 of 445

•

•

To be able to save passwords containing any characters, you need to enter a Master Password. Please see the section Setting a Master Password for more
information.

26 Reference Material
Here you find details about areas that are not covered elsewhere.

26.1 GUI Command Line Arguments
As an alternative to start DbVisualizer via the menu items and icons created by the installer, you can also start DbVisualizer from a shell (terminal) on all
operating systems using the following scripts:

DbVisualizer GUI on Windows:
DBVIS-HOME\dbvisgui.bat

DbVisualizer GUI on Linux/UNIX:
DBVIS-HOME/dbvisgui.sh

DbVisualizer GUI on macOS:
DbVisualizer.app/Contents/java/app/dbvisgui.sh

The scripts supports a number of command line arguments. These are also listed in the Help->About menu choice, under the Command Line tab, in
DbVisualizer.

Usage: dbvisgui [-connection <name>] [-userid <userid>] [-password <password>]
 [-encoding <encoding>]
 [-prefsdir <directory>]
 [-windowtitle <title>]
 [-help] [-version]
 [<filename>]
General Options:
 -connection <name> Database connection name (created with the GUI)
 -userid <userid> Userid to connect as
 -password <password> Password for userid
 -encoding <encoding> Encoding for the SQL script file
 -prefsdir <directory> Use an alternate user preferences directory
 -windowtitle <title> Additional window title
 -help Display this help
 -version Show version info
 <filename> SQL script file to load into editor

26.1.1 JAVA_EXEC

Example: Windows
(adjust paths to match your environment)

From the command line before launching dbvisgui.bat:
set JAVA_EXEC=D:\java\openjdk\jdk-8.0.242.08-hotspot\bin\java.exe
In your own script:
setlocal
set JAVA_EXEC=D:\java\openjdk\jdk-8.0.242.08-hotspot\bin\java.exe
call "d:\Program Files\DbVisualizer\dbvisgui.bat"

Please note that these scripts use the first Java version that is found in the PATH. The result may be that a non supported Java version is used.
You can specify a specific version by setting the environment variable JAVA_EXEC to point at an executable Java (note: set this using the
operating system's mechanism, not by editing the dbvisgui script).

Reference Material

DbVisualizer 13.0 Users Guide 438 of 445

•

•
•
•

•
•
•
•

•
•
•

Using the system control panel (type "Windows + X", click System -> Advanced System Settings -> Environment Variables):

26.2 Installation Structure
The installer and launcher for DbVisualizer is based on the install4jTM product (http://www.install4j.com). The structure of the installation directory
(referred as DBVIS-HOME throughout the Users Guide) contains the following on Windows. (The exact content differ between platforms):

.install4j/
addon/
dbviscmd.bat
dbvisgui.bat
doc/
java9-args
lib/
jre/
resources/
resolveJRE.bat
wrapper/
dbvis.vmoptions
dbvis.exe
README.txt
uninstall.exe

The dbvis.exe file is used to start DbVisualizer. The remaining files and directories are only of interest if you need to do nonstandard customization. For
information on how to increase the memory for the Java process that runs DbVisualizer, and also on how to modify the Java version being used, please
check the DbVisualizer support portal.

26.3 Installing a JDBC Driver
DbVisualizer bundles JDBC drivers for most common databases, so typically you do not need to install a JDBC driver.

What is a JDBC Driver?
Get the JDBC driver file(s)
Driver Manager

Loading and Configuring Drivers Manually
Setup a JDBC driver
JDBC drivers that require several JAR files
Errors (why are some paths red?)

Several versions of the same driver
Using drivers depending on native API (Type 2 JDBC driver)
Maven and Maven Repositories

http://www.install4j.com/
https://support.dbvis.com

Reference Material

DbVisualizer 13.0 Users Guide 439 of 445

•
•
•

•
•
•

This page describes the way JDBC drivers are managed in DbVisualizer. If a JDBC driver for your database is bundled with DbVisualizer, see Driver Info on
the Supported Databases page, you typically do not need to read this chapter.

If, however, any of the these things apply to you, keep on reading:

want to learn how the Driver Manager in DbVisualizer works,
need to have several versions of the same JDBC driver loaded simultaneously,
need to add a Driver that does not exist in the list of default drivers .

26.3.1 What is a JDBC Driver?
DbVisualizer is a generic tool for administration and exploration of databases. DbVisualizer does not deal directly with how to communicate with each
database type. That job is done by a JDBC driver, which is a set of Java classes. All JDBC drivers conform to the JDBC specification and its standardized
Java programming interfaces. This is what DbVisualizer relies on. A JDBC driver implements all details for how to communicate with a specific
database and database version, and there are drivers available from the database vendors themselves as well as from third parties. To establish a
connection to a database, DbVisualizer loads the driver and then gets connected to the database through the driver.

The following sections describe the steps for installing a JDBC Driver, and also how to configure DbVisualizer to use JNDI to obtain a database
connection.

26.3.2 Get the JDBC driver file(s)
DbVisualizer comes bundled with ready-to-use drivers in predefined templates for the most commonly used JDBC drivers that have licenses that allow
for distribution with a third party product. Currently, drivers for Azure SQL Database, Db2, Greenplum, H2, JavaDB/Derby, Mimer SQL, MySQL, NuoDB,
Oracle, PostgreSQL, SQLite, Vertica, Yellowbrick as well the jTDS driver for SQL Server and Sybase, are included with DbVisualizer. If you only need to
connect to databases of these types, you can skip the rest of this chapter and jump straight to the Creating a Connection page, because by default,
DbVisualizer creates a user configuration for these drivers automatically when you create a connection.

The Driver Manager is used to create driver configurations. If you need to connect to a database that is not supported by a bundled JDBC driver template,
you must create a user configuration for a JDBC driver that works with your database type and version. This is done from a predefined template in the
Driver Manager. The following web page contains an up-to-date listing of the database/driver combinations we have tested and supports via templates:

http://www.dbvis.com/doc/database-drivers/

For other databases/drivers you need to use the Custom Template and do all the configuration. To find a JDBC driver for your database, go to the
database vendor's website or search for the name of the database plus the word JDBC. Many drivers are accessible from Maven or HTTP download sites.
A good place too search for drivers distributed with Maven is https://mvnrepository.com/

You can download Drivers that is accessible via Maven or HTTP directly in the Driver Manger.

For proprietary drivers you need to download the driver to an appropriate directory. Make sure to read the installation instructions provided with the
driver. Some drivers are delivered in ZIP or JAR format. ZIP files need to be unpacked to make the driver files loadable in the Driver Manager.
The Databases and JDBC Drivers web page describes where you can download some drivers and also what additional steps may be needed to install and
load the driver in DbVisualizer.

When you have downloaded and configured the JDBC driver in Driver Manager, you can go ahead and create a database connection, as described in
the Creating a Connection page.

26.3.3 Driver Manager
The Driver Manager in DbVisualizer is used to define and configure the drivers that will be used to communicate with the databases. DbVisualizer comes
with predefined configuration templates that is used to create the user driver configurations that will be used in connections. Templates may be updated
in new versions of DbVisualizer, but your user configuration will not be changed. The templates may contain:

Ready-to-use configuration with bundled driver files
Predefined configuration with downloadable artifacts (you will have to download driver files via the artifacts from in the Driver Manager)
Just a configuration (you will have to add driver files or artifacts)

 The Custom Template has no configuration and can be used to create a driver for a database the we have not tested yet

Drivers are categorized into 4 types. We're not going to explain the differences here, just give you the hint that the "type 4," aka "thin," drivers
are the easiest to maintain, since they are pure Java drivers and do not depend on any external DLL's or dynamic libraries. Even though
DbVisualizer works with any type of driver, we recommend that you get a type 4 driver if there is one for your database.

http://www.dbvis.com/doc/database-drivers/
http://www.dbvis.com/doc/database-drivers/
https://mvnrepository.com/
http://www.dbvis.com/doc/database-drivers/

Reference Material

DbVisualizer 13.0 Users Guide 440 of 445

•
•
•

•

•
•
•

•

•

•

•

•

Loading and Configuring Drivers Manually
You can also load and configure JDBC drivers manually using the Driver Manager.

The left part of the driver manager dialog contains a list of driver names with a status symbol indicating whether the driver has been configured (green
checked icon) or not. The list columns also shows how many connections that uses the driver and the version of the driver. The list shows both the
current user drivers and the templates (read only). You can search and sort the list. Initially, the driver list contains a collection of templates. The list is
used to maintain the drivers and you may:

Create a new user driver from a template (plus)
Copy an existing user driver (star)
Delete an existing user driver (minus)

The right part displays the driver configuration for the selected driver in terms of the following:

Information area
Presents information about the current state if the driver and what to do next if the driver is not ready-to-use.
Separate tabs for

Driver Settings - described in detail below
Properties - setting for driver properties that is common for all connections that uses the driver configuration (settings can still be
changed on the individual connections)
Information - shows general information about the driver

The most important tab is the Driver Settings where you have:

Name
A driver name in the scope of DbVisualizer is a logical name for either a JDBC driver that is shown when you create a connection and in the
Connection tab when selecting which driver to use for a Database Connection
URL Format
The URL format specifies the pattern for the JDBC URL. Its purpose is to assist the user in the Connection tab when entering URL information.
See Using Variables in Connection Fields for more about how you can make it really easy to create Database Connections for this driver later on.
For a custom driver the JDBC URL is used configure the connection.
Driver Class
Defines the main class for the JDBC driver, used for connecting to the database.
Driver artifacts and jar files (files tree)
Defines artifact to download driver files from Maven or HTTP or paths to search for JDBC drivers.

A driver is ready to use once a driver class has been identified, which is indicated with a green check icon in the list. Drivers that are not ready for use are
shown without an icon, or with a red cross icon if an error has been detected (such as a failed download or a missing file) .

Setup a JDBC driver
The recommended way to setup a predefined driver without bundled driver files is to pick a matching driver template from the list and create a user
driver and then add artifacts, files or a or directory that keeps the driver class(es). For instances, if you are going to load the JDBC driver for Db2
DataDirect, select the corresponding driver entry in the list and press the plus icon (or use the context menu). You can also copy an existing user driver.
Artifacts (HTTP, or Maven), files and folders can be added via drag&drop, copy&paste or via the plus icon on the right side that opens editors or a file

Reference Material

DbVisualizer 13.0 Users Guide 441 of 445

dialog). Maven artifacts are identified by the dependency that can be found in e.g. https://mvnrepository.com/ (copy&paste/drag&drop this to the left
area or to the Maven editor)

Artifacts must be downloaded via the globe icon on the right. The dowloaded or added files/folders, are scanned and if all works well a a green checkbox
is displayed at the driver in the list

The preferred way to download is via Maven. The Maven editor allows you to check what versions exist. Both the Maven and the HTTP editors allows to
set a name and a description.

https://mvnrepository.com/

Reference Material

DbVisualizer 13.0 Users Guide 442 of 445

Artifacts can be set inactive i.e. not used in download. This is mainly used in templates for artifacts that should only be used for specific connection
purposes e.g. special authentication. Inactive artifacts are displayed in italic and in a disabled color:

Reference Material

DbVisualizer 13.0 Users Guide 443 of 445

•
•
•
•

Check the following online web page with the most current information about the tested databases and drivers:

http://www.dbvis.com/doc/database-drivers/

It lists which databases and drivers we have tested
Download links to JDBC drivers
Information about which files to load in the driver manager for each JDBC driver
Information about which Driver Class to choose

A JDBC Driver implementation typically consists of several Java classes. Java classes are typically organized using a package name structure. Example:

oracle.jdbc.driver.OracleDriver

When you load files in the Drivers artifacts and files tree, DbVisualizer scans each file to find the classes that represent main driver classes. Each such
class is listed under the path where it was found in the Driver JAR Files list, and it is also added to the Driver Class list in the Driver Settings area above. If
there is more than one class in the list, make sure you select the correct Driver Class from the list. Consult the driver documentation (or the Databases
and JDBC Drivers page) for information about which class to select.

When Driver Manager scans the loaded files in Drivers artifacts and files tree, the files are searched from the top of the tree, i.e., if there are several
identical classes, the topmost class will be used. Loading several paths containing different versions of the same driver in one driver definition is not
recommended, even though it works (if you do this, you must move the driver you are going to use to the top of the tree). The preferred method for
handling multiple versions of a driver is to create several user driver definitions.

JDBC drivers that require several JAR files
Some drivers depend on several JAR files, or directories. Simply select all JARs at once and use copy&paste, drag&drop or the file dialog to add them. The
Driver Manager will then automatically scan each of the loaded files and present any JDBC driver classes it finds.

Errors (why are some paths red?)
A path in red color indicates that the path is invalid. This may happen if the path has been removed or moved after it was loaded into the driver manager.
Simply remove the erroneous path and locate the correct one.

Several versions of the same driver
The Driver Manager supports loading and using several versions of the same driver concurrently. We recommend that you create a unique user driver
configuration per version of the driver and name the driver configuration properly, e.g., Oracle 9.2.0.1, Oracle 10.2.1.0.1, etc.

26.3.4 Using drivers depending on native API (Type 2 JDBC driver)
The JDBC type 2 driver, also known as the Native-API driver, is a database driver implementation that uses the client-side libraries of the database. The
driver converts JDBC method calls into native calls of the database API. For example: Oracle OCI driver is a type 2 driver.

These drivers often require additional components, such as DLL's or dynamic libraries, to be installed in addition to the driver JAR files. As mentioned
earlier using a Type 2 driver is not recommended in DbVisualizer as pure java (Type 4) drivers often exists. An example is the Oracle Thin JDBC driver
(Type 4) which is prefered over the Oracle OCI driver (Type 2).

http://www.dbvis.com/doc/database-drivers/
http://www.dbvis.com/doc/database-drivers/

Reference Material

DbVisualizer 13.0 Users Guide 444 of 445

Adding and using a Type 2 driver in DbVisualizer often involves driver dependant configuration tasks outside DbVisualizer. In some cases this is though
not required as LIBRARY files can be directly configured for the driver. This is of course optional and configuration of libraries outside of DbVisualizer is
always possible (using LD_LIBRARY_PATH or other environment configuration required by the driver).

Some examples follows

SSO or Windows Authentication using JTDS

In this case the driver template includes references to the needed LIBRARY file which is used in runtime by DbVisualizer. I.e no additional configuration is
required by DbVisualizer.

SQL Server JDBC Driver

This driver definition also contains libraries (dll files) which is used by DbVisualizer without any need of additional configuration.

26.3.5 Maven and Maven Repositories
Maven is a tool and framework for accessing and downloading 3rd-party libraries. Open source organisations and commercial companies provides JDBC
driver libraries to on-line repositories that supports Maven for download. Many organisations also use internal Maven repositories. DbVisualizer comes
with internal support for downloading with Maven in the Driver Manager. To download a driver using Maven you will need the groupId, artifactId and
version for the driver, to be entered as a Maven artifact specification in the Driver Manager. In some cases you will also need an URL to a Maven
repository including login credentials for the repository.

DbVisualizer comes with predefined templates containing Maven Artifacts in the Driver Manager and URLs for common Maven repositories.
You can add Maven repositories to search in in Preferences→Driver Manager.

Repositories are searched from top down. Order can be changed and you can add and remove repositories. The scope is used to limit the search.

26.4 Special Properties
DbVisualizer utilizes a few special properties that you can use to modify characteristics of the application. These properties are available in the DBVIS-
HOME/resources/dbvis-custom.prefs file.

Property Description

dbvis.-AutoSaveRunInterval=30 The number of seconds between auto-saving open SQL editors.

dbvis.disabledataedit=false Specifies if table data editing should be completely disabled, i.e. the form and inline
editors. Note: This has an effect only when used with a licensed edition.

dbvis.driver.ignore.dir=lib:resources:.install4j Specify directories from DBVIS-HOME that should not be listed in the Driver Manager
"System Classpath" list. Directories are separated with ":".
Accepted values: one or several directory names starting from DBVIS-HOME.

Changing drivers with LIBRARY artifacts require a DbVisualizer restart in order for the change to take effect.

Reference Material

DbVisualizer 13.0 Users Guide 445 of 445

Property Description

dbvis.grid.encode=false Specifies if encoding of data in result set grids will be performed or not. If set to true then
make sure the dbvis.grid.fromEncode and/or dbvis.grid.toEncode are also set.

dbvis.grid.fromEncode=ISO8859_1 Encoding used when translating text data that is fetched from the database

dbvis.grid.toEncode=GBK Encoding used when translating data that will appear in the result set grid

dbvis.removepartialresultsets=false Defines whether the result set(s) should be removed when interrupting an ongoing
execution in the SQL Commander.

dbvis.savedatacolumns=false Column layout changes such as reordering and/or visibility are saved for all grids in the
Objects Views *except* for the "Data" grid. This property can be used to also include the
layout in the "Data" grid. Note: This will result in DbVisualizer saving the layout for each
table that is displayed in the Data grid = huge XML file...

dbvis.showactionresult=false This defines whether the result for all actions should be displayed or only failures
(default).

dbvis.sqlwarning.maxrows=5000 Defines the number of SQL Warning rows that should be processed before truncating.

dbvis.usegetobject=false Specifies if the generic ResultSet.getObject() method in JDBC will be used in favor of the
data type specific get methods or not. Default is false.

dbvis.usestandardgridfit=false Enable this property and DbVisualizer will use an accurate but slow method to
automatically resize grid columns. "Accurate" since it does a real calculation of the
columns width. If leaving this property disabled then column widths are determined much
faster but depending on what grid font is used some columns may be truncated with "...".
This property has an effect only if Tool Properties->Grid->Auto Resize Column Widths is
enabled

dbvis.-ConnectionTestTimeout=20 The timeout in seconds for the "Ping Server" feature.

dbvis.<database>.IgnoreMaxRowsForNonSELECT=true Ignore the Max Rows setting for statements other than SELECT. MS SQL Server applies Max
Rows also to DELETE, INSERT and UPDATE (upto and including SQL Server 2008).

dbvis.<database>.-RemoveNewLineChars=false Backward compatibility setting used to specify that the SQL command will be trimmed of
all whitespaces, tabs and newlines just before it is executed by the DB server.

locale=en,us Use this to specify an alternate Locale

dbvis.-FileForceSync=true By default, all XML settings files are synced with the underlying storage device at the time
when these are saved. Use this property to disable the syncing and instead rely on OS
syncs.
Note: relying on OS syncs and performing an uncontrolled shutdown of Windows may
corrupt files.

dbvis.-MasterPasswordRule=.{8,} By default, a Master Password must be at least 8 characters. This is the definition of the
default implementation.
Please see the dbvis-custom.prefs file for some additional examples.

dbvis.-MasterPasswordRuleDescr=\
The new password must be at least 8 characters long

Use this to specify a description of the master password rule.

You rarely need to modify these properties, as the default values are sufficient for most usage. Also note that these properties may change in
future versions of DbVisualizer. Some are also experimental and may be removed or instead introduced in the DbVisualizer GUI.

	DbVisualizer 13.0
	Getting Started
	Downloading
	Installing
	Installing with a Setup Installer
	Installation from an archive file
	Silent Install
	Upgrading

	Starting DbVisualizer
	EULA (End User License Agreement)
	Free or Pro Version
	Background Panel

	Evaluating the Pro Edition
	Installing a Pro Edition License
	Installing a License Key String
	Installing a License Key File
	Uninstalling the license key
	DbVisualizer Pro, license file location

	Installing the Demo Database
	Installing/Uninstalling
	The Database
	Samples
	Sources

	Creating a Connection - basics
	Create a database connection

	Creating a Table - basics
	Viewing a Table - basics
	Editing a Table - basics
	Executing SQL - basics
	Checking for Updates
	Printing
	Printer Setup
	Printing a Grid, a Chart and Plain Text
	Printing a Graph
	Print Preview

	Getting the Most Out of the GUI
	Main Window Layout
	Tab Types
	Navigation Tabs
	Object View Tabs
	SQL Commander Tabs

	Opening a Tab
	Database tree objects
	Scripts and Monitors

	Pinning a Tab
	Closing a Tab
	Listing Open Tabs
	Maximizing and Minimizing a Tab
	Floating a Tab
	Rearranging Tabs
	Changing the Tab Label
	Selecting a Node for a Tab
	Preserving Tabs Between Sessions
	Using Tab Colors and Borders
	Changing the GUI Appearance
	Changing Keyboard Shortcuts
	Internationalization and Localization (i18N and L10N)
	Fonts and Character Sets
	Encoding

	Managing Database Objects
	Opening a Database Object
	Perform Actions on Multiple Database Objects
	Filtering Database Objects
	Object Filtering
	Object Type Visibility
	Temporarily Disable Filtering
	Filter Sets
	Show Only Default Database/Schema filter
	Labels

	Working with Tables
	Creating a Table
	Opening the Create Table Dialog
	Columns Tab
	Primary Key Tab
	Foreign Keys Tab
	Unique Constraints Tab
	Check Constraints Tab
	Indexes Tab
	SQL Preview
	Execute

	Altering a Table
	Opening the Alter Table Dialog
	Columns Tab
	Primary Key Tab
	Foreign Keys Tab
	Unique Constraints Tab
	Check Constraints Tab
	Indexes Tab
	SQL Preview
	Execute

	Creating a Trigger
	Opening the Create Trigger Dialog
	Trigger Editor

	Creating an Index
	Viewing Table Data
	Opening the Data tab
	Sorting
	Formatting
	Where Filter
	Column Filter
	Quick Filter
	Max Rows/Max Chars
	Max Rows at First Display
	Column Header Tooltips
	Highlight Primary Key Columns
	Auto Resize Columns
	Show Only Some Columns
	Right-Click Menu Operations
	Creating Monitors
	Aggregation Data for Selection

	Viewing BSON Document Data
	Nested View
	Tree View
	Text View

	Editing Table Data
	Opening the Data tab
	Editing Data in the Grid
	Copy/Paste
	Updates and Deletes Must Match Only One Table Row
	Key Column(s) Chooser
	Editing Multiple Rows
	Data Type checking
	New Line and Carriage Return
	Using the Cell Editor/Viewer
	Using the Form Editor/Viewer
	Preview Changes
	View and edit Binary/BLOB and CLOB Data

	Working with Binary and BLOB Data
	Working with Large Text/CLOB Data
	Using Max Rows and Max Chars for a Table
	Changing the Data Display Format
	Date, Time and Timestamp formats
	Number formats

	Exporting a Table
	Output Format
	Output Destination
	Options
	Using Variables in Fields
	Exporting Binary/BLOB and CLOB Data
	Saving And Loading Settings
	Other Ways to Export Table Data

	Importing Table Data
	Input File Format and Other Options
	Data Formats and Data Type Per Column
	Matching Columns and Data Types for an Existing Table
	Adjusting Table Declaration for a New Table
	Importing Binary/BLOB and CLOB Data (CSV and SQL Only)
	Running the import
	Saving And Loading Settings
	Other Ways to Import Table Data
	Known limitations

	Comparing Tables
	Viewing Table Relationships
	Navigating Table Relationships
	Opening the Navigator
	Navigating Relationships
	Adding Context Information to the Graph
	Arranging the Graph
	Exporting and Printing the Graph
	Opening the Navigator from the Data tab

	Viewing the Table DDL
	Filtering Tables in the Tree
	Showing Row Count in the Tree
	Using Permissions for Table Data Editing
	Scripting a Table
	Managing Table and Column Comments

	Working with Views
	Creating a View
	Altering a View
	Editing a View
	Exporting a View
	Viewing the View DDL
	Filtering Views in the Tree
	Scripting a View

	Working with Procedures, Functions and Other Code Objects
	Creating a Function
	Creating a Procedure
	Creating Other Code Objects
	Editing a Code Object
	Disable Error Markers in the SQL Editor

	Executing a Code Object
	Executing in the Code Editor
	Executing in the SQL Commander
	Using the Script Object Dialog

	Exporting a Code Object
	Scripting a Code Object

	Working with Schemas
	Creating a Schema
	Comparing Schemas
	Viewing Entity Relationships
	Exporting a Schema
	Output Format
	Output Destination
	Object Types
	Options
	Using Variables in Fields
	Saving And Loading Settings

	Filtering Schemas in the Tree

	Working with SQL
	Selecting Database Connection, Catalog and Schema
	Configuring the Initial Values

	Editing SQL Scripts
	Font Settings
	Editor Styles
	Comments
	Charsets and Fonts
	Loading and Saving Scripts
	Stale Files Warning
	Drag and Drop a File
	Drag and Drop Database Objects
	Loading and Saving Bookmarks and Monitors
	Navigating Between History Entries
	Navigating to Script location
	Confirming Overwriting Unsaved Changes
	SQL Formatting
	Settings
	Auto Completion
	Recording and Playing Edit Macros
	Folding Selected Text
	Selecting a Rectangular Area
	Highlighting Matches
	Tab Key Treatment
	Key Bindings

	Morph Selection
	Introduction
	Basic Examples
	Use Cases

	Using Editor Templates
	Using a Template
	Creating a new Template
	Editing or Deleting a Template
	Changing the Expand Keybinding

	Executing SQL Statements
	Execute a Script with Multiple Statements
	Execute Only the Current Statement
	Execute Buffer
	Control Execution after a Warning or an Error

	Re-Executing SQL Statements
	Using Previous and Next in the SQL Commander
	Using the SQL History Window
	Using Quick Load

	Executing Complex Statements
	Using Execute Buffer
	Using an SQL Dialect
	Using an SQL Block
	Using the @delimiter Command
	Calling a Function or Procedure

	Executing an External Script
	Locating SQL Errors
	Disable Error Markers in the SQL Editor

	Analyzing (explain) Query Performance
	Auto Commit, Commit and Rollback
	Managing Frequently Used SQL
	Creating, Editing and Organizing Bookmarks
	Executing Bookmarks
	Adding a Bookmark as a Favorite
	Sharing Bookmarks
	Using Quick Load

	Creating Queries Graphically
	Creating a Query
	Testing the Query
	Loading a Query From the Editor
	Properties for the Query Builder
	Current Limitations

	Formatting SQL
	Settings

	Using Max Rows and Max Chars for Queries
	Getting the DDL for an Object
	Using the Log Tab
	Preprocessing Script
	Executing
	Auto resize row heights
	Navigating to next/previous failed log entry
	Highlight statement or error in the SQL editor
	Saving all Log entries to text file
	Copy Log Entries to clipboard
	Copy executed SQLs to the SQL Commander
	Filter and search

	Writing to the Log Tab
	Using the DBMS Output Tab
	Comparing SQL Scripts
	Using Permissions in the SQL Commander
	Sending Comments to the Database with Statements
	Using Client-Side Commands
	Introduction
	Commands reference
	@export - Export query result
	@mail - Send emails and attach files
	@import - Importing data

	Parameterized SQL - Variables and Parameter Markers
	Using DbVisualizer Variables
	Using Parameter Markers

	Working with Result Sets
	Viewing a Result Set
	Viewing as a Grid
	Viewing as Text
	Merge Result Sets
	Viewing as a Graph

	Editing a Result Set
	Exporting a Result Set
	Comparing Result Sets
	Pinning Result Sets
	Show Result Sets in a Separate Window

	Working with Charts
	Charting a Result Set
	Selecting the Category
	Selecting the Series
	Chart Type

	Chart Configuration
	Appearance Preferences
	Series Preferences
	Saving/Loading Preferences

	Zooming
	Export

	Exporting a Grid
	Settings
	Data page
	Generating Test Data

	Preview
	Output Destination
	Settings Menu

	Opening a Grid as Spreadsheet
	Output

	Comparing Data
	Selecting the Objects to Compare
	Comparing Text Data
	Comparing Grids
	Comparing Cell Values

	Monitoring Data Changes
	Creating a Monitored Query
	Monitor table row count
	Monitor table row count difference

	Running a Monitored Query

	Accessing Frequently Used Objects
	Keeping Tabs Open Between Sessions
	Using Favorites
	Using Scripts

	Delimited Identifiers and Qualifiers
	Handling Transactions
	Changing the Auto Commit Setting
	Changing Auto-Commit for a Database Type
	Changing Auto-Commit for a Connection
	Changing Auto-Commit for an SQL Commander tab
	Changing Auto-Commit for a Statement Block

	Setting Transaction Isolation

	Database Connection Options
	Create a New Database Connection
	Create a database connection

	Configuring Connection Properties
	Tool Properties
	Connection Properties

	Copying an Existing Connection
	Edit Multiple Database Connections
	Changing the database driver

	Removing a Connection
	Organizing Connections in Folders
	Rearranging Connections and Folders
	Setting Common Authentication Options
	Authentication settings in Connection Properties
	SSH Settings in Tool Properties

	Setting a Master Password
	Specifying a Master Password
	Changing a Master Password
	Resetting the Master Password
	Connecting with a Master Password specified
	Manually Requesting the Master Password for New Connections
	Showing the Encrypted Password in Cleartext
	Declaring a Master Password Rule

	Using Connection Keep-Alive
	Security
	Using an SSH Tunnel
	Using SSL/TLS
	Common problems
	Single Sign-On (SSO)

	Read-Only Connections
	Permission Mode
	java.sql.connection.setReadOnly
	Setting a Driver Property
	Connection Hook

	Using Oracle TNS Names
	Changing an Oracle Password
	Using Variables in Connection Fields
	Automatically Connecting at Startup
	Executing SQL at Connect and Disconnect
	Using a Single Shared Physical Connection
	Selecting the Single Shared Physical Connection Mode
	Data Manipulation with a Single Shared Physical Connection
	Transaction Handling with a Single Shared Physical Connection

	JDBC-ODBC Bridge Driver Alternatives
	The UCanAccess Driver for MS Access
	Easysoft JDBC-ODBC Bridge Driver
	CData JDBC-ODBC Bridge

	Finding Database Objects and Data
	Finding and Replacing Text in the Editor
	Regular Expression Example:

	Finding Data in a Grid
	Locating an Object in an SQL Statement
	Locating an Object in the Databases tab
	Searching a Connection
	Synchronizing object tab selection and selection in the tree
	Search in all open editors

	Transfer DbVisualizer settings
	Transfer DbVisualizer settings to new environment
	Transfer the DbVisualizer Pro license to new machine

	Exporting and Importing Settings
	Export Settings
	Import Settings

	Command Line Interface
	Command Line Options
	Examples
	Executing single statements
	Executing scripts
	Controlling the output
	Using variables - prompting for values
	Combining OS scripts, the command line interface and DbVisualizer variables

	Setting up the connection properties on the command line
	Exit codes from dbviscmd
	Generating a Command From SQL Commander

	Database Profiles
	Understanding Database Profiles
	Affected DbVisualizer features
	How a Database Profile is loaded

	Creating a Database Profile
	Extending a Database Profile
	Extending Commands
	Extending Database Objects Tree
	Extending Actions
	Extending Object Views
	Remove an Element
	Complete sample Database Profile

	Top level XML Elements
	XML template
	XML element - DatabaseProfile
	XML element - InitCommands
	XML element - Commands
	XML element - ObjectsTreeDef
	XML element - ObjectsViewDef
	XML element - ObjectsActionDef

	Icons
	Introduction
	icons.prefs file
	Icons Search Path

	Conditional Processing
	Introduction
	Conditional processing when database connection is established
	Conditional processing during command execution
	drop-on-condition attribute

	Database Profile Utilities
	Analyze Database Profile
	Show All Type and Icon Attributes
	Show Available Icons
	Export Merged Profile
	Configure Search Path
	Reload Database Profiles List

	Database Profile changes in 13.0
	New "node-text" viewer for DataView elements

	Database Profile changes in 11.0
	Common attribute changes
	New attributes for the ProcessDataSet sub element for Command
	New attributes for the ObjectView element
	New "chart" viewer for DataView elements

	Database Profile changes in 9.5
	New/changed attributes for Command
	Action element improvements
	Changes for DataNode and GroupNode
	New utility class
	Changed icons definition

	Troubleshooting
	Debugging DbVisualizer
	Fixing Connection Issues
	Handling Dropped Connections
	Handling Memory Constraints
	Reporting Issues
	Contacting support
	Encountering Errors

	Using special characters in passwords

	Reference Material
	GUI Command Line Arguments
	JAVA_EXEC

	Installation Structure
	Installing a JDBC Driver
	What is a JDBC Driver?
	Get the JDBC driver file(s)
	Driver Manager
	Using drivers depending on native API (Type 2 JDBC driver)
	Maven and Maven Repositories

	Special Properties

